Regularity of spherical means

J. Peyrière and P. Sjölin

1. Introduction

Let \mathbf{R}^{n} denote n-dimensional Euclidean space and let $|x|$ denote the norm of an element $x \in \mathbf{R}^{n}$. For $\beta \in \mathbf{R}$ and $f \in L_{\text {loc }}^{1}\left(\mathbf{R}^{n}\right)$ we set

$$
\begin{equation*}
F_{\beta, x}(t)=\mid t t^{\beta} \int_{S^{n-1}} f(x-t y) d \sigma(y), \quad x \in \mathbf{R}^{n}, \quad t \in \mathbf{R} \tag{1}
\end{equation*}
$$

where σ denotes the surface measure on $S^{n-1}=\left\{x \in \mathbf{R}^{n} ;|x|=1\right\}$. It follows from Fubini's theorem that for every $x \in \mathbf{R}^{n}, F_{\beta, x}(t)$ is well-defined for almost all $t \in \mathbf{R}$. We also set $F_{x}(t)=F_{0, x}(t), t \geqq 0$, and $F_{x}(t)=0$ for $t<0$.
E. M: Stein [2] has studied the maximal operator M defined by

$$
M f(x)=\sup _{t \geqq 0}\left|F_{x}(t)\right|, \quad x \in \mathbf{R}^{n}, \quad f \in \mathscr{S}\left(\mathbf{R}^{n}\right),
$$

where $\mathscr{P}\left(\mathbf{R}^{n}\right)$ denotes the Schwartz class, and has proved that $\|M f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqq$ $C_{p}\|f\|_{L^{p}\left(\mathbf{R}^{n}\right)}$ if $n \geqq 3$ and $p>n /(n-1)$.

The purpose of this paper is to study the regularity of the function $F_{\beta, x}$ in terms of Besov ($=$ Lipschitz) spaces. We let the Besov spaces $B_{p}^{\alpha, q}=B_{p}^{\alpha, q}(\mathbf{R})$ be defined as in P. Brenner, V. Thomée and L. B. Wahlbin [1]. These spaces are known to coincide with the Lipschitz spaces $\Lambda_{a}^{p, q}$ studied by M. H. Taibleson [3].

If f is a complex-valued function on \mathbf{R}^{n} we write $\check{f(x)}=\overline{f(-x)}$. In Sections 2-4 we obtain the following results.

Theorem 1. Assume $n \geqq 2, \alpha>0$ and $-1<\beta<(n-2) / 2$. Then there exists a constant C such that
for every continuous function f with compact support in \mathbf{R}^{n}.
Corollary 1. Assume $n \geqq 2$ and $1 \leqq p<q \leqq 2$. If $-1<\beta<\inf ((n-2) / 2$, $n(1 / p-1 / 2)-1 / 2), 0<\alpha<\beta+1 / 2-n(1 / q-1 / 2)$ and $f \in L^{p}\left(\mathbf{R}^{n}\right) \cap L^{q}\left(\mathbf{R}^{n}\right)$, then $F_{\beta, x} \in$ $B_{2}^{\alpha, 2}(\mathbf{R})$ for almost every $x \in \mathbf{R}^{n}$.

Corollary 2. Assume $n \geqq 3, n /(n-1)<q \leqq 2$ and $f \in L_{\mathrm{loc}}^{q}\left(\mathbf{R}^{n}\right)$. If $\alpha<n(1-1 / q)-1$, then for almost every $x \in \mathbf{R}^{n}$ the function F_{x} coincides almost everywhere on $] 0, \infty$ [with a function which belongs locally to $\Lambda_{\alpha}(] 0, \infty[$.

In Section 5 we use a different method to prove the following theorem.
Theorem 2. If $n \geqq 3, n /(n-1)<p<\infty, \alpha<1 / p$ and $f \in L^{p}\left(\mathbf{R}^{n}\right)$, then $F_{x} \in B_{p}^{\alpha, 1}(\mathbf{R})$ for almost every $x \in \mathbf{R}^{n}$.

We remark that it is easy to see that Theorem 2 holds also if the function F_{x} is replaced by $F_{0, x}$.

2. Some lemmas

To prove Theorem 1 we use the following characterization of the Besov space $B_{2}^{\alpha, 2}(\mathbf{R})$. If g is a function in $L^{2}(\mathbf{R})$ let u denote its Poisson integral. Then g lies in $B_{2}^{\alpha, 2}(\mathbf{R})$ if and only if for some (or every) integer $k>\alpha$ the quantity

$$
\|g\|_{L^{2}(\mathbf{R})}+\left[\int_{0}^{+\infty} y^{2(k-\alpha)-1}\left(\int_{\mathbf{R}}\left|(\partial / \partial y)^{k} u(x, y)\right|^{2} d x\right) d y\right]^{1 / 2}
$$

is finite. This defines equivalent norms on $B_{2}^{\alpha, 2}(\mathbf{R})$.
Let us consider $u_{0}(x, y)=\pi^{-1} y /\left(x^{2}+y^{2}\right)$ the Poisson kernel of the upper half plane. We set $u_{k}=(\partial / \partial y)^{k} u_{0}$.

Since $u_{2 k}$ is homogeneous of degree $-(2 k+1)$ with respect to (x, y) and is an odd function of y, there exists a constant C_{k} such that

$$
\left|u_{2 k}(x, y)\right| \leqq C_{k} y /\left(x^{2}+y^{2}\right)^{k+1} \quad\left(x \in \mathbf{R}, y \in \mathbf{R}^{+}\right)
$$

Lemma 1. We have $u_{k}(., y) * u_{k}(., y)=u_{2 k}(., 2 y)$.
Proof. This lemma is an easy consequence of the formula

$$
\mathscr{F}(u(., y))(\xi)=e^{-|\xi| y}
$$

Let us denote by σ_{n} the rotation invariant probability measure on S^{n}, by s_{n} the area of S^{n} and by χ the characteristic function of the set $\left\{(x, y, z) \in \mathbf{R}^{3}\right.$; $||x|-|y||<|z|<|x|+|y|\}$. When $\chi(x, y, z)$ equals 1 we set

$$
\Delta(x, y, z)=\frac{1}{4}\left(\left[(x+y)^{2}-z^{2}\right]\left[z^{2}-(x-y)^{2}\right]\right)^{1 / 2}
$$

(it is the area of the triangle with sides of length $|x|,|y|,|z|$).
Lemma 2. Let n be a positive integer, r and s two non-zero real numbers. Let us denote by μ_{n} the image measure of $\sigma_{n} \times \sigma_{n}$ by the mapping $(y, z) \mapsto r y+s z$ from $S^{n} \times S^{n}$ to \mathbf{R}^{n+1}. We have

$$
d \mu_{n}(x)=\frac{2^{n-2} s_{n-1}}{s_{n}^{2}} \frac{[\Delta(|x|, r, s)]^{n-2}}{(|r s| \cdot|x|)^{n-1}} \chi(|x|, r, s) d x
$$

Proof. We may suppose $0<r \leqq s$. Let t be a non-negative number. Let us compute $\omega(t)=\mu_{n}(\{x ;|x| \leqq t\})$. We have

$$
\omega(t)=\int_{S^{n}}\left(\int_{S^{n} \cap\{y ;|r y+s z| \underline{\underline{t}} t\}} d \sigma_{n}(y)\right) d \sigma_{n}(z)
$$

The inner integral does not depend on z so we get

$$
\omega(t)=\int_{S^{n} \cap\{y ;|r y+s z| \leqq t\}} d \sigma_{n}(y),
$$

where z is any point in S^{n}. Clearly $\omega(t)$ is zero if t is less than $s-r$ and is 1 if t is greater than $s+r$. If t is between $s-r$ and $s+r$ we denote by φ_{0} the number such that $0<\varphi_{0}<\pi$ and $t^{2}=r^{2}+s^{2}-2 r s \cos \varphi_{0}$. We then have

$$
\omega(t)=\frac{s_{n-1}}{s_{n}} \int_{0}^{\varphi_{0}}(\sin \varphi)^{n-1} d \varphi \quad \text { and } \quad r s \sin \varphi_{0}=2 \Delta(r, s, t)
$$

so

$$
\omega^{\prime}(t)=2^{n-2} \frac{s_{n-1}}{s_{n}} \frac{t[\Delta(r, s, t)]^{n-2}}{(r s)^{n-1}} \chi(r, s, t) .
$$

The result follows because μ_{n} is rotation invariant.
Lemma 3. Let v and w be two real numbers such that $v<0, w>-1,2(v+w)<$ -1 Let us set

$$
\lambda(s)=\left\{\begin{array}{lll}
\int_{1}^{+\infty}\left(t^{2}-s^{2}\right)^{v}\left(t^{2}-1\right)^{w} d t & \text { when } & |s|<1 \\
\int_{0}^{1}\left(s^{2}-t^{2}\right)^{v}\left(1-t^{2}\right)^{w} d t & \text { when } & |s|>1
\end{array}\right.
$$

Then we have, when s tends to 1 ,

$$
\lambda(s)= \begin{cases}O(1) & \text { if } v+w>-1, \\ O(\log (1 /|1-s|)) & \text { if } v+w=-1, \\ O\left(|1-s|^{v+w+1}\right) & \text { if } v+w<-1\end{cases}
$$

Proof. First let us study the case when s tends to 1^{+}. If s is less than 2 we have

$$
\begin{aligned}
\lambda(s) & \leqq C \int_{0}^{1}(s-t)^{v}(1-t)^{w} d t=C \int_{0}^{1}(s-1+t)^{v} t^{w} d t \\
& =C(s-1)^{v+w+1} \int_{0}^{1 /(s-1)}(1+t)^{v} t^{w} d t
\end{aligned}
$$

and we conclude easily.
Let us now study the case when s tends to 1^{-}. We have

$$
\begin{aligned}
\lambda(s) & \leqq \int_{1}^{2}\left(t^{2}-s^{2}\right)^{v}\left(t^{2}-1\right)^{w} d t+\int_{2}^{+\infty}\left(t^{2}-1\right)^{v+w} d t \\
& \leqq C\left(1+\int_{1}^{2}(t-s)^{v}(t-1)^{w} d t\right) \leqq C\left(1+\int_{0}^{1}(1-s+t)^{v} t^{w} d t\right)
\end{aligned}
$$

and we conclude as above.

3. Proof of Theorem 1

Let us compute first $\int_{\mathbf{R}^{n}}\left\|F_{\beta, x}\right\|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2} d x$.
We have

$$
\left.\left|F_{\beta, x}(t)\right|^{2}=|t|^{2 \beta} \iint_{S^{n-1} \times S^{n-1}} f\left(x-t y_{1}\right) \overline{f\left(x-t y_{2}\right.}\right) d \sigma\left(y_{1}\right) d \sigma\left(y_{2}\right)
$$

thus

$$
\int_{\mathbf{R}^{n}}\left|F_{\beta, x}(t)\right|^{2} d x=|t|^{2 \beta} \iint_{S^{n-1} \times S^{n-1}} f * \check{f}\left(-t y_{1}+t y_{2}\right) d \sigma\left(y_{1}\right) d \sigma\left(y_{2}\right)
$$

Using Lemma 2 we get

$$
\int_{\mathbf{R}^{n}}\left|F_{\beta, x}(t)\right|^{2} d x=C|t|^{2 \beta} \int_{\mathbf{R}^{n}} f * \check{f(x)} \frac{[\Delta(|x|, t, t)]^{n-3}}{\left(t^{2}|x|\right)^{n-2}} \chi(|x|, t, t) d x
$$

therefore

$$
\begin{gathered}
\int_{\mathbf{R}^{n}}\left\|F_{\beta, x}\right\|_{L^{2}(\mathbf{R})}^{2} d x=C \int_{\mathbf{R}^{n}} f * \check{f(x)}\left[\int_{|x| / 2}^{+\infty} \frac{t^{2(\beta-n+2)}}{|x|}\left(4 t^{2}-|x|^{2}\right)^{(n-3) / 2} d t\right] d x \\
=C\left[\int_{1 / 2}^{+\infty} t^{2(\beta-n+2)}\left(4 t^{2}-1\right)^{(n-3) / 2} d t\right] \int_{\mathbf{R}^{n}} f * \check{f}(x)|x|^{2 \beta-n+1} d x
\end{gathered}
$$

(the first integral converges since we have $\beta<(n-2) / 2$).
Now let us estimate

$$
\int_{\mathbf{R}^{n}}\left[\int_{0}^{+\infty} h^{2(k-x)-1}\left(\int_{\mathbf{R}}\left|u_{k}(., h) * F_{\beta, x}(t)\right|^{2} d t\right) d h\right] d x
$$

where k is the first integer greater than α. We have

$$
F_{\beta, x} * u_{k}(., h)(\tau)=\iint_{\mathbf{R} \times s^{n-1}}|t|^{\beta} f(x-t y) u_{k}(\tau-t, h) d t d \sigma(y)
$$

so

$$
\begin{gathered}
\left.\left|F_{\beta, x} * u_{k}(., h)(\tau)\right|^{2}=\iiint \int_{\mathbf{R}^{2} \times S^{n-1} \times S^{n-1}}\left|t_{1} t_{2}\right|^{\beta} f\left(x-t_{1} y_{1}\right) \overline{f\left(x-t_{2} y_{2}\right.}\right) \\
\times u_{k}\left(\tau-t_{1}, h\right) u_{k}\left(\tau-t_{2}, h\right) d t_{1} d t_{2} d \sigma\left(y_{1}\right) d \sigma\left(y_{2}\right) .
\end{gathered}
$$

Using Lemma 1 we get

$$
\begin{gathered}
\left.\int_{\mathbf{R}}\left|F_{\beta, x} * u_{k}(., h)(\tau)\right|^{2} d \tau=\iiint \int_{\mathbf{R}^{2} \times S^{n-1} \times \Phi^{n-1}}\left|t_{1} t_{2}\right|^{\beta} f\left(x-t_{1} y_{1}\right) \overline{f\left(x-t_{2} y_{2}\right.}\right) \\
\times u_{2 k}\left(t_{1}-t_{2}, 2 h\right) d t_{1} d t_{2} d \sigma\left(y_{1}\right) d \sigma\left(y_{2}\right)
\end{gathered}
$$

If we set $A(\beta, h)=\iint_{\mathbf{R}^{n} \times \mathbf{R}}\left|F_{\beta, x} * u_{k}(., h)(\tau)\right|^{2} d x d \tau$ and $\varphi(x)=f \ddot{f(x)}$ we get $A(\beta, h)=\iiint \int_{\mathbf{R}^{2} \times S^{n-1} \times S^{n-1}}\left|t_{1} t_{2}\right|^{\beta} \varphi\left(t_{2} y_{2}-t_{1} y_{2}\right) u_{2 k}\left(t_{1}-t_{2}, 2 h\right) d t_{1} d t_{2} d \sigma\left(y_{1}\right) d \sigma\left(y_{2}\right)$.
By Lemma 2 we obtain

$$
A(\beta, h)
$$

$$
=C \iint_{\mathrm{R}^{2}}\left|t_{1} t_{2}\right|^{\beta} u_{2 k}\left(t_{1}-t_{2}, 2 h\right)\left[\int_{\mathbf{R}^{n}} \varphi(x) \frac{\left[\Delta\left(|x|, t_{1}, t_{2}\right)\right]^{n-3}}{\left(\left|t_{1} t_{2}\right| \cdot|x|\right)^{n-2}} \chi\left(|x|, t_{1}, t_{2}\right) d x\right] d t_{1} d t_{2}
$$

Using homogeneity properties we get

$$
A(\beta, h)=C \int_{\mathbf{R}^{n}} \varphi(x)|x|^{2(\beta-k)+1-n} K(2 h /|x|) d x
$$

where

$$
K(\tau)=\iint_{\mathbf{R}^{2}}\left|t_{1} t_{2}\right|^{\beta-n+2} u_{2 k}\left(t_{1}-t_{2}, \tau\right)\left(\Delta\left(1, t_{1}, t_{2}\right)\right)^{n-3} \chi\left(1, t_{1}, t_{2}\right) d t_{1} d t_{2}
$$

We shall show later that we have $|K(\tau)| \leqq C /\left(1+\tau^{2 k+1}\right)$. This being granted we have

$$
\begin{gathered}
\int_{0}^{+\infty} h^{2(k-\alpha)-1} A(\beta, h) d h \leqq C \int_{\mathbf{R}^{n}}|\varphi(x)||x|^{2(\beta-k)-n+1}\left[\int_{0}^{+\infty} \frac{h^{2(x-\alpha)-1}}{1+\left((2 h /|x|)^{2 k+1}\right)} d h\right] d x \\
\leqq C\left[\int_{0}^{\infty} \frac{\tau^{2(k-\alpha)-1}}{1+\tau^{2 k+1}} d \tau\right]\left[\int_{\mathbf{R}^{n}}|\varphi(x)||x|^{2(\beta-\alpha)-n+1} d x\right]
\end{gathered}
$$

The first integral converges and collecting both estimates we get

$$
\int_{\mathbf{R}^{n}}\left\|F_{\beta, x}\right\|_{B_{2}^{\alpha}, 2}^{2}(\mathbf{R}), d x \leqq C \int_{\mathbf{R}^{n}}|f * \check{f}(x)||x|^{2(\beta-\alpha)-n+1}\left(1+|x|^{2 x}\right) d x .
$$

We now have to prove the estimate of $K(\tau)$. By change of variables we get

$$
K(\tau)=C \iint_{\left\{(s, t) \in \mathbf{R}^{2} ;\left(t^{2}-1\right)\left(1-s^{2}\right)>0\right\}}\left|t^{2}-s^{2}\right|^{\beta-n+2} u_{2 k}(s, \tau)\left|\left(t^{2}-1\right)\left(1-s^{2}\right)\right|^{(n-3) / 2} d s d t
$$

Let us set

$$
L(s)=\left\{\begin{array}{l}
\left(1-s^{2}\right)^{(n-3) / 2} \int_{1}^{+\infty}\left(t^{2}-s^{2}\right)^{\beta-n+2}\left(t^{2}-1\right)^{(n-3) / 2} d t \quad \text { if } \quad|s|<1 \\
\left(s^{2}-1\right)^{(n-3) / 2} \int_{0}^{1}\left(s^{2}-t^{2}\right)^{\beta-n+2}\left(1-t^{2}\right)^{(n-3) / 2} d t \quad \text { if } \quad|s|>1
\end{array}\right.
$$

Both integrals converge because $\beta<(n-2) / 2$ and $n \geqq 2$.
L is a C^{∞} function on $]-1,1[$ and by Lemma 3 it is integrable in a neighbourhood of -1 and of 1 (because $\beta>-1$). In addition, when $|s|$ tends to infinity, we have $L(s)=O\left(s^{2 \beta-n+1}\right)$ so L is integrable.

We have $K(\tau)=C \int_{-\infty}^{+\infty} u_{2 k}(s, \tau) L(s) d s$, so when s tends to zero, $K(\tau)$ tends, save for a multiplicative factor, to the $2 k^{\text {th }}$ derivative of L at the origin.

In addition $|K(\tau)| \leqq C \int_{-\infty}^{+\infty} \tau\left(\tau^{2}+s^{2}\right)^{-k-1}|L(s)| d s$, thus $K(\tau)=O\left(|\tau|^{-2 k-1}\right)$, when $|\tau|$ tends to infinity. And the proof is complete.

4. Proof of the Corollaries

Proof of the first Corollary.
The hypothesis $f \in L^{p}\left(\mathbf{R}^{n}\right) \cap L^{q}\left(\mathbf{R}^{n}\right)$ implies $f * \check{f} \in L^{r}\left(\mathbf{R}^{n}\right) \cap L^{s}\left(\mathbf{R}^{n}\right)$ where r and s are defined by $1 / r=2 / p-1,1 / s=2 / q-1$.

More precisely $\left\|f * \check{f}_{L^{r}\left(\mathbf{R}^{n}\right)} \leqq\right\| f \|_{L^{p}\left(\mathbf{R}^{n}\right)}^{2}$ and $\|f * f\|_{L^{s}\left(\mathbf{R}^{n}\right)} \leqq\|f\|_{L^{q}\left(\mathbf{R}^{n}\right)}^{2}$.

Let us denote by r^{\prime} and s^{\prime} the conjugate exponents. We have

$$
\begin{gathered}
\int_{\mathbf{R}^{n}}\left\|F_{\beta, x}\right\|_{B_{2}^{\alpha, 2}(\mathbf{R})}^{2} d x \leqq C\|f\|_{p}^{2}\left(\int_{|x|>1}|x|^{(2 \beta-n+1) r^{\prime}} d x\right)^{1 / r^{\prime}} \\
+C\|f\|_{q}^{2}\left(\int_{|x|<1}|x|^{(2 \beta-2 \alpha-n+1) s^{\prime}} d x\right)^{1 / s^{\prime}}
\end{gathered}
$$

The first integral converges if $\beta<n(1 / p-1 / 2)-1 / 2$, the second if $\alpha<\beta+1 / 2-$ $n(1 / q-1 / 2)$. So we get a result if

$$
-1<\beta<\inf ((n-2) / 2, n(1 / p-1 / 2)-1 / 2)
$$

and

$$
0<\alpha<\beta+1 / 2-n(1 / q-1 / 2) .
$$

Proof of Corollary 2.

Let f be a function in $L^{q}\left(\mathbf{R}^{n}\right)$, let us multiply f by the characteristic function of a ball and use Corollary 1 with $p=1$: if α lies in $] 1 / 2,(n-1) / 2-n(1 / q-1 / 2)$ [one can choose a suitable β. We conclude using the inclusion $B_{2}^{\alpha, 2}(\mathbf{R}) \subset \Lambda_{\alpha-1 / 2}(\mathbf{R})$.

5. Proof of Theorem 2

We shall first prove the following inequality.
Lemma 4. Let Q denote a cube in \mathbf{R}^{n} with diameter equal to 1 . Then

$$
\begin{equation*}
\int_{Q}\left\|F_{x}\right\|_{B_{p}^{\alpha, 1}}^{p} d x \leqq C_{p, \alpha} \int_{\mathbf{R}^{n}}|f(x)|^{p} d x, \quad f \in \mathscr{S}\left(\mathbf{R}^{n}\right) \tag{2}
\end{equation*}
$$

if $n \geqq 3, n /(n-1)<p<\infty$ and $\alpha<1 / p$.
We need the following notation. Choose $\psi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ such that $\operatorname{supp}(\psi) \subset$ $\{\xi: 1 / 2<|\xi|<2\}$ and

$$
\sum_{v=-\infty}^{\infty} \psi\left(2^{-v} \xi\right)=1, \quad \xi \neq 0 .
$$

Set $\psi_{v}(\xi)=\psi\left(2^{-v} \xi\right), v \in \mathbf{Z}$, and let φ and $\varphi_{v}, v=1,2, \ldots$, be defined by $\hat{\varphi}=\psi$ and $\hat{\varphi}_{v}=\psi_{v}$. Here the Fourier transform $\hat{\varphi}$ is defined by

$$
\hat{\varphi}(\xi)=\int_{\mathbf{R}} e^{-i \xi t} \varphi(t) d t
$$

It follows that $\varphi_{v}(t)=2^{v} \varphi\left(2^{v} t\right), v=1,2, \ldots$ We also define φ_{0} by setting $\hat{\varphi}_{0}=1-\sum_{1}^{\infty} \psi_{v}$. Then the norm in the Besov space $B_{p}^{\alpha, q}$ is given by

$$
\|f\|_{B_{p}^{\alpha, q}}=\left(\sum_{v=0}^{\infty} 2^{v \alpha q}\left\|\varphi_{v} * f\right\|_{p}^{q}\right)^{1 / q}, \quad 1 \leqq p, q \leqq \infty, \quad \alpha>0 .
$$

Here $\left\|\|_{p}\right.$ denotes the norm in $L^{p}(\mathbf{R})$ and we make the usual modification for $q=\infty$.

We observe that it suffices to prove the lemma and the theorem with $B_{p}^{\alpha, 1}$ replaced by $B_{p}^{\alpha, p}$. This follows from a well-known application of Hölder's inequality:

$$
\begin{aligned}
\left\|F_{x}\right\|_{B_{p}^{\alpha, 1}} & =\sum_{0}^{\infty} 2^{v(\alpha-r)} 2^{v r}\left\|\varphi_{v} * F_{x}\right\|_{p} \leqq\left(\sum_{0}^{\infty} 2^{v(\alpha-r) p^{\prime}}\right)^{1 / p^{\prime}}\left(\sum_{0}^{\infty} 2^{v r p}\left\|\varphi_{v} * F_{x}\right\|_{p}^{p}\right)^{1 / p} \\
& \leqq C_{p, \alpha}\left\|F_{x}\right\|_{B_{p}^{r, p}}, \quad \text { where } \quad \alpha<r<1 / p \quad \text { and } \quad 1 / p+1 / p^{\prime}=1
\end{aligned}
$$

Proof of Lemma 4. Let p and α satisfy the conditions in the lemma. We shall prove the inequalities

$$
\begin{equation*}
\int_{Q}\left\|\varphi_{0} * F_{x}\right\|_{p}^{p} d x \leqq C_{p} \int_{\mathbf{R}^{n}}|f(x)|^{p} d x \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}\left(\sum_{v=1}^{\infty} 2^{v \alpha p}\left\|\varphi_{v} * F_{x}\right\|_{p}^{p}\right) d x \leqq C_{p, \alpha} \int_{\mathbf{R}^{n}}|f(x)|^{p} d x \tag{4}
\end{equation*}
$$

for $f \in \mathscr{P}\left(\mathbf{R}^{r}\right)$. It is clear that the lemma is a consequence of (3) and (4). We have

$$
\begin{gather*}
\varphi_{v} * F_{x}(u)=\int_{\mathbf{R}} \varphi_{v}(u-t) F_{x}(t) d t=\int_{S^{n-1}}\left(\int_{0}^{\infty} \varphi_{v}(u-t) f\left(x-t y^{\prime}\right) d t\right) d \sigma\left(y^{\prime}\right) \tag{5}\\
=\int_{\mathbf{R}^{n}} \varphi_{v}(u-|y|) f(x-y)|y|^{-n+1} d y=\varphi_{v, u} * f(x), \quad x \in \mathbf{R}^{n}, \quad u \in \mathbf{R}, \quad v=0,1,2, \ldots,
\end{gather*}
$$

$$
\text { where } \varphi_{v, u}(y)=\varphi_{v}(u-|y|)|y|^{-n+1}
$$

We first prove (3). Since

$$
\begin{aligned}
& \left\|\varphi_{0} * F_{x}\right\|_{p} \leqq\left\|\varphi_{0}\right\|_{1}\left\|F_{x}\right\|_{p} \text { it is sufficient to prove that } \\
& \int_{Q}\left\|F_{x}\right\|_{p}^{p} d x \leqq C_{p} \int_{\mathbf{R}^{n}}|f(x)|^{p} d x .
\end{aligned}
$$

Using the Minkowski inequality we obtain

$$
\begin{gathered}
\left(\int_{Q}\left\|F_{x}\right\|_{\mathbf{p}}^{p} d x\right)^{1 / p}=\left(\iint_{Q \times \mathbf{R}^{+}}\left|\int_{S^{n-1}} f\left(x-t y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right|^{p} d x d t\right)^{1 / p} \\
\leqq \int_{S^{n-1}}\left(\iint_{Q \times \mathbf{R}^{+}}\left|f\left(x-t y^{\prime}\right)\right|^{p} d x d t\right)^{1 / p} d \sigma\left(y^{\prime}\right)
\end{gathered}
$$

Let δ denote the diameter of Q. We then have

$$
\begin{aligned}
& \iint_{Q \times \mathbf{R}^{+}}\left|f\left(x-t y^{\prime}\right)\right|^{p} d x d t=\sum_{k=0}^{\infty} \int_{3 k \delta}^{3(k+1) \delta}\left(\int_{Q}\left|f\left(x-t y^{\prime}\right)\right|^{p} d x\right) d t \\
& \quad=\int_{0}^{3 \delta}\left(\sum_{k=0}^{\infty} \int_{Q}\left|f\left(x-(t+3 k \delta) y^{\prime}\right)\right|^{p} d x\right) d t \leqq 3 \delta \int_{\mathbf{R}^{n}}|f(x)|^{p} d x
\end{aligned}
$$

for every $y^{\prime} \in S^{n-1}$. (6) follows from this estimate and hence (3) is proved.
We now prove (4) and first observe that

$$
\begin{equation*}
\left\|\varphi_{v, u}\right\|_{L^{1}\left(\mathbf{R}^{n}\right)}=\int_{\mathbf{R}^{n}}\left|\varphi_{v}(u-|y|)\right||y|^{-n+1} d y=C \int_{\mathbf{R}}\left|\varphi_{v}(t)\right| d t=C, \quad v=1,2, \ldots \tag{7}
\end{equation*}
$$

For the Fourier transform $\hat{\varphi}_{v, u}$ of $\varphi_{v, u}$ we then obtain the estimate

$$
\begin{equation*}
\left\|\hat{\varphi}_{v, u}\right\|_{L^{\infty}\left(\mathbf{R}^{n}\right)} \leqq C, \quad v=1,2, \ldots ; \quad u \in \mathbf{R} . \tag{8}
\end{equation*}
$$

We shall also prove that

$$
\begin{equation*}
\left\|\hat{\varphi}_{v, u}\right\|_{L^{\infty}\left(\mathbf{R}^{n}\right)} \leqq C\left(2^{v}|u|\right)^{-(n-1) / 2}, \quad 2^{v}|u| \geqq 1 . \tag{9}
\end{equation*}
$$

For $u<0$ this follows from the inequality

$$
\begin{aligned}
& \left\|\hat{\varphi}_{v, u}\right\|_{L^{\infty}\left(\mathbf{R}^{n}\right)} \leqq\left\|\varphi_{v, u}\right\|_{L^{1}\left(\mathbf{R}^{n}\right)}=C \int_{0}^{\infty} 2^{v}\left|\varphi\left(2^{v}(u-t)\right)\right| d t \\
= & C \int_{-\infty}^{2^{\nu} u}|\varphi(t)| d t \leqq C \int_{2^{v}|u|}^{\infty}(1+t)^{-N} d t \leqq C\left(2^{v}|u|\right)^{-N^{\prime}},
\end{aligned}
$$

where N and N^{\prime} are large positive numbers. For $u>0$ we set $a=2^{v} u$ and assume $a \geqq 1$.

Performing a change of variable $x=u y$ we have

$$
\hat{\varphi}_{v, u}(\xi)=\int_{\mathbf{R}^{n}} e^{-i \xi \cdot x} \varphi_{v}(u-|x|)|x|^{-n+1} d x=\int_{\mathbf{R}^{n}} e^{-i u \xi \cdot y} a \varphi(a(1-|y|))|y|^{-n+1} d y
$$

Hence

$$
\left\|\hat{\varphi}_{v, u}\right\|_{L^{\infty}\left(\mathbf{R}^{n}\right)}=\|J\|_{L^{\infty}\left(\mathbf{R}^{n}\right)}, \quad \text { where } \quad J(\xi)=\int_{\mathbf{R}^{n}} e^{-i \xi \cdot y} a \varphi(a(1-|y|))|y|^{-n+1} d y
$$

Assuming $|\xi| \geqq a / 2$ and invoking the well-known estimate

$$
\hat{\sigma}(\xi)=\int_{S^{n-1}} e^{-i \xi \cdot y} d \sigma(y)=O\left(|\xi|^{-(n-1) / 2}\right), \quad|\xi| \rightarrow \infty
$$

we obtain

$$
\begin{gathered}
|J(\xi)|=\left|\int_{0}^{\infty} a \varphi(a(1-t)) \hat{\sigma}(t \xi) d t\right| \\
\leqq \int_{1 / 2}^{3 / 2} a|\varphi(a(1-t))||\hat{\sigma}(t \xi)| d t+C \int_{|v| \geqq 1 / 2} a|\varphi(a v)| d v \\
\leqq C \int_{1 / 2}^{3 / 2} a|\varphi(a(1-t))|(t|\xi|)^{-(n-1) / 2} d t+\int_{|v| \geqq a / 2}|\varphi(v)| d v \leqq C a^{-(n-1) / 2} .
\end{gathered}
$$

For $|\xi|<a / 2$ we use the fact that $\hat{\varphi}(t)$ vanishes for $|t| \leqq 1 / 2$ and get

$$
\begin{aligned}
& |J(\xi)| \leqq\left|\int_{S^{n-1}}\left(\int_{-\infty}^{\infty} e^{-i t \xi^{\prime} \cdot y^{\prime}} a \varphi(a(1-t)) d t\right) d \sigma\left(y^{\prime}\right)\right|+C \int_{-\infty}^{0} a|\varphi(a(1-t))| d t \\
& \quad \leqq \int_{S^{n-1}}|\hat{}| \xi\left(\xi \cdot y^{\prime} \mid a\right)\left|d \sigma\left(y^{\prime}\right)+C \int_{1}^{\infty} a\right| \varphi(a v)\left|d v \leqq C \int_{a}^{\infty}\right| \varphi(t) \mid d t \leqq C a^{-N}
\end{aligned}
$$

where N is a large positive number. Thus (9) is proved.
We let $\left\|\|_{M_{p}}\right.$ denote the norm in the space $M_{p}\left(\mathbf{R}^{n}\right)$ of Fourier multipliers on $L^{p}\left(\mathbf{R}^{n}\right), 1 \leqq p \leqq \infty$. It follows from (7) that

$$
\left\|\hat{\varphi}_{v, u}\right\|_{M_{\infty}} \leqq C,
$$

and from (8) and (9) we conclude that

$$
\left\|\hat{\varphi}_{v, u}\right\|_{M_{2}} \leqq C\left(1+2^{v}|u|\right)^{-(n-1) / 2}
$$

Interpolation between $p=2$ and $p=\infty$ yields

$$
\begin{equation*}
\left\|\hat{\varphi}_{v, u}\right\|_{M_{p}} \leqq C\left(1+2^{v}|u|\right)^{-(n-1) / p}, \quad 2 \leqq p \leqq . \tag{10}
\end{equation*}
$$

By duality we also obtain

$$
\begin{equation*}
\left\|\hat{\varphi}_{v, u}\right\|_{M_{p}} \leqq C\left(1+2^{v}|u|\right)^{-(n-1)(p-1) / p}, \quad 1 \leqq p \leqq 2 . \tag{11}
\end{equation*}
$$

We now use (10) and (11) to prove (4). Denoting the left hand side of (4) by B we have

$$
\begin{gathered}
B=\sum_{v=1}^{\infty} 2^{v \alpha p} \int_{\mathbf{R}}\left(\int_{\mathbf{R}^{n}}\left|\varphi_{v, u} * f(x)\right|^{p} d x\right) d u \\
\leqq \sum_{v=1}^{\infty} 2^{v \alpha p}\left(\int_{\mathbf{R}}\left\|\hat{\varphi}_{v, u}\right\|_{M_{p}}^{p} d u\right)\left(\int_{\mathbf{R}^{n}}|f(x)|^{p} d x\right)
\end{gathered}
$$

We denote the first integral on the above right hand side by $I_{p, v}$. We shall prove that

$$
\begin{equation*}
I_{p, v} \leqq C_{p} 2^{-v}, \tag{12}
\end{equation*}
$$

from which (4) follows, since $\alpha<1 / p$. For $p \geqq 2$, (10) yields

$$
I_{p, v} \leqq C \int_{0}^{\infty}\left(1+2^{v} u\right)^{-n+1} d u=C 2^{-v} \int_{0}^{\infty}(1+u)^{-n+1} d u=C 2^{-v}
$$

where we used the assumption $n \geqq 3$. For $n /(n-1)<p<2$ we have $(n-1)(p-1)>1$ and from (11) it follows that

$$
I_{p, v} \leqq C \int_{0}^{\infty}\left(1+2^{v} u\right)^{-(n-1)(p-1)} d u=C 2^{-v} \int_{0}^{\infty}(1+u)^{-(n-1)(p-1)} d u=C_{p} 2^{-v}
$$

We conclude that (4) holds and the proof of the lemma is complete.
Proof of Theorem 2. It is sufficient to prove that if Q is a cube with diameter 1 and $f \in L^{p}\left(\mathbf{R}^{n}\right)$ then

$$
\begin{equation*}
\int_{Q}\left\|F_{x}\right\|_{B_{p}^{\alpha, p}}^{p^{\alpha, p}} d x \leqq C_{p, \alpha} \int_{\mathbf{R}^{n}}|f(x)|^{p} d x \tag{13}
\end{equation*}
$$

This can be proved by use of the fact that (5) holds for almost every $x \in \mathbf{R}^{n}$ if $f \in L^{p}\left(\mathbf{R}^{n}\right)$, but one can also argue as follows. We may assume that f is non-negative and let $\left(f_{k}\right)_{1}^{\infty}$ denote a non-decreasing sequence of step functions tending to f almost everywhere. It follows from the proof of Lemma 4 that (13) holds with f replaced by f_{k} and F_{x} by the corresponding function $F_{x, k}$. Fatou's lemma yields

$$
\begin{gathered}
\int_{\varepsilon}^{N} \lim _{k \rightarrow \infty}\left(F_{x}(t)-F_{x, k}(t)\right) d t \leqq \varliminf_{k \rightarrow \infty} \int_{\varepsilon}^{N}\left(F_{x}(t)-F_{x, k}(t)\right) d t \\
\leqq \varepsilon^{-n+1} \varliminf_{k \rightarrow \infty} \int_{\varepsilon}^{N}\left(F_{x}(t)-F_{x, k}(t)\right) t^{n-1} d t \\
=\varepsilon^{-n+1} \varliminf_{k \rightarrow \infty} \int_{\varepsilon<|y|<N}\left(f(x-y)-f_{k}(x-y)\right) d y=0
\end{gathered}
$$

for $0<\varepsilon<N$. We conclude that for every $x \in \mathbf{R}^{n}, F_{x}(t)=\lim _{k \rightarrow \infty} F_{x, k}(t)$ for almost every t. We have

$$
\begin{equation*}
\int_{Q}\left\|F_{x, k}\right\|_{B_{p}^{\alpha, p}} d x \leqq C_{p, \alpha} \int_{\mathbf{R}^{n}}\left|f_{k}(x)\right|^{p} d x \tag{14}
\end{equation*}
$$

and hence also

$$
\begin{equation*}
\int_{Q}\left\|F_{x, k}\right\|_{p}^{p} d x \leqq C_{p} \int_{\mathbf{R}^{n}}\left|f_{k}(x)\right|^{p} d x \tag{15}
\end{equation*}
$$

Letting k tend to infinity in (15) we obtain

$$
\int_{Q}\left\|F_{x}\right\|_{p}^{p} d x \leqq C_{p} \int_{\mathbf{R}^{n}}|f(x)|^{p} d x
$$

and it follows that $F_{x} \in L^{p}(\mathbf{R})$ and $\lim _{k \rightarrow \infty}\left\|F_{x}-F_{x, k}\right\|_{p}=0$ for almost every x. As a consequence we also have $\lim _{k \rightarrow \infty}\left\|\varphi_{v} * F_{x, k}\right\|_{p}=\left\|\varphi_{v} * F_{x}\right\|_{p}, v=0,1,2, \ldots$, for almost every x. An application of Lebesgue's theorem on dominated convergence yields

$$
\lim _{k \rightarrow \infty} \int_{Q}\left\|\varphi_{v} * F_{x, k}\right\|_{p}^{p} d x=\int_{Q}\left\|\varphi_{v} * F_{x}\right\|_{p}^{p} d x
$$

and letting k tend to infinity in (14) we obtain (13). The proof of the theorem is complete.

References

1. Brenner, P., Thomée, V., and Wahlbin, L. B., Besov spaces and applications to difference methods for initial value problems. Lecture Notes in Mathematics 434, Springer-Verlag 1975.
2. Stein, E. M., Maximal functions: Spherical means. Proc. Nat. Acad. Sci. USA. 73 (1976), 2174-5.
3. Taibleson, M. H., On the theory of Lipschitz spaces of distributions on Euclidean n-space I. J. Math. Mech., 13 (1964), 407-479.
J. Peyrière

Université de Paris VII
U. E. R. de Mathématiques

2, Place Jussieu
F-75 221 Paris Cedex 05 France
P. Sjölin

University of Stockholm
Dept. of Mathematics Box 6701
S-11385 Stockholm
Sweden

