
Regularity of spherical means 
J. Peyri6re and P. Sj61in 

1. Introduction 

Let R" denote n-dimensional Euclidean space and let Ixl denote the norm 
of  an element xER". For tiER and t fELioc(R ) we set 

Fp, x(t)=lt lPfs ,_l f(x-- ty)dtr(y) ,  xER", tER, (1) 

where ~ denotes the surface measure on S" - I={xER" ;  ]x]=l}. It follows from 
Fubini's theorem that for every xER ~, Fp, x(t ) is well-defined for almost all tER. 
We also set F~(t)=Fo,~(t),t>=O, and F~( t )=0 for t<0,  

E. M. Stein [2] has studied the maximal operator M defined by 

Mf(x) = sup [F~(t)l , xE R", fE 5e(R"), 
t ~ 0  

where 5r ") denotes the Schwartz class, and has proved that IlMfllzp~,)~ 
CpllfllL,(a-) if n ~ 3  and p>n/(n--l). 

The purpose of this paper is to study the regularity of the function Fa,, in 
a q  a q  terms of  Besov (=Lipschitz) spaces. We let the Besov spaces Bp' =B~' (R) be 

defined as in P. Brenner, V. Thom6e and L. B. Wahlbin [1]. These spaces are known 
to coincide with the Lipschitz spaces A~ ,q studied by M. H. Taibleson [3]. 

If  f is a complex-valued function on R" we write f ( x ) = f ( - x ) .  In Sections 
2---4 we obtain the following results. 

Theorem 1. Assume n~2 ,  a >0  and - 1 <fl<(n-2)]2. Then there exists 
a constant C such that 

f . .  II ax <= c f . .  If*f(x)l 1 -~" Ixl' ) dx 

for every continuous function f with compact support in R". 

Corollary 1. Assume n>-_2 and 1 <=p<q<=2. I f  - 1 <f l<inf((n--2) /2 ,  
n O / p -  I / 2 ) -  1/2), 0 < ~ < f f +  1/2-n(1 /q-  1/2) and fEL~'(R")n Lq(R"), then Fp,~E 
B~'~(R) for almost every xER". 
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Corollary 2. Assume n >-3, n / (n -  1)<q<--2 and fEI_qqc(R~). I f  ct<n(1 - 1/q)-- 1, 
then for almost every xER  ~ the function F~ coincides almost everywhere on ] O, oo [ 
with a function which belongs locally to A~(] O, ~o D. 

In Section 5 we use a different method to prove the following theorem. 

Theorem 2. I f  n>-3, n/(n--1)<p<oo, r and fELV(Rn), then FxE Bv'I(R) 
for almost every xER  ~. 

We remark that it is easy to see that Theorem 2 holds also if the function Fx 
is replaced by Fo, ~. 

2. Some lemmas 

To prove Theorem 1 we use the following characterization of  the Besov space 
B~'2(R). I f  g is a function in L~(R) let u denote its Poisson integral. Then g lies 
in B~'~(R) if and only if for some (or every) integer k>ct the quantity 

IlgliL,~,+[f+o~y'(k-')-l(fR I(O/Oy)~u(x, y)rdx)dy] '̀ = 

is finite. This defines equivalent norms on B~'=(R). 
Let us consider uo(x, y)=rt-~y/(x=+y 2) the Poisson kernel of the upper half 

plane. We set Uk=(O/Oy)kuo. 
Since ua  is homogeneous of  degree - ( 2 k +  I) with respect to (x, y) and is an 

odd function of  y, there exists a constant Ck such that 

lu=k(x,y)l <= c~y/(x=+ yD T M  (xE R, yER+). 

Lemma 1. We have Uk (., y) * Uk (., y) = Ua (., 2y). 

Proof. This lemma is an easy consequence of  the formula 

~ ( u ( . ,  Y))(0 = e-Ir 

Let us denote by tr, the rotation invariant probability measure on S n, by s, 
the area of  S ~ and by X the characteristic function of  the set {(x, y, z)ER3; 

Ilxl-lyll<lzl<lxl+lyl}. When Z(x , y , z )  equals 1 we set 

1 A (x, y, z) = ~ ([(x + y)~ - z'] [z 2 -  (x-- y)2]),/2 

(it is the area of  the triangle with sides of  length Ixl, ly[, lzp). 

Lemma 2. Let n be a positive integer, r and s two non-zero real numbers. Let us 
denote by I~ the image measure of  a,• n by the mapping (y, z ) ~ r y + s z  from S~• S ~ 
to R n+l. We have 

2"-2s,_1 [h(lx[, r, s)] "-2 ;~(Ixl, r, s)clx. dp.(x) = 2 
s~ (Irsl" Ixl) ~-x 
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Proof. We m a y  suppose  O<r<-s. Let t be a non-negat ive  number .  Let  us 

compute  o ) ( t ) = p , ( { x ;  Ixl<_-t}). We have 

= f s - i f  s-n{,;,.,+,=,._,, 
The inner integral does not  depend on z so we get 

o~(t) = ~af--n{,; I,,+s,I--,} da.(y), 

where z is any  point  in S". Clearly og(t) is zero if t is less than s - r  and is 1 i f t  is 
greater  than  s+r.  I f  t is between s - r  and s + r  we denote  by  q'o the number  such 
tha t  0<goo<rc and  t~=ra+s2-2rscos  (o o. We then have 

o)(t) = s , -1  f : o  (sin(o),_id(o and rss in(o  o = 2A(r, s, 0 
Sn 

$ 0  

oY(t) = 2 "-3 s,-1 t[A(r, s, t)] " -z  
s, (rs) ,_ 1 z( r ,  s, t). 

The  result  follows because #,  is ro ta t ion  invariant.  

Lemma  3. Let v and w be two real numbers such that v < 0 ,  w > - l ,  2 ( v + w ) <  

- 1. Let us set 

I f : ~ ( t 2 - s Z ) V ( t ~ - l ) W d t  when ] s [ < l ,  

2 ( S )  = / ,~J 1 

[Jo  (s~-tz)~ when Is I > 1. 

Then we have, when s tends to 1, 

O(1) if v + w > - l ,  

2 ( s ) =  O ( t o g ( 1 / l l - s l )  ) if  v + w = - l ,  

O(ll-s l  ~ i f  v + w  < - - 1 .  

Proof. First  let us s tudy the case when s tends to 1 +. I f  s is less than  2 we have 

2(s) <_-- s - - t ) v (1 - t )~d t  = C s - l + t ) ~  

C(s v + w + l  1/(s--1) = - 1 )  ( l+t)Ot~dt  

and  we conclude easily. 
Let  us now s tudy the case when s tends to 1 - .  We have 

f :  2(s) <= (t~-s~)V(t2-1)Wdt+ ( t~- l )~  

< C(l+f~ ( t - s ) " ( t -1 )~d t )<= C ( l + f o  i ( 1 - s + t ) " t ~ d t )  

and we conclude as above.  
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3. Proo f  of  Theorem 1 

Let us compute  first fa. IlF~,xll~L,(R.)dx. 
We have 

]Fa, ~(t)l~ = It] zp f f s.-i x S. l f(x- tyi) f(x--  tyz) da(ya) da(y~), 
thus 

fR" ]Fp, x (t)] ~ dx = It] 2a f f s.-lx s.-i f *  f ( -  tyl + tyz) da (yx) da (y~). 

Using Lemma 2 we get 

f.~ IFa, x(t)t 2 dr = Cltl'Pfa" f . Jr (x )  [A(lx[' t, 01 "-3 z(Ixl, t, t)dx, 
(t~lxl) "-~ 

therefore 

+ ~ t ~ p - .  +3) ( 4 #  - -  Ix[2) ("-~)/2 dt] 
L - t I  Fa, xll~,(g) dx : C L .  f * / ( x )  [f,.,,, Ix------U- dx 

= C [ s  t'(a-"+"(4t z -  1)~"-"' / 'dt]f . . f*j~(xl[xl2a-"+tdx 

(the first integral converges since we have /~<(n -2 ) /2 ) .  
Now let us estimate 

JR" [f;= h'"-"-~(f R I . , ( . ,  " ) *  F,, ~(t)[ 2 dt) ah Iax, 
where k is the first integer greater than e. We have 

Fo, ~ �9 u k (., h) (z) = f f R • S"-I [ t[p f ( x -  ty) Uk (~ -- t, h) dt da (y) 
so  

]Fa,~*uk(', h)( ')[  2 =  f f f f . , •176  l~.-1 I q t ' l a f ( x - t ' Y O f ( x - t ' Y 2 )  

x u k ( ~ -  t 1, h)uk(z- t2,  h) dtl dr2 do(y1) de(y~). 

Using Lemma 1 we get 

f s  IFp,~*u~(., h)(z)12dv = ffffR,• [tlt~]af(x--tlyl)f(x--t'Y2) 

• u~,(q-- t~,  2h) dt I dt2 da(yO da (Y2). 

I f  we set A(fl, h)=ffR.• [FB,~*uk(.,h)(z)[~dx& and q~(x)=f,fix) we get 

A (a, h) = f f f f . , •  ~o-1 • I qt~laq~(t~y~- qy2) u ~ ( q - t 2 ,  2h) dq dt~ da(yO da(y2). 

By Lemma 2 we obtain 
A ~ ,  h) 

[A (txl, tx , tz)]"-3 t2) dx ] = c f f . ,  [qt2lau~(q-t2,  2h) [ f . .  ~(x) ([/1/~1" Ixl)"-' z(lx[, tl, dtl dt~. 1 
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Using homogeneity properties we get 

A (~, h) = C fRn ~o (x) IxL ~Ca-k) +l-n g(2h/Ixl) dx, 
where 

K(z) = fiR' ltlt2la-'+2U~k(tl--tz' z)(A(1, ta, tz))'-aZ(1, tl, tz)dtldtv 

We shall show later that we have [K(z)]<-C/(1 +z~k+l). This being granted we have 

+ ~ h~(k-~)-I ] 
f~ h='k-"-la(e, h)ah <- c f ~ .  le(x)l I~l~(a-')-.+ x [fo+~ 1 + ( ~ + 1 ) d h j d ~  

<-- C 1 + z  2k+1" dz , k0(x)l Ixl '(#- ')-n§ dx �9 

The first integral converges and collecting both estimates we get 

W e  now have to prove the estimate of K(z). By change of  variables we get 

K(z) = c f f . . ,  o ~ . ,  e.-1, o - . , ,>o) i t s -  s~ I,-. +3.~(s ,  z)I(t' - 1)(1 -sZ)l('-a,,~ ds dt. 

Let us set 

{ (1-s2)(n-a)/2f  +~(t2-s2)a-'+2(#-l)("-3)/2dt if lsl < 1, 
L(s) 

(s2--1)('-a)/2f~(s2--#)l~-'+2(1--t2)(~-a)/2dt if [st > I. 
e 0  

Both integrals converge because f l < ( n - 2 ) / 2  and n ~ 2 .  
L is a C ~ function on ] -  1, I[ and by Lemma 3 it is integrable in a neighbour- 

hood of - 1  and of  1 (because f l > - l ) .  In addition, when Isl tends to infinity, 
we have L(s)=O(s ca-'+1) so L is integrable. 

We have K(z)=cf+_= u2ds, z)L(s)ds, so when s tends to zero, K(z) tends, 
save for a multiplicative factor, to the 2k t~ derivative of  L at the origin. 

In addition }K(z)l<=cf+_=,(,Z+s~)-k-~lL(s)lds , thus K(z)=O(]z[-zk-1), 
when Izl tends to infinity. And the proof  is complete. 

4. Proof of the Corollaries 

Proof of the first Corollary. 

The hypothesis fE L p (R") c~ L q (R") implies f . f ~  1." (R") c~ L * (R") where r and 
s are defined by 1/r=2/p-1, 1/s=2/q-1. 

v ~ 2 

More precisely IIf*fIILr(R.)=IIfIIL,(R.) and [[f*fl~L,(R,)<=[lfll[,(an). 
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Let us denote by r' and s' the conjugate exponents. We have 

f '  , ~(f, lxl"-"+'"'dx] ' '  , ItFa, xlls~,~(m dx <= Cllfllp ~I>1 

+ C Ilfll~ (f,x,<l Ixl(2'-2=-" +a'~" dx)~/~'. 

The first integral converges if f l<n(1/p-1/2)-1/2,  the second if = < f l +  1 /2 -  
n(1/q-1/2). So we get a result if 

- 1 < fl < inf((n-2) /2 ,  n(1/p-  1/2)-  1/2) 
and 

0 < ot < fl+1/2--n(1/q--1/2). 

Proof of  Corollary 2. 

Let f be a function in L q (R"), let us multiply f by the characteristic function 
of  a ball and use Corollary 1 with p = l :  if a lies in ]l /2 ,(n-1)/2-n(1/q-1/2)[  
one can choose a suitable ft. We conclude using the inclusion B~'~(R)c A,_v,(R). 

5. P r o o f  o f  T h e o r e m  2 

We shall first prove the following inequality. 

L e m m a  4. Let Q denote a cube in R" with diameter equal to 1. Then 

fo IlFxll~;,1 dx <= Cp,, fR" If(x)lPdx' YES'(R")' (2) 

if n>=3, n / (n-  l ) < p <  co and ~< lip. 

We need the following notation. Choose ~k~Co(R") such that supp(~k)c 
{~: 1/2<1~1<2} and 

ZT=_ ~ 0 (2-" 0 = 1, ~ ~ o. 

Set ~k,(~)=~(2- 'O,  vEZ, and let ~o and %,  v = l , 2 ,  ..., be defined by ~=~k 
and ~v=~k,. Here the Fourier transform ~ is defined by 

(0  = f R e-ie, r (t) dt. 

It follows that %(t)=2v~o(2vt), v = l , 2  . . . . .  We also define ~Oo by setting 
Go= 1 - ~ 0  ff~. Then the norm in the Besov space B~ ,~ is given by 

I[fllB;,~ = (~ 'Z02~JJ%*f l ]~)  x/q, 1 <= p, q <=o% ~ > 0. 

Here I[ lip denotes the norm in LP(R) and we make the usual modification for q=  oo. 
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We observe that it suffices to prove the lemma and the theorem with B~ 'x 
replaced by B~'V. This follows from a well-known application of  H61der's inequality: 

1{ F~[I ,~,1 = ~ 2v(~-') 2 ~" II ~0v. Fxl I p ~ ( ~ o  2~(~-')p')1/r ( ~ o  2v'" LI q~ * F~II g)l/p 

= C~,,IIF~IIB;.-, where ~ -~ r < 1/p and 1/p+l/p" = 1. 

Proof of Lemma 4. Let p and c, satisfy the conditions in the lemma. We shall 
prove the inequalities 

f~ 119o* F~J[g dx ~ C, yR. If(x)l" dx (3) 
and 

JR-(-YT=, 2",11~o~, F~llg)dx <= C,.. JR. If(x): dx (4) 

for f66e(R"). It is clear that the lemma is a consequence of (3) and (4). We have 

tp~* F~(u) = fR  tP~(u't)F~(t)dt = L . - , ( f ?  tp~(u-t) f(x-ty ')dt)dtr(y ')  (5) 

= f R . q ~ ( u - [ y l ) f ( x - y ) l y l - " + ~ d y = q ~ , . * f ( x ) ,  xER", u~R, v = 0 , 1 , 2  

where q~,,~(y)=~o,(u-[y[)[yl -"+1. 
We first prove (3). Since 

IIq'o*F~ll~--< [Iq'0lllllF~ll~ it is sufficient to prove that 

f o [IF~II~ dx <= Cp frt. If(x)lP dx. (6) 

Using the Minkowski inequality we obtain 

, p dt~l/~ ( L  UF~}Igdx}a/P= ( f f~.+lf , . - .  :(x-, /)a~(y)l  u~ j 

< f~ ( f f e  [f(x ty')l'dxdt)X/pda(y ") 
= tt-X xR+ 

Let 6 denote the diameter of  Q. We then have 

SL .. = ergo fS"' (L is(x-,~): 

= f~' (z::0 f,, Is(x-(, + 3k~)/)I',~x} ,. <- 3~ f.. is(x):,x 
for every y'E S "-I. (6) follows from this estimate and hence (3) is proved. 
We now prove (4) and first observe that 

I]~ov,,,HL,(.-) - fR" [~Ov(U--]Y[)I lYl-"+ldy = c fR  ltP~(t)] dt =- C, v -- 1, 2 . . . .  

For the Fourier transform O~,. of q~.. we then obtain the estimate 

[1$~..L=fR.) <-- C, v = l ,  2 . . . .  ; uER. 

(7) 

(8) 
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We shall also prove that 

II~,,,IIL| ~_ C(2" lul) -~"-1)/2, 2Vlul----> 1. (9) 

For u < 0  this follows from the inequality 

IlOv, ul[,~-~", <- [ko~,,ll,,R., = C f o 2"/tp(2~(u -t))[  dt 

= c f  2vu [q~(t)ldt ~- c f ~  (l+t)-Ndt <-- C(2*lu[) -N', 
- - - r  lu] 

where N and N '  are large positive numbers. For u > 0  we set a=2Vu and 
assume a=>l. 

Performing a change of variable x = uy we have 

= f R. e-'e':' ~o,(u- Ixl) Ixl--11+1 a s  : fro e-"eraq~(a(1 -lY[))[Y}-"+x dy. 

Hence 

II~,~IIL'Ca")=II/IIL| where J(~)=fae- ' e ' ra~o(a(1-[y[ ) ) [y[ -n+ldy .  

Assuming 141 >-a]2 and invoking the well-known estimate 

= fs.-1 e-ie'Yda(Y) = ~ 141 -~ 0% 
we obtain 

1I(4)1 = f o  aq~(a(1-t))#(tr dt 

/'~" f <-- a Iq~(a (1--t))[ It~(t~)[ dt + C a 1~0 (av)l do 
~' 1/2 Iv1--~1/2 

: C o a/~ a [~0(a(1 -O)[(tlr tol___,/2 ]tp(v)[ dv <- Ca -("-1)/2. 

For I~[<a/2 we use the fact that ~(t)  vanishes for Itl<=l/2 and get 

v(e)t <-IL., (f=_ e-"e'"aq~(a(1-t))dt}da(y') +C f ~  al~o(a(1-t))[dt 

<- f [4~(r . y'/a)l da(y ')+ c f ?  a [q~(av)[ dv <- o f f  [~o(Ol dt <= Ca -N, 

where N is a large positive number. Thus (9) is proved. 
We let II IIM~ denote the norm in the space Mp(R ~) of Fourier multipliers on 

L p (R~), 1 <=p <= co. It follows from (7) that 

and from (8) and (9) we conclude that 

II~,.,IIM, <-- C(1 +2" lul) -~"-x)n. 
Interpolation between p = 2  and p=oo yields 

II~,.IIM~ ~-- C(l +2Vlul) -("-x)/p, 2 <= p ~oo_ . (10) 
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By duality we also obtain 

I[~? [I < C(l+2Vlul) -(n-1)(p-a)/p, 1 <_- p <_- 2. (11)  u n p  

We now use (10) and (11) to prove (4). Denoting the left hand side of (4) by B we have 

B = ZT=12v'Pf  ( f  [q%,.*f(x)tPdx)du 
d R ~,d R n 

--< ZT=. 2~" ( / ,  flr R. If(x){ p dx}. 

We denote the first integral on the above right hand side by Ip, ~. We shall prove 
that 

Ip, v <- Cp2-',  (12) 

from which (4) follows, since ct<l/p. For p=>2, (10) yields 

I.,v <= c f ]  (1 +2"u) -"+1 du = c2-" f ]  (1 +u)-"+ldu = C2- ' ,  

where we used the assumption n => 3. For n/(n - 1) < p  < 2 we have (n - 1) (p - 1) > 1 
and from (11) it follows that 

g,v<= c f o  (l+2"u)-("-~)(P-'du = C2-" f ]  (l+u)-("-~)(.-~)d. = Cp2 -~. 

We conclude that (4) holds and the proof of the lemma is complete. 

Proof o f  Theorem 2. It is sufficient to prove that if Q is a cube with diameter 
1 and fE L p CR") then 

fa IIF~llf~;., dx <= Cp., f R" If(x)lP dx. (13) 

This can be proved by use of the fact that (5) holds for almost every xCR" 
if f (  L p (R"), but one can also argue as follows. We may assume that f is non-negative 
and let (fk)~" denote a non-decreasing sequence of step functions tending to f almost 
everywhere. It follows from the proof of Lemma 4 that (13) holds with f replaced 
by f~ and F~ by the corresponding function F~, k. Fatou's lemma yields 

f N 1  (Fx( (t)) f~(Fx( )) im t)--Fx, k dt ~= lira t)--F~,k(t dt 
e k ~  k ~  

<= ~-.+x lim f~r(F~(t)-F~,k(t)) t"-Idt  
k ~  

, . , e -  - 

= 8 -"+1 lira f .  ( f (x - -y ) - - fk (x - -y ) )dy  = 0 
k - -~  <[Yl <N 

We conclude that for every x~R ~, F x ( t ) = l i m k ~  F~,k(t) for almost for 0 < e < N .  
every t. We have 

fo  IIFx.kll~;., dx ~ C~.~ f R, IA(x)l" dx (14) 
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and hence also 

f,2 ItG, kllg dx ~ G f,<o If,<(x)l" dx. (15) 

Letting k tend to infinity in (15) we obtain 

f o IIGII~ dx <- C. f s. If(x)l" dx 

and it follows that  F~6LP(R) and lima_~ [IF~--F~,RIIp=0 for almost  every x. 

As a consequence we also have limk_~ IlqJv*F,,,kllp=il%.Fx[Ip, v = 0 ,  1, 2 . . . .  , for  
a lmost  every x. _An application o f  Lebesgue's theorem on dominated  convergence 

yields 

fo il~,v* Fx.kli~, dx = f e  I1~o.. Fxli~ dx 

and letting k tend to infinity in (14) we obtain  (13). The p r o o f  o f  the theorem is 

complete. 
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