On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on \mathbf{C}^{n}

Bengt Josefson*

We shall prove that a locally polar set in \mathbf{C}^{n} is globally polar which generalizes a well-known result from potential theory for subharmonic functions and answers a question posed by Lelong [2]. Our method differs from the ones frequently used in potential theory, since it seems that there is a lack in the representation of plurisubharmonic functions by kernels, and the main step in our proof is to find, to every given function which is analytic in a ball, polynomials which are sufficiently small on the set where the given function is small (Proposition). From this the theorem will follow (Lemma 3) because locally a plurisubharmonic function is a Hartogs function. A consequence of the theorem is that an analytic set is globally polar and the theorem also has applications in the theory for capacities and extremal functions in \mathbf{C}^{n}. See for example Siciak [3].

Definition. A set $D \subset \mathbf{C}^{n}$ is called locally polar if there exist, to every $z \in D$, an open set $V_{z} \subset \mathbf{C}^{n}$ and $u_{z} \in \operatorname{PSH}\left(V_{z}\right)$, where $\operatorname{PSH}\left(V_{z}\right)$ denotes the set of all plurisubharmonic functions in V_{z}, so that $z \in V_{z}$ and such that $u_{z} / V_{z} \cap D$, the restriction of u_{z} to $V_{z} \cap D$, is equal to $-\infty$. D is globally polar if we can take $V_{z}=\mathbf{C}^{n}$. For details see [2].

We shall give \mathbf{C}^{n} the sup-norm and we shall let $\mathscr{H}(V)$, where $V \subset \mathbf{C}^{n}$ is open, denote the set of all analytic functions on V. We note that f has a Taylor series expansion $f(z)=\sum a_{r} z^{r}$ if $f \in \mathscr{H}\left(B(0, S)\right.$), where $B(0, S)$ is the open ball in \mathbf{C}^{n} with centre 0 and radius $S, a_{r} \in \mathbf{C}, r=\left(r_{1}, \ldots, r_{n}\right)$ is a multi-index and $z^{r}=z_{1}^{r_{1}} \ldots z^{r_{n}}$ where $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n}$.

Theorem. A set $D \subset \mathbf{C}^{n}$ is globally polar if and only if D is locally polar.
From the theorem we obviously have the following,

[^0]Corollary. An analytic subset of an open set in \mathbf{C}^{n} is globally polar.
We note that the "only if" part of the theorem is evident. For the rest of the proof we need a number of lemmas.

Let $D \subset C^{n}$ be a locally polar set. From the definition it follows that, for every $z \in D$, there exist $r_{z}>0$ and $u_{z} \in \operatorname{PSH}\left(B\left(z, r_{z}\right)\right)$ such that $u_{z} / B\left(z, r_{z}\right) \cap D=-\infty$.

Let from now on z be fixed. We shall first show that $B\left(z, r_{z} / 32\right) \cap D$ is a globally polar set. Without loss of generality we may assume that $z=0$ and $r_{0}=4$. To avoid too many subscripts we shall write u instead of u_{0} and it is obvious that we can take u such that $u(z)<0$ when $\|z\| \leqq 2$.

From Bremermann [1] we easily get the following:
Lemma 1. We can write $u(z)=\lim _{z^{\prime} \rightarrow z} \lim _{j \rightarrow \infty}(1 / j) \log \left|f_{j}\left(z^{\prime}\right)\right|$ where

$$
f_{j}(z) \in \mathscr{H}(B(0,4)) \quad \text { and } \quad\left\|f_{j}\right\|_{B(0,2)}=\sup _{\|z\| \leqq 2}\left|f_{j}(z)\right| \leqq 1
$$

Proof. From [1] it follows that

$$
H=\left\{(z, w) \in \mathbf{C}^{n+1} ; z \in B(0,4) \text { and }|w|<e^{-u(z)}\right\}
$$

is an open pseudoconvex set. Since $u<0$ when $\|z\| \leqq 2$ we have that $K=$ $\{(z, w) ;\|z\| \leqq 2$ and $|w| \leqq 1\}$ is a compact subset of H. The theorem of Bremer-mann-Norguet-Oka gives that there exists an $f \in \mathscr{H}(H)$ which cannot be continued over H and so that $\|f\|_{K}=\sup _{(z, w) \in K}|f(z, w)|<1$. We can write $f(z, w)=\sum w^{j} f_{j}(z)$ where $f_{j} \in \mathscr{H}(B(0,4))$ and

$$
u(z)=\varlimsup_{z^{\prime} \rightarrow z} \varlimsup_{j \rightarrow \infty}(1 / j) \log \left|f_{j}\left(z^{\prime}\right)\right|
$$

according to [1]. Since $\|f\|_{K}<1$ it follows that $\left\|f_{j}\right\|_{B(0,2)}<1$ which completes the proof. Q.E.D.

There exists an integer $q>0$ such that $\sup _{\|z\| \leqq 1 / 4} u(z)>-q+1$. Hence there exists an infinite set $S \subset \mathbf{N}$ so that $\left\|f_{j}\right\|_{B(0,1 / 4)}>e^{-q j}$ when $j \in S$. Since $\lim _{z^{\prime} \rightarrow z} \lim _{j \in S}(1 / j) \log \left|f_{j}\left(z^{\prime}\right)\right| \leqq u(z) \quad$ we may assume that equality holds, i.e. u is defined by $\left(f_{j}\right)_{j \in S}$. We may also assume that $(n j)^{2 n}<2^{j}$ when $j \in S$.

Next we will find, to every f_{j}, a polynomial g_{j} of degree i_{j} such that $\mid g_{j}(z)^{1 / i_{j}}$ is small when $\left|f_{j}(z)\right|^{1 / j}$ is small. We cannot expect the Taylor series to give such a good approximation in the set where $\left(f_{j}\right)^{1 / j}$ is small or such a good approximation for example on a ball and have to find other methods.

Put $N(s)=\left\{f \in \mathscr{H}(B(0,3)) ;\|f\|_{B(0,1)} \leqq 1\right.$ and $\left.|f(0)|>e^{-s}\right\}$. We note that there exists, for every $j \in S, x^{j} \in B(0,1 / 4)$ such that $f_{j}^{\prime}(z)=f_{j}\left(z-x^{j}\right) \in N(q j)$ since $f_{j} \in \mathscr{H}(B(0,4)),\left\|f_{j}\right\|_{B(0,2)} \leqq 1$ and $\left\|f_{j}\right\|_{B(0,1 / 4)}>e^{-q j}$.

Proposition. Let $f \in N(j)$, where $j \in \mathbf{R}^{+}$is so big that $(n j)^{2 n}<2^{j}$, and let $\varphi>100$. Then there exists a polynomial g such that $1 \leqq\|g\|_{B(0,1)} \leqq 2^{i}$, where i is the degree
of g, and so that $|g(z)|<\exp \left(-C i \varphi^{1 / n}\right)$ when $|f(z)|<\exp (-j \varphi)$ and $\|z\| \leqq 1 / 2$, where $C=1 / 2 \cdot 10^{3} n$.

Proof. First we note that it is no restriction to assume that $\varphi^{1 / n}$ is an integer, because if the proposition is true for every such φ with $C=1 /\left(10^{3} n\right)$ (as we shall prove), then it holds for every $\varphi>100$ with C as in the proposition, since then $\left[\varphi^{1 / n}\right]-1>1$, where [] denotes the integer part. It is also easy to see that we may suppose that j is an integer.

Furthermore, we may assume that $\varphi \leqq j$ since we can always raise f to the power φ and if g exists relative to $f^{\varphi} \in N(j \varphi)$ as in the proposition, g also has the desired properties relative to f.

Let $f(z)=\sum a_{r} z^{r}$ and let $M \subset \mathbf{N}^{n}$ be the set $M=\left\{r ; r_{s}<j \varphi\right\}$. It is clear that M contains exactly $j^{n} \varphi^{n}$ different elements. Put $Q(z)=\sum_{r \in M} x_{r} z^{r}$ and $H(z)=$ $f(z) Q(z)=\sum d_{r} z^{r}$, where $d_{r}=\sum_{t \in M} a_{r-t} x_{t} \quad$ where we put $a_{r-t}=0$ if $\min _{s}\left(r_{s}-t_{s}\right)<0$.

Now $\left(d_{r}=0\right)_{r \in M}$ is a system of linear equations in the variables x_{t} and with coefficients a_{r}. There are $j^{n} \varphi^{n}$ variables and equations. Let $D(M)$ be the determinant of the system.

We note that $H(z)$ is small when $f(z)$ is small since H is a product of a polynomial and f. We shall show that x_{t} can be chosen so that $d_{r}=0$ when $\|r\|=\sum_{1}^{n} r_{s} \leqq$ $j \cdot \varphi / 2$ and $\max r_{s}>A=i / n=100 j \varphi^{(n-1) / n}$ and so that at least one d_{r}, with $\|r\| \leqq i$, is big (at least bigger than $e^{-j \cdot \varphi / 10}$). Then it will follow that $G(z)=\sum_{\max r_{s} \leqq A} d_{r} z^{r}$ is small when $f(z)$ is small, since G is almost H, and that G has the desired properties, i.e. G is not small on the unit ball. That the variables x_{t} can be taken in the way described above follows from the fact that if all d_{r} are small when $\|r\| \leqq i$ then the system of equations $\left\{d_{r}=0\right\}_{r \in M}$ can be slightly changed so that the new system has a non-trivial solution, thus the determinant of the new system is zero since the system has as many variables as equations. But then it follows that there exists a submatrix of $\left\{d_{r}=0\right\}_{r \in M}$ with a determinant which is much bigger than that of $\left\{d_{r}=0\right\}$ and since $D(M)$ is big, a repetition of this argument will lead to a contradiction because $\left|a_{r}\right| \leqq 1$.

We shall first show that $D(M)=(f(0))^{j^{n} \varphi^{n}}$. This follows from the fact that the coefficient for x_{t} in d_{t} is $a_{0}=f(0)$ and because the coefficient for x_{t} in d_{r} is 0 if $r_{s}<t_{s}$ for some $s \in(1, \ldots, n)$. Hence the matrix belonging to the system $\left(d_{r}=0\right)_{r \in M}$ is zero on one side of the diagonal and with diagonal elements equal to $f(0)$ which gives that $D(M)=(f(0))^{j^{n} \varphi^{n}}$.

Let N and $N^{\prime} \subset M$ be such that $\tau(N)=\tau\left(N^{\prime}\right)$, where τ denotes the number of elements. Let $\left\{d^{\left(N^{\prime}\right)}=0\right\}_{r \in N}$ be the system of linear equations $\sum_{t \in N^{\prime}} a_{r-t} x_{t}=0$, $r \in N$ and let $D\left(N, N^{\prime}\right)$ denote its determinant which exists since $\tau(N)=\tau\left(N^{\prime}\right)$. We have that
(1) $\left|D\left(N, N^{\prime}\right)\right|<\left(j^{n} \varphi^{n}\right)^{j^{n} \varphi^{n}}<e^{j^{n+1} \varphi^{n}}$ if $j^{2 n} \leqq e^{j}$ since $\varphi \leqq j$, the number of equations in the system is less or equal to $(j \varphi)^{n}$ and since $\left|a_{r}\right| \leqq 1$ because $f \in N(j)$.

Let M_{k} and $N_{k} \subset M$ be such that
a) $\tau\left(M_{k}\right)=\tau\left(N_{k}\right)=\tau(M)-k=j^{n} \varphi^{n}-k$,
b) $r \in M_{k}$ if $r \in M$ and $\max _{s} r_{s}>100 j \varphi^{(n-1) / n}=A$,
c) $\left|D\left(M_{k}, N_{k}\right)\right|>\exp \left(k j \varphi / 10-j^{n+1} \varphi^{n}\right)$.
$M_{0}=N_{0}=M$ fulfil the requirements, since $|D(M, M)|=|D(M)|=|f(0)|^{j^{n} \varphi^{n}}>$ $e^{-j^{n+1} \varphi^{n}}$ (Since $\left.f \in N(j)\right)$.

According to (1) there exists a biggest integer m so that M_{m} and N_{m} exist and satisfy the conditions a)-c). We also have from (1) that

$$
\begin{equation*}
m<20 j^{n} \varphi^{n-1} \tag{2}
\end{equation*}
$$

There exists $r^{0} \in M_{m}$ such that $\max _{s} r_{s}^{0} \leqq A=100 j \varphi^{(n-1) / n}$. This follows because there are $(A+1)^{n}>100 j^{n} \varphi^{n-1}>m$ different $r \in M$ with $\max _{s} r_{s} \leqq A$, since $A<j \varphi$ if $\varphi>100$.

Put $M_{m+1}=M_{m} \backslash\left\{r^{0}\right\}$. The system of linear equations

$$
\sum_{t \in N_{m}} a_{r-t} x_{t}=0, \quad r \in M_{m+1}
$$

has a nontrivial solution, since the number of variables x_{t} is $\tau\left(N_{m}\right)=\tau(M)-m$ and the number of equations is $\tau\left(M_{m+1}\right)=\tau(M)-m-1$. Let $\left\{u_{t}\right\}$ be a solution such that $\max _{t}\left|u_{t}\right|=1$ and take $t^{0} \in N_{m}$ so that $\left|u_{t 0}\right|=1$.

We shall now prove that

$$
\begin{equation*}
\left|d_{r^{0}}\right|=\left|\sum_{t \in N_{m}} a_{r^{0}-t} u_{t}\right| \geqq e^{-j \varphi / 10} \tag{3}
\end{equation*}
$$

Put $\quad b_{r^{0}, t^{0}}=a_{r^{0}-t^{0}}-\left(\sum_{t \in N_{m}} a_{r^{0}-t} u_{t}\right) / u_{t^{0}} \quad$ and $\quad b_{r, t}=a_{r-t} \quad$ when $\quad r \neq r^{0} \quad$ or $t \neq t^{0}$. We have $\sum_{t \in N_{m}} b_{r^{0}, t} u_{t}=a_{r^{0}-t^{0}} u_{t^{0}}-\sum_{t \in N_{m}} a_{r^{0}-t} u_{t}+\sum_{t \in N_{m}, t \neq t^{0}} a_{r^{0}-t} u_{t}=0$ and $\sum_{t \in N_{m}} b_{r, t} u_{t}=\sum_{t \in N_{m}} a_{r-t} u_{t}=0$, when $r \in M_{m+1}$ according to the choice of $\left\{u_{t}\right\}$. Thus the system of linear equations $\sum_{t \in N_{m}} b_{r, t} x_{t}=0, r \in M_{m}$ has the nontrivial solution $\left\{u_{t}\right\}$, hence the determinant D of the system, which exists since the number of variables is equal to the number of equations $\left(\tau\left(M_{m}\right)=\tau\left(N_{m}\right)\right.$), is zero. Put $N_{m+1}=N_{m} \backslash\left\{t^{0}\right\}$. Then $D=D\left(M_{m}, N_{m}\right)+\left(b_{r^{0}, t^{0}}-a_{r^{0}-t^{0}}\right) \cdot D\left(M_{m+1}, N_{m+1}\right)=0$ since $b_{r, t}=a_{r-t}$ when $r \neq r^{0}$ or $t \neq t^{0}$. Trivially it follows that
a) $\tau\left(M_{m+1}\right)=\tau\left(N_{m+1}\right)=\tau(M)-m-1$
b) $r \in M_{m+1}$ if $r \in M$ and $\max _{s} r_{s}>A$, because $\max _{s} r_{s}^{0} \leqq A$ and $M_{m}=M_{m+1} \cup\left\{r^{0}\right\}$.

Because of the choice of m (m is the biggest integer so that a)-c) are fulfilled for any sets M_{m} and $\left.N_{m} \subset M\right)$, we must have that $\left|D\left(M_{m+1}, N_{m+1}\right)\right|=$
$\left|b_{r^{0}, t^{0}}-a_{r^{0}-t^{0}}\right|^{-1}\left|D\left(M_{m}, N_{m}\right)\right| \leqq \exp \left((m+1) j \varphi / 10-j^{n+1} \varphi^{n}\right)$ hence that $\left|b_{r^{0}, t^{0}}-a_{r^{0}, t^{0}}\right| \geqq$ $e^{-j \varphi / 10}$ because of c). But $\left|b_{r^{0}, t^{0}}-a_{r^{0}-t^{0}}\right|=\left|\sum_{t \in N_{m}} a_{r^{0}-t} u_{t}\right| /\left|u_{t^{0}}\right|=\left|\bar{d}_{r^{0}}\right|$, since $\left|u_{t^{0}}\right|=1$, and thus (3) is established.

We shall now proceed to construct the polynomial g in the proposition.
Let $\bar{H}(z), \bar{Q}(z)$ (resp. \bar{d}_{r}) be the functions (resp. complex numbers) which are obtained from $H(z), Q(z)$ (resp. d_{r}) when we replace the complex variables $\left\{x_{t}\right\}$ by the complex numbers $\left\{u_{t}\right\}$. Then $|\bar{Q}(z)| \leqq(j \varphi)^{n}$ when $\|z\| \leqq 1$ since $\left|u_{i}\right| \leqq 1$. Hence $|\bar{H}(z)|<(j \varphi)^{n} e^{-j \varphi}$ if $|f(z)|<e^{-j \varphi}$ and $\|z\| \leqq 1$.

Put $\quad G(z)=\sum_{\max _{s} r_{s} \leqq A} \partial_{r} z_{r} \quad$ and $\quad\|r\|=\sum_{1}^{n} r_{s}$. Then $\quad \bar{H}(z)-G(z)=$ $\sum_{\|r\|>j \varphi / 2} \bar{d}_{r} z^{r}$, because $\|r\|<j \varphi / 2$ when $\max _{s} r_{s} \leqq A$ and $\varphi>100$, and because $d_{r}=0$ if $\|r\| \leqq j \varphi / 2$ and $\max r_{s}>A$. The last assertion follows from the fact that $r \in M$ if $\|r\| \leqq j \varphi / 2$, hence that $r \in M_{m}$ and also $r \in M_{m+1}$ according to b), if $\max r_{s}>A$, and from the fact that $\bar{d}_{r}=0$ when $r \in M_{m+1}$ (the construction of $\left\{u_{t}\right\}$). For every r we also have that $\left|\bar{d}_{r}\right| \leqq(j \varphi)^{n}$ since $\left|u_{t}\right| \leqq 1$ and $\left|a_{r}\right| \leqq 1(f \in N(j))$. Thus $|\bar{H}(z)-G(z)| \leqq \sum_{\|r\|>j \varphi / 2}(j \varphi)^{n} 2^{-\|r\|}$ if $\|z\| \leqq 1 / 2$ since we have given \mathbf{C}^{n} the supnorm. But $\sum_{\|r\|>j \varphi / 2} 2^{-\|r\|}<\sum_{l=j \varphi / 2}^{\infty} l^{n} 2^{-l}<2^{-j \varphi / 2} e^{j \varphi / 5}$ since $100 \leqq \varphi \leqq j$ and $j^{2 n}<e^{j}<e^{j \varphi / 5}$. Hence $|\bar{H}(z)-G(z)| \leqq e^{-j \varphi / 4}$ and so $|G(z)|<e^{-j \varphi / 5}$ when $\|z\| \leqq 1 / 2$ and $|f(z)|<e^{-j \varphi}$ since then, according to the above, $|\bar{H}(z)|<(j \varphi)^{n} e^{-j \varphi}<e^{-j \varphi+j / 5}$.

Put $d=\max _{r_{s} \leqq A}\left|\bar{d}_{r}\right|$. We have that $d>e^{-j \varphi / 10}$ since $\left|\bar{d}_{r_{0}}\right|>e^{-j \varphi / 10}$ according to (3) ($\max r_{s}^{0} \leqq A$). Finally put $g(z)=d^{-1} G(z)$.

Then $g \in P_{i}\left(\mathbf{C}^{n}\right)$ where $i=A n$, since $G \in P_{i}\left(\mathbf{C}^{n}\right)$. It is also true that $1 \leqq\|g\|_{B(0,1)} \leqq 2^{i}$ because $\max _{r, r_{s}<A} d^{-1}\left|\bar{d}_{r}\right|=1$ and because $(n A)^{n}<2^{i}$ (Since $(j n)^{2 n}<2^{j}$). We have further that

$$
|g(z)| \leqq e^{j \varphi / 10-j \varphi / 5}=e^{-j \varphi / 10}=\exp \left(i \varphi^{1 / n} / n 10^{3}\right) \quad \text { when } \quad|f(z)| \leqq e^{-j \varphi}
$$

and $\|z\| \leqq 1 / 2$, since $d^{-1} \leqq e^{j \varphi / 10}$ and $|G(z)|<e^{-j \varphi / 5}$ in that case. Thus g has the properties in the proposition which completes the proof. Q.E.D.

Proof of the theorem continued. Take, for every f_{j}^{\prime} (defined as before the Proposition) and every integer $r \geqq 10, i(j, r) \in \mathbf{N}$ and $g_{j, r} \in P_{i(i, r)}\left(\mathbf{C}^{n}\right)$ as in the Proposition such that
(1) $\left|g_{j, r}(z)\right|<\exp \left(-C i(j, r) r^{2 r}\right)$ when $\left|f_{j}^{\prime}(z)\right|<\exp \left(-j q r^{2 n r}\right)$ and $\|z\| \leqq 1 / 2$.

Put $t_{j}=\prod_{r=10}^{j} i(j, r)$ and $e_{j, r}(z)=\left(g_{j, r}\left(z+x^{j}\right)\right)^{t_{j} /(j, r)}$. We note that

$$
\begin{equation*}
2^{-t_{j}} \leqq\left\|e_{j, r}\right\|_{B(0,1)} \leqq 4^{t_{j}} \tag{2}
\end{equation*}
$$

since

$$
\sup _{\|z\| \leqq 3 / 4}\left|e_{j, r}\left(z-x^{j}\right)\right|=\sup _{\|z\| \leqq 3 / 4}\left|g_{j, r}(z)\right|^{t_{j} / i(j, r)} \geqq t_{j}^{-1}(3 / 4)^{t_{j}}>2^{-t_{j}}
$$ and since

$$
\sup _{\|z\| \leqq 5 / 4}\left|e_{j, r}\left(z-x^{j}\right)\right| \leqq t_{j}(5 / 4)^{t_{j}} 2^{t_{j}}<4^{t}, \quad \text { because } \quad 1 \leqq\left\|g_{j, r}\right\|_{B(0,1)} \leqq 2^{i(j, r)}
$$

We also note that
(1) $)^{\prime}\left|e_{j, r}(z)\right|<\exp \left(-C t_{j} r^{2 r}\right)$ when $\left|f_{j}(z)\right|<\exp \left(-j q r^{2 n r}\right)$ and $\|z\| \leqq 1 / 4$ which follows from (1).

Put $h_{j}(z)=\Pi_{10 \leqq r \leqq j}\left(e_{j, r}(z)\right)^{r-r}$ and finally

$$
v(z)=\varlimsup_{z^{\prime} \rightarrow z} \varlimsup_{j \in S, j \rightarrow \infty}\left(1 / t_{j}\right) \log \left|h_{j}\left(z^{\prime}\right)\right|
$$

where S is as before the Proposition.
Lemma 2. $v \in P S H\left(\mathbf{C}^{n}\right)$ and $v(z)=-\infty$ if $z \in D \cap B(0,1 / 8)$.
Proof. We have that $v(z)<8 k$ when $\|z\| \leqq k \geqq 1$ because (2) gives that $\left\|e_{j, r}\right\|_{B(0, k)} \leqq t_{j} k^{t_{j} 4^{t_{j}}<(8 k)^{t_{j}}}$ and because $\sum_{r \geqq 10} r^{-r}<1$.

Put $D_{j, r}=\left\{z \in B(0,1) ;\left|e_{j, r}(z)\right|^{\left.1 / r^{t_{j}} \leqq 1-2^{-r}\right\}}\right.$ and let $L\left(D_{j, r}\right)$ be the Lebesgue measure of $D_{j, r}$.

Because of (2) there exists $y^{j, r} \in B(0,1)$ such that $\left|e_{j, r}\left(y^{j, r}\right)\right|^{1 / r^{r} t} \geqq 2^{-r^{-r}}$ and since $\log \left|e_{j, r}\left(y^{j, r}+z\right)\right|$ is plurisubharmonic we then have that

$$
\frac{1}{(4 \pi)^{n}} \int_{\|z\| \leqq 2}\left(1 / r^{r} t_{j}\right) \log \left|e_{j, r}\left(y^{j, r}+z\right)\right| d z \geqq-r^{-r} \log 2
$$

Furthermore, since $\left\|e_{j, r}\right\|_{B(0,3)} \leqq 24^{t_{j}}$ according to the above we have that

$$
\frac{1}{(4 \pi)^{n}} \int_{\|z\| \leqq 2}\left(1 / r^{r} t_{j}\right) \log \left|e_{j, r}\left(y^{j, r}+z\right)\right| d z \leqq r^{-r} \log 24+L\left(D_{j, r}\right) \log \left(1-2^{-r}\right)
$$

Together with the inequality above this gives that

$$
L\left(D_{j, r}\right) \leqq r^{-r} \log 48 / \log \left(1-2^{-r}\right)<r^{-r+1} 2^{r+1}<2^{-r} \quad \text { if } \quad r \geqq 10 .
$$

Thus it follows from the construction of h_{j} that $\left\|h_{j}\right\|_{B(0,1)}>2^{-t_{j}}$ since $B(0,1) \backslash \bigcup_{r \geqq 10} D_{j, r}$ is not empty because $\prod_{r \geqq 10}\left(1-2^{-r}\right)>1 / 2$. Hence [1] or Hartogs' Lemma gives that $v \neq-\infty$, that is, $v \in \operatorname{PSH}\left(\mathbf{C}^{n}\right)$.

We shall now show that $v(z)=-\infty$ when $z \in D \cap B(0,1 / 8)$. Assume that this is not true. Then there exist $z \in D \cap B(0,1 / 8)$ and a constant $-\infty<T<0$ such that $v(z)>T+1$. Hence there exist, for every $m \in N$, a vector $z^{m} \in B(0,1 / 4)$ and an infinite set $S_{m} \subset S$ such that $z^{m} \rightarrow z$ as $m \rightarrow \infty$ and so that $\left|h_{j}\left(z^{m}\right)\right| \geqq e^{T t_{j}}$ when $j \in S_{m}$.

Take $l \in \mathbf{N}$ so big that $-l^{l} C<T-2$ where C is defined in the Proposition. According to (2), $\left|e_{j, r}\left(z^{m}\right)\right|<e^{2 t_{j}}$ and hence $\prod_{10 \leqq r \leqq j, r \neq l}\left|e_{j, r}\left(z^{m}\right)\right|^{r^{-r}}<e^{2 t_{j}}$. But $\left|h_{j}\left(z^{m}\right)\right| \geqq e^{T t_{j}} \quad$ when $j \in S_{m}$ so it follows that $\left|e_{j, l}\left(z^{m}\right)\right| \geqq \exp \left((T-2) t_{j} l^{l}\right)>$ $\exp \left(-C t_{j} l^{l}\right)$. Thus (1) gives that $\left|f_{j}\left(z^{m}\right)\right| \geqq \exp \left(-j q l^{2 n l}\right)$ when $j \in S_{m}$. That implies that $u(z)>-q l^{2 n l}$ since $u(z)=\lim _{z^{\prime} \rightarrow z} \lim _{j \rightarrow \infty}(1 / j) \log \left|f_{j}\left(z^{\prime}\right)\right|$ which contradicts the fact that $z \in D \cap B(0,1 / 8)$ and completes the proof.
Q.E.D.

We have proved that $D \cap B(0,1 / 8)$ is globally polar hence that $D \cap B\left(z, r_{z / 32}\right)$ is globally polar. Since z is arbitrarily taken in D it is enough to prove the following lemma to complete the proof of the theorem.

Lemma 3. If there exists, to every $z \in D$, a ball $B\left(z, r_{z}\right)$ such that $D \cap B\left(z, r_{z}\right)$ is globally polar then D is globally polar.

Proof. Obviously $\bigcup_{z \in D} B\left(z, r_{z}\right)$ is open and hence σ-compact. Thus there exist countably many $z^{j} \in D$ such that $D \subset B\left(z^{j}, r_{z^{j}}\right)$. But it is well known and easily seen that a countable union of globally polar sets is a globally polar set, which proves the Lemma and thus completes the proof of the Theorem. Q.E.D.

References

1. Bremermann, H. J., On the conjecture of the equivalence of the plurisubharmonic functions and the Hartogs functions, Math. Ann. 131 (1956), 76-86.
2. Lelong, P., Ensembles singuliers impropres des fonctions plurisousharmoniques, J. Math. Pures Appl. 36 (1957), 263-303.
3. Siciak, J., Extremal plurisubharmonic functions in $\mathbf{C}^{\boldsymbol{N}}$, (to appear).

[^0]: * Supported by the Swedish Natural Science Research Council Contract No. F 3435-004.

