On the integrability of Fourier-Jacobi transforms

Yoshimitsu Hasegawa

1. Introduction

For $\alpha \geqq \beta>-1 / 2$ and $x, \lambda \in[0, \infty)$, the Jacobi function $\varphi_{\lambda}^{(\alpha, \beta)}(x)$ of order (α, β) is defined by

$$
\varphi_{\lambda}^{(\alpha, \beta)}(x)={ }_{2} F_{1}\left((\varrho+i \lambda) / 2,(\varrho-i \lambda) / 2 ; \alpha+1 ;-(\sinh x)^{2}\right),
$$

where ${ }_{2} F_{1}$ denotes the hypergeometric function (see [2, ch. 2]), and where $\varrho=\alpha+\beta+1$ and $i=\sqrt{-1}$. It is known from [4] that

$$
\begin{equation*}
\varphi_{\lambda}^{(\alpha, \beta)}(0)=1,\left.\quad \frac{d}{d x} \varphi_{\lambda}^{(\alpha, \beta)}(x)\right|_{x=0}=0 \tag{1.1}
\end{equation*}
$$

and

$$
\left(\Delta_{\alpha, \beta}(x)\right)^{-1} \frac{d}{d x}\left(\Delta_{\alpha, \beta}(x) \frac{d}{d x} \varphi_{\lambda}^{(\alpha, \beta)}(x)\right)=-\left(\lambda^{2}+\varrho^{2}\right) \varphi_{\lambda}^{(\alpha, \beta)}(x),
$$

where

$$
\Delta_{\alpha, \beta}(x)=2^{2 \varrho}(\sinh x)^{2 \alpha+1}(\cosh x)^{2 \beta+1}
$$

Let $L^{p}\left(d \mu_{\alpha, \beta}\right), 1 \leqq p<\infty$, be the class of all measurable functions $f(x)$ on $[0, \infty)$ such that

$$
\|f\|_{p, \mu_{\alpha, \beta}}=\left\{\int_{0}^{\infty}|f(x)|^{p} d \mu_{\alpha, \beta}(x)\right\}^{1 / p}<\infty,
$$

where

$$
d \mu_{\alpha, \beta}(x)=\frac{\sqrt{2}}{\Gamma(\alpha+1)} \Delta_{\alpha, \beta}(x) d x
$$

We denote $L\left(d \mu_{\alpha, \beta}\right)=L^{1}\left(d \mu_{\alpha, \beta}\right)$ and $\|f\|_{\mu_{\alpha, \beta}}=\|f\|_{1, \mu_{\alpha, \beta}}$. Further, let $L^{\infty}\left(d \mu_{\alpha, \beta}\right)$ be the class of all measurable functions $f(x)$ on $[0, \infty)$ such that

$$
\|f\|_{\infty, \mu_{\alpha, \beta}}=\underset{0 \leqq x<\infty}{\operatorname{ess} \sup }|f(x)|<\infty .
$$

Let $L^{q}\left(d v_{\alpha, \beta}\right), 1 \leqq q<\infty$, be the class of all measurable functions $g(\lambda)$ on $[0, \infty)$ such that

$$
\|g\|_{q, v_{\alpha, \beta}}=\left\{\int_{0}^{\infty}|g(\lambda)|^{q} d v_{\alpha, \beta}(\lambda)\right\}^{1 / q}<\infty,
$$

where

$$
d v_{\alpha, \beta}(\lambda)=\frac{\sqrt{2}}{\Gamma(\alpha+1)}\left|C_{\alpha, \beta}(\lambda)\right|^{-2} d \lambda
$$

and

$$
\begin{equation*}
C_{\alpha, \beta}(\lambda)=\frac{2^{\varrho} \Gamma((1 / 2) i \lambda) \Gamma((1+i \lambda) / 2)}{\Gamma((\varrho+i \lambda) / 2) \Gamma((\varrho+i \lambda) / 2-\beta)} \tag{1.2}
\end{equation*}
$$

(see [6]). For $f \in L\left(d \mu_{\alpha, \beta}\right)$, the Fourier-Jacobi transform of f is defined by

$$
f_{\alpha, \beta}^{\hat{\beta}}(\lambda)=\int_{0}^{\infty} f(x) \varphi_{\lambda}^{(\alpha, \beta)}(x) d \mu_{\alpha, \beta}(x)
$$

and further the inverse transform is given formally by

$$
\int_{0}^{\infty} f_{\alpha, \beta}^{\hat{\beta}}(\lambda) \varphi_{\lambda}^{(\alpha, \beta)}(x) d v_{\alpha, \beta}(\lambda)
$$

(see [3]). Flensted-Jensen and Koornwinder [4] proved that the Fourier--Jacobi transform is injective on $L^{p}\left(d \mu_{\alpha, \beta}\right)$ for $1 \leqq p \leqq 2$.
S. Bernstein proved that if f is periodic with period 2π and satisfies a Lipschitz condition with exponent exceeding $1 / 2$ then the Fourier series of f converges absolutely (see [9, p. 240-241]). The analogous theorems were obtained by C. Ganser [5] and H. Bavinck [1] for the Fourier-Jacobi series and by A. L. Schwartz [8] for the Hankel transforms. We give the analogous theorem for the absolute integrability of the Fourier-Jacobi transforms.

Throughout the paper, the letter M, with or without a suffix, denotes a positive constant, not necessarily the same on each appearance.

2. Preliminaries

There are the integral representations of $\varphi_{\lambda}^{(\alpha, \beta)}(x)$ as follows (see [3]):

$$
\begin{equation*}
\varphi_{\lambda}^{(\alpha, \beta)}(x)=\int_{r=0}^{1} \int_{\psi=0}^{\pi}\left|\cosh x+(\sinh x) r e^{i \psi}\right|^{i \lambda-e} d m_{\alpha, \beta}(r, \psi) \tag{2.1}
\end{equation*}
$$

for $\alpha>\beta>-1 / 2$, where

$$
d m_{\alpha, \beta}(r, \psi)=\frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha-\beta) \Gamma(\alpha+1 / 2)}\left(1-r^{2}\right)^{\alpha-\beta-1} r^{2 \beta+1}(\sin \psi)^{2 \beta} d r d \psi
$$

and

$$
\varphi_{\lambda}^{(\alpha, \alpha)}(x)=\int_{0}^{\pi}\{\cosh 2 x+(\sinh 2 x) \cos \psi\}^{(i \lambda-2 \alpha-1) / 2} d m_{\alpha, \alpha}(\psi)
$$

for $\alpha>-1 / 2(\alpha=\beta)$, where

$$
d m_{\alpha, \alpha}(\psi)=\frac{\Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha+1 / 2)}(\sin \psi)^{2 \alpha} d \psi
$$

The following three equalities are known (see [6, p. 148 and p. 151]).

$$
\begin{equation*}
\frac{d \varphi_{\lambda}^{(\alpha, \beta)}(x)}{d x}=-\frac{1}{4(\alpha+1)}\left(\varrho^{2}+\lambda^{2}\right)(\sinh 2 x) \varphi_{\lambda}^{(\alpha+1, \beta+1)}(x) \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{m} \varphi_{\lambda}^{(\alpha, \beta)}(x)}{d x^{m}}=\left(\varrho^{2}+\lambda^{2}\right) \frac{d^{m-2}}{d x^{m-2}}\left(\frac{\varrho \cosh 2 x+\alpha-\beta}{2(\alpha+1)} \varphi_{\lambda}^{(\alpha+1, \beta+1)}(x)-\varphi_{\lambda}^{(\alpha, \beta)}(x)\right) \tag{2.3}
\end{equation*}
$$

$$
\text { for } m=2,3, \ldots
$$

(put $d^{0} u / d x^{0}=u$), and

$$
\begin{equation*}
\int_{0}^{x} \varphi_{\lambda}^{(\alpha, \beta)}(y) d \mu_{\alpha, \beta}(y)=2^{-7 / 2}(\Gamma(\alpha+2))^{-1}(\sinh 2 x)^{-1} \Delta_{\alpha+1, \beta+1}(x) \varphi_{\lambda}^{(\alpha+1, \beta+1)}(x) \tag{2.4}
\end{equation*}
$$

We define the function $K_{\alpha, \beta}(x, y, z)$ for $x, y, z \geqq 0$ as follows:
(K1) for $\alpha \geqq \beta>-1 / 2$ and $z \nsubseteq(|x-y|, x+y)$,

$$
K_{\alpha, \beta}(x, y, z)=0
$$

(K2) for $\alpha>\beta>-1 / 2$ and $|x-y|<z<x+y$,

$$
K_{\alpha, \beta}(x, y, z)=\frac{2^{(1 / 2)-2 \rho}(\Gamma(\alpha+1))^{2}}{\sqrt{\pi} \Gamma(\alpha-\beta) \Gamma(\beta+1 / 2)}(\sinh x \sinh y \sinh z)^{-2 \alpha} \int_{0}^{\pi}\left\{1-(\cosh x)^{2}\right.
$$

$\left.-(\cosh y)^{2}-(\cosh z)^{2}+2 \cosh x \cosh y \cosh z \cos \psi\right\}_{+}^{\alpha-\beta-1}(\sin \psi)^{2 \beta} d \psi$,
where

$$
\{u\}_{+}= \begin{cases}u & \text { for } u>0 \\ 0 & \text { for } u \leqq 0\end{cases}
$$

(K3) for $\alpha>-1 / 2(\alpha=\beta)$ and $|x-y|<z<x+y$,
$K_{\alpha, \alpha}(x, y, z)=\frac{2^{-2 \alpha-1 / 2}(\Gamma(\alpha+1))^{2}}{\sqrt{\pi} \Gamma(\alpha+1 / 2)}(\sinh 2 x \sinh 2 y \sinh 2 z)^{-2 \alpha}\left\{1-(\cosh 2 x)^{2}\right.$
$\left.-(\cosh 2 y)^{2}-(\cosh 2 z)^{2}+2 \cosh 2 x \cosh 2 y \cosh 2 z\right\}_{+}^{\alpha-1 / 2}$.
The function $K_{\alpha, \beta}(x, y, z)$ is symmetric in the three variables, and further it has the following four properties:

$$
\begin{gather*}
K_{\alpha, \beta}(x, y, z) \geqq 0 \tag{2.5}\\
\varphi_{\lambda,}^{(\alpha, \beta)}(x) \varphi_{\lambda}^{(\alpha, \beta)}(y)=\int_{0}^{\infty} \varphi_{\lambda}^{(\alpha, \beta)}(z) K_{\alpha, \beta}(x, y, z) d \mu_{\alpha, \beta}(z), \tag{2.6}\\
\int_{0}^{\infty} K_{\alpha, \beta}(x, y, z) d \mu_{\alpha, \beta}(z)=1, \tag{2.7}\\
\int_{0}^{\infty} f(z) K_{\alpha, \beta}(0, y, z) d \mu_{\alpha, \beta}(z)=f(y)
\end{gather*}
$$

For $\alpha>\beta>-1 / 2$, Flensted-Jensen and Koornwinder [4] started with (2.1) and obtained (K1) and (K2). It is easy to see that (K1) and (K3) for $\alpha=\beta$ can be obtained by a limit.

Let f be a suitable function on $[0, \infty)$, and let $x \geqq 0$. The generalized translation operation $T_{x}^{(\alpha, \beta)}$ is defined by

$$
T_{x}^{(\alpha, \beta)} f(y)=\int_{0}^{\infty} f(z) K_{\alpha, \beta}(x, y, z) d \mu_{\alpha, \beta}(z)
$$

Obviously $T_{x}^{(\alpha, \beta)} f(y)=T_{y}^{(\alpha, \beta)} f(x)$, and

$$
\begin{equation*}
\left\|T_{x}^{(\alpha, \beta)} f\right\|_{p, \mu_{\alpha, \beta}} \leqq\|f\|_{p, \mu_{\alpha, \beta}} \tag{2.8}
\end{equation*}
$$

for $f \in L^{p}\left(d \mu_{\alpha, \beta}\right), 1 \leqq p \leqq \infty$, and $x \geqq 0$ (see [4]).
For suitable functions f and g on $[0, \infty)$, the convolution product $f * g$ is defined by

$$
\begin{aligned}
& (f * g)_{\alpha, \beta}(x)=\int_{0}^{\infty} f(y) T_{x}^{(\alpha, \beta)} g(y) d \mu_{\alpha, \beta}(y) \\
= & \int_{0}^{\infty} \int_{0}^{\infty} f(y) g(z) K_{\alpha, \beta}(x, y, z) d \mu_{\alpha, \beta}(z) d \mu_{\alpha, \beta}(y)
\end{aligned}
$$

Then the following three properties are obtained (see [4]).

$$
\begin{gather*}
\left\|(f * g)_{\alpha, \beta}\right\|_{\mu_{\alpha, \beta}} \leqq\|f\|_{\mu_{\alpha, \beta}}\|g\|_{\mu_{\alpha, \beta}} \text { for } f, g \in L\left(d \mu_{\alpha, \beta}\right), \tag{2.9}\\
\left\|(f * g)_{\alpha, \beta}\right\|_{\infty, \mu_{\alpha, \beta}} \leqq\|f\|_{\mu_{\alpha, \beta}}\|g\|_{\infty, \mu_{\alpha, \beta}} \tag{2.10}
\end{gather*}
$$

for $f \in L\left(d \mu_{\alpha, \beta}\right)$ and $g \in L^{\infty}\left(d \mu_{\alpha, \beta}\right)$, and

$$
(f * g)_{\hat{\alpha}, \beta}(\lambda)=\hat{f_{\alpha, \beta}}(\lambda) \hat{g_{\alpha, \beta}}(\lambda) \text { for } f, g \in L\left(d \mu_{\alpha, \beta}\right)
$$

Flensted-Jensen [3] showed that the Fourier-Jacobi transform gives an isometric mapping from $L^{2}\left(d \mu_{\alpha, \beta}\right)$ onto $L^{2}\left(d v_{\alpha, \beta}\right)$ as follows:

For $f \in L^{2}\left(d \mu_{\alpha, \beta}\right)$, the Fourier-Jacobi transform $\hat{f_{\alpha, \beta}}(\lambda)$ exists as a limit in $L^{2}\left(d v_{\alpha, \beta}\right)$ of

$$
\int_{0}^{X} f(x) \varphi_{\lambda}^{(\alpha, \beta)}(x) d \mu_{\alpha, \beta}(x)
$$

as $X \rightarrow \infty$, and inversely $f(x)$ exists as a limit in $L^{2}\left(d \mu_{\alpha, \beta}\right)$ of

$$
\int_{0}^{A} f_{\alpha, \beta}^{\wedge}(\lambda) \varphi_{\lambda}^{(\alpha, \beta)}(x) d v_{\alpha, \beta}(\lambda)
$$

as $\Lambda \rightarrow \infty$. Further the Parseval's formula

$$
\begin{equation*}
\left\|f_{\alpha, \beta}^{\wedge}\right\|_{2, v_{\alpha, \beta}}=\|f\|_{2, \mu_{\alpha, \beta}} \tag{2.11}
\end{equation*}
$$

holds. (See also Koornwinder [6, Remark 3].)
For $f \in L\left(d \mu_{\alpha, \beta}\right)$ or $f \in L^{2}\left(d \mu_{\alpha, \beta}\right)$, we have easily, by the symmetric property of $K_{\alpha, \beta}(h, y, z),(2.6),(2.8)(p=1$ or 2$)$ and the above-mentioned results,

$$
\begin{equation*}
\left(T_{h}^{(\alpha, \beta)} f\right)_{\alpha, \beta}^{\wedge}(\lambda)=f_{\alpha, \beta}^{\hat{1}}(\lambda) \varphi_{\lambda}^{(\alpha, \beta)}(h) \quad \text { for } \quad h \geqq 0, \tag{2.12}
\end{equation*}
$$

where the equality holds a.e. λ for $f \in L^{2}\left(d \mu_{\alpha, \beta}\right)$.
We give the following two definitions.

Definition 1. We define $\mathscr{D}^{0} f(x)=f(x)$ on $[0, \infty)$. Also, if $f(x)$ is n-times differentiable on $[0, \infty)$ for a positive integer n, then we define

$$
\mathscr{D}^{m} f(x)=(\sinh 2 x)^{-1} \frac{d \mathscr{D}^{m-1} f(x)}{d x} \text { for } \quad m=1,2, \ldots, n .
$$

Definition 2. Let n be a non-negative integer. If $f(x)$ is n-times differentiable on $[0, \infty)$, and if all its derivatives are uniformly bounded on $[0, \infty)$, then we define the integral moduli of continuity of $f^{(j)}$ for $j=0,1, \ldots, n$ by
where

$$
w_{j}(h ; f, \alpha+n, \beta+n)=\left\|W_{j}(h, \cdot ; f)\right\|_{2, \mu_{\alpha+n}, \beta+n} \text { for } h \geqq 0,
$$

$$
W_{j}(h, x ; f)=\sup \left|f^{(j)}(x)-f^{(j)}(y)\right|
$$

taking the supremum over all y such that $|x-y| \leqq h$. (We put $f^{(0)}(x)=f(x)$.)

3. Results

First we give a theorem as follows:
Theorem 1. Let $\alpha \geqq \beta>-1 / 2, \delta>\alpha+1$ and $n=[\alpha+1]$, where the symbol [$\zeta]$ denotes the greatest integer not exceeding ζ. Let $f \in L^{2}\left(d \mu_{\alpha, \beta}\right)$. For positive integer n, let $f(x)$ be a n-times differentiable function on $[0, \infty)$ such that

$$
\begin{equation*}
\mathscr{D}^{m} f(x)=o\left(x^{-1} e^{-(e+2 m) x}\right) \quad \text { as } \quad x \rightarrow \infty \quad \text { for } \quad m=0,1, \ldots, n-1 \tag{3.1}
\end{equation*}
$$

Moreover, suppose that, for non-negative integer n,

$$
\begin{equation*}
\left\|T_{h}^{(\alpha+n, \beta+n)} \mathscr{D}^{n} f-\mathscr{D}^{n} f\right\|_{2, \mu_{\alpha+n}, \beta+n}=O\left(h^{\delta-n}\right) \quad \text { as } \quad h \rightarrow+0 . \tag{3.2}
\end{equation*}
$$

Then $\hat{f_{\alpha, \beta}} \in L\left(d v_{\alpha, \beta}\right)$.
Remark. For a positive integer n in Theorem 1 , we have easily $f(x) \in L^{2}\left(d v_{\alpha, \beta}\right)$ from the n-times differentiability and (3.1) ($m=0$).

Since the result of Theorem 1 depends on the behavior of $T_{h}^{(\alpha+n, \beta+n)} \mathscr{D}^{n} f$ rather than only on f and its derivatives, we are not entirely satisfied with it. Now,
 its derivatives and their integral moduli of continuity.

Theorem 2. Let $\alpha \geqq \beta>-1 / 2, \delta>\alpha+1$ and $n=[\alpha+1]$. Suppose that $f \in L^{2}\left(d \mu_{\alpha, \beta}\right)$, and that
(3.3) $\quad w_{j}(h ; f, \alpha+n, \beta+n)=O\left(h^{\delta-n}\right)$ as $h \rightarrow+0$ for $j=0,1, \ldots, n$.

For positive integer n, let

$$
\begin{equation*}
f^{(n)}(x)=o\left(x^{-1} e^{-\rho x}\right) \quad \text { as } \quad x \rightarrow \infty . \tag{3.4}
\end{equation*}
$$

Then $\hat{f_{\alpha, \beta}} \in L\left(d v_{\alpha, \beta}\right)$.

4. The proof of Theorem 1

We need the following three lemmas.
Lemma 1. We have the three estimates as follows: For each α, β and for each non-negative integer m there exists a positive constant Ω such that

$$
\begin{equation*}
\left|\frac{d^{m} \varphi_{\lambda}^{(\alpha, \beta)}(x)}{d x^{m}}\right| \leqq \Omega(1+\lambda)^{m}(1+x)^{-e x} \quad \text { for all } \quad x, \lambda \in[0, \infty) . \tag{4.1}
\end{equation*}
$$

For each α, β there exist two positive constants Ω_{1} and Ω_{a} respectively such that

$$
\begin{equation*}
\left|C_{\alpha, \beta}(\lambda)\right| \leqq \Omega_{1} \lambda^{-1}(1+\lambda)^{-\alpha+1 / 2} \quad \text { for all } \lambda>0, \tag{4.2}
\end{equation*}
$$

and such that

$$
\begin{equation*}
\left|C_{\alpha, \beta}(\lambda)\right|^{-1} \leqq \Omega_{2}(1+\lambda)^{\alpha+1 / 2} \text { for all } \lambda \geqq 0 . \tag{4.3}
\end{equation*}
$$

The estimate (4.1) is due to Flensted-Jensen [3, Lemmas 13 and 15]. Since $\overline{C(\lambda)}=C(-\lambda)$ by (1.2), the estimates (4.2) and (4.3) are due to Flensted-Jensen [3, Corollary 9] (see also Koornwinder [6, Lemma 2.2 and Remark 2] for (4.3)).

Lemma 2. For a positive integer n, we have the equality

$$
\begin{equation*}
\mathscr{D}^{n} f(x)=\sum_{j=0}^{n_{1}} A_{j}(x) f^{(n-2 j)}(x)+\sum_{j=0}^{n_{2}} B_{j}(x) f^{(n-2 j-1)}(x), \tag{4.4}
\end{equation*}
$$

where

$$
\begin{gathered}
n_{1}=\frac{n-1}{2} \text { and } n_{2}=\frac{n-3}{2} \geqq 0 \text { for odd } n, \\
n_{1}=n_{2}=\frac{n-2}{2} \text { for even } n,
\end{gathered}
$$

and where

$$
\begin{gathered}
A_{j}(x) \sum_{k=0}^{j} a_{k}(n, j)(\sinh 2 x)^{-n-2 k} \\
B_{j}(x)=\sum_{k=0}^{j} b_{k}(n, j)(\cosh 2 x)(\sinh 2 x)^{-n-2 k-1}
\end{gathered}
$$

the constants $a_{k}(n, j)$ and $b_{k}(n, j)$ depending only on n, j and k. Further we have

$$
A_{j}(x)=\left\{\begin{array}{ll}
O\left(x^{-n-2 j}\right) & \text { as } \quad x \rightarrow+0 \tag{4.5}\\
O\left(e^{-2 n x}\right) & \text { as } \quad x \rightarrow \infty
\end{array} \quad\left(j=0,1, \ldots, n_{1}\right)\right.
$$

and

$$
B_{j}(x)=\left\{\begin{array}{ll}
O\left(x^{-n-2 j-1}\right) & \text { as } \quad x \rightarrow+0 \tag{4.6}\\
O\left(e^{-2 n x}\right) & \text { as } \quad x \rightarrow \infty .
\end{array} \quad\left(j=0,1, \ldots, n_{2}\right) .\right.
$$

Proof. We can easily prove (4.4) by induction, and so we omit it. The estimates (4.5) and (4.6) are trivial from

$$
\begin{array}{lll}
\sinh 2 x=O(x) & \text { and } & \cosh 2 x=O(1)
\end{array} \quad \text { as } \quad x \rightarrow+0, ~ 子 \quad \cosh 2 x=O\left(e^{2 x}\right) \quad \text { as } \quad x \rightarrow \infty .
$$

Thus Lemma 2 is proved.
Lemma 3. Let n be a positive integer. Suppose that $f(x)$ is n-times differentiable on $[0, \infty)$ and satisfies (3.1). Then $f \in L^{2}\left(d \mu_{\alpha, \beta}\right)$ and

$$
\begin{equation*}
\hat{f_{\alpha, \beta}}(\lambda)=(-1)^{n} 2^{-4 n}\left(\mathscr{D}^{n} f\right)_{\alpha+n, \beta+n}^{\hat{2}}(\lambda) \quad \text { a.e. } \tag{4.7}
\end{equation*}
$$

Proof. From Remark, we have $f \in L^{2}\left(d \mu_{\alpha, \beta}\right)$. For $n \geqq 2$, since $f^{(m)}(x), m=$ $1,2, \ldots, n-1$, are uniformly bounded on $[0, \infty)$ by assumption, we obtain, from Lemma 2 (replace n by m),

$$
\begin{equation*}
\mathscr{D}^{m} f(x)=O\left(x^{-2 m+1}\right) \quad \text { as } \quad x \rightarrow+0 \quad \text { for } \quad m=1,2, \ldots, n-1 \tag{4.8}
\end{equation*}
$$

Integrating repeatedly by parts and using (2.4), we get, for $X>0$,

$$
\begin{gathered}
\int_{0}^{X} f(x) \varphi_{\lambda}^{(\alpha, \beta)}(x) d \mu_{\alpha, \beta}(x)=\sum_{m=0}^{n-1} \frac{(-1)^{m}}{2^{4 m+7 / 2} \Gamma(\alpha+m+2)} \\
\times\left[\left(\mathscr{D}^{m} f(x)\right)(\sinh 2 x)^{-1} \varphi_{\lambda}^{(\alpha+m+1, \beta+m+1)}(x) \Delta_{\alpha+m+1, \beta+m+1}(x)\right]_{0}^{X} \\
\quad+(-1)^{n} 2^{-4 n} \int_{0}^{X}\left(\mathscr{D}^{n} f(x)\right) \varphi_{\lambda}^{(\alpha+n, \beta+n)}(x) d \mu_{\alpha+n, \beta+n}(x)
\end{gathered}
$$

From the continuity of $f(x)$, (4.1) (for $m=0$), (4.8) and (3.1), the finite series on the right-hand side is $o(1)$ as $X \rightarrow \infty$. Hence we have (4.7), since $f_{\alpha, \beta}^{\wedge} \in L^{2}\left(d v_{\alpha, \beta}\right)$. Thus Lemma 3 is proved.

Proof of Theorem 1. Applying (2.11) and then (2.12) to the left-hand side of (3.2), we have

$$
\begin{equation*}
\int_{0}^{\infty}\left|\left(1-\varphi_{\lambda}^{(\alpha+n, \beta+n)}(h)\right)\left(\mathscr{D}^{n} f\right)_{\alpha+n, \beta+n}(\lambda)\right|^{2} d v_{\alpha+n, \beta+n}(\lambda)=O\left(h^{2 \delta-2 n}\right) \text { as } h \rightarrow+0 \tag{4.9}
\end{equation*}
$$

We get, by (1.1) and (2.3),

$$
\begin{equation*}
\left.\frac{d^{2} \varphi_{\lambda}^{(\alpha+n, \beta+n)}(x)}{d x^{2}}\right|_{x=0}=-\frac{(\varrho+2 n)^{2}+\lambda^{2}}{2(\alpha+n+1)},\left.\quad \frac{d^{3} \varphi_{\lambda}^{(\alpha+n, \beta+n)}(x)}{d x^{3}}\right|_{x=0}=0 \tag{4.10}
\end{equation*}
$$

When we put $m=4$ in (4.1), there exists a positive constant Ω_{0} depending only on α, β and n such that

$$
\begin{equation*}
\left|\frac{d^{4} \varphi_{\lambda}^{(\alpha+n, \beta+n)}(x)}{d x^{4}}\right| \leqq \Omega_{0} \lambda^{4} \quad \text { for all } \quad x \geqq 0 \quad \text { and all } \quad \lambda \geqq 1 . \tag{4.11}
\end{equation*}
$$

By Maclaurin's theorem, (1.1) and (4.10), there exists a positive number $\theta<1$ such that

$$
\varphi_{\lambda}^{(\alpha+n, \beta+n)}(h)=1-\frac{\left\{(\varrho+2 n)^{2}+\lambda^{2}\right\} h^{2}}{4(\alpha+n+1)}+\left.\frac{h^{4}}{24} \cdot \frac{d^{4} \varphi_{\lambda}^{(\alpha+n, \beta+n)}(u)}{d u^{4}}\right|_{u=\theta h} .
$$

Now we put, for $s=1,2, \ldots$,

$$
h=2^{-s} \xi, \quad \xi=\frac{1}{2} \sqrt{\frac{3}{(\alpha+n+1) \Omega_{0}}} \quad \text { and } \quad 2^{s-1} \leqq \lambda \leqq 2^{s} .
$$

Then, by (4.11),

$$
\begin{aligned}
1- & \varphi_{\lambda}^{(\alpha+n, \beta+n)}\left(2^{-s} \xi\right) \geqq \frac{\left\{(\varrho+2 n)^{2}+\lambda^{2}\right\} 2^{-2 s} \xi^{2}}{4(\alpha+n+1)}-\frac{2^{-4 s} \xi^{4}}{24} \Omega_{0} \lambda^{4} \\
& \geqq\left(\frac{1}{2(\alpha+n+1)}-\frac{\Omega_{0} \xi^{2}}{3}\right) \frac{\xi^{2}}{8}=\frac{3}{128(\alpha+n+1)^{2} \Omega_{0}}>0 .
\end{aligned}
$$

Hence, from (4.9),

$$
\int_{2^{s-1}}^{2^{s}}\left|\left(\mathscr{D}^{n} f\right)_{\alpha+n, \beta+n}(\lambda)\right|^{2} d v_{\alpha+n, \beta+n}(\lambda)=O\left(2^{2 n s-2 \delta s}\right)
$$

Thus, by Schwarz's inequality, (4.2), (4.3) and Lemma 3, we have

$$
\begin{gather*}
\int_{2^{s-1}}^{2^{s}}\left|f_{\alpha, \beta}^{\sim}(\lambda)\right| d v_{\alpha, \beta}(\lambda) \leqq \frac{2^{1 / 4}(\Gamma(\alpha+n+1))^{1 / 2}}{\Gamma(\alpha+1)} \tag{4.12}\\
\times\left\{\int_{2^{s-1}}^{2^{s}}\left|C_{\alpha+n, \beta+n}(\lambda)\right|^{2}\left|C_{\alpha, \beta}(\lambda)\right|^{-4} d \lambda\right\}^{1 / 2}\left\{\int_{2^{s-1}}^{2^{s}}\left|f_{\alpha, \beta}^{\hat{\beta}}(\lambda)\right|^{2} d v_{\alpha+n, \beta+n}(\lambda)\right\}^{1 / 2} \\
\leqq M\left\{\int_{2^{s-1}}^{2^{s}} \lambda^{-2(\alpha+n+1 / 2)+4(\alpha+1 / 2)} d \lambda\right\}^{1 / 2}\left\{\int_{2^{s-1}}^{2^{s}}\left|\left(\mathscr{D}^{n} f\right)_{\alpha+n, \beta+n}^{\hat{2}}(\lambda)\right|^{2} d v_{\alpha+n, \beta+n}(\lambda)\right\}^{1 / 2} \\
\leqq M_{1} 2^{(\alpha-n+1) s+(n-\delta) s}=M_{1} 2^{-(\delta-\alpha-1) s} .
\end{gather*}
$$

Since $f \in L^{2}\left(d \mu_{\alpha, \beta}\right)$, we obtain, by Schwarz's inequality, (4.3) and (2.11),

$$
\begin{gathered}
\int_{0}^{1}\left|f_{\alpha, \beta}^{\hat{}}(\lambda)\right| d v_{\alpha, \beta}(\lambda) \leqq\left(\int_{0}^{1}\left|f_{\alpha, \beta}^{\hat{}}(\lambda)\right|^{2} d v_{\alpha, \beta}(\lambda)\right)^{1 / 2}\left(\int_{0}^{1} d v_{\alpha, \beta}(\lambda)\right)^{1 / 2} \\
\leqq M\left\|f_{\alpha, \beta}^{\hat{2}}\right\|_{2, v_{\alpha, \beta}}=M\|f\|_{2, \mu_{\alpha, \beta}} .
\end{gathered}
$$

Now, by this and (4.12), we have

$$
\left\|\hat{f}_{\alpha, \beta}^{\hat{2}}\right\|_{v_{\alpha, \beta}}=\left(\int_{0}^{1}+\sum_{s=1}^{\infty} \int_{2^{s-1}}^{2^{s}}\right)\left|f_{\alpha, \beta}^{\hat{1}}(\lambda)\right| d v_{\alpha, \beta}(\lambda) \leqq M_{1}+M_{2} \sum_{s=1}^{\infty} 2^{-(\delta-\alpha-1) s}<\infty .
$$

Thus Theorem 1 is proved.

5. Proof of Theorem 2

We need the following two lemmas.
Lemma 4. Suppose that $g(x)$ is an infinitely differentiable function on $[0, \infty)$ with compact support. Then, for each α and $\beta, g_{\alpha, \beta}^{\wedge}(\lambda)$ is an analytic function on $[0, \infty)$ and there exist positive constants $N_{s}(s=0,1,2, \ldots)$ such that

$$
\left|g_{\alpha, \beta}^{\hat{a}}(\lambda)\right| \leqq N_{s}(1+\lambda)^{-s}
$$

for all $\lambda \in[0, \infty)$ and all $s=0,1, \ldots$.
Lemma 4 is due to Flensted-Jensen [3] (or Koornwinder [6]).
Lemma 5. Let $A_{j}(x)\left(j=0,1, \ldots, n_{1}\right)$ and $B_{j}(x)\left(j=0,1, \ldots, n_{2}\right)$ be defined as in Lemma 2, and let $0 \leqq h \leqq 1 / 2$. Then we have the following estimates:

$$
\begin{align*}
& \left|A_{j}(x)-A_{j}(y)\right| \leqq M h \sum_{k=0}^{j} \sum_{m=0}^{n+2 k-1} x^{-m-1} y^{m-n-2 k} \tag{5.1}\\
& \text { for } \quad 0<x, y \leqq 2 \quad \text { and } \quad|x-h| \leqq y \leqq x+h
\end{align*}
$$

$$
\begin{equation*}
\left|A_{j}(x)-A_{j}(y)\right| \leqq M h \tag{5.2}
\end{equation*}
$$

$$
\text { for } 1 / 2 \leqq x \leqq 1,1 \leqq y \leqq 3 / 2 \text { and } x-h \leqq y \leqq x+h \text {, }
$$

$$
\begin{gather*}
\left|A_{j}(x)-A_{j}(y)\right| \leqq M h \sum_{k=0}^{j} \sum_{m=0}^{n+2 k-1} e^{-(2 m+1) x+(2 m-2 n-4 k+1) y} \tag{5.3}\\
\quad \text { for } \quad x \geqq 1 / 2, y \geqq 1 \quad \text { and } \quad x-h \leqq y \leqq x+h,
\end{gather*}
$$

and further

$$
\begin{gathered}
\left|B_{j}(x)-B_{j}(y)\right| \leqq M h \sum_{k=0}^{j}\left(\sum_{m=0}^{n+2 k} x^{-m-1} y^{m-n-2 k-1}+y^{-n-2 k-1}\right) \\
\text { for } 0<x, y \leqq 2 \text { and }|x-h| \leqq y \leqq x+h, \\
\left|B_{j}(x)-B_{j}(y)\right| \leqq M h \quad \text { for } 1 / 2 \leqq x \leqq 1, \quad 1 \leqq y \leqq 3 / 2 \text { and } x-h \leqq y \leqq x+h, \\
\left|B_{j}(x)-B_{j}(y)\right| \leqq M h \sum_{k=0}^{j}\left(\sum_{m=0}^{n+2 k} e^{-(2 m-1) x+(2 m-2 n-4 k-1) y}+e^{x-(2 n+4 k+1) y}\right) \\
\text { for } x \leqq 1 / 2, y \leqq 1 \text { and } x-h \leqq y \leqq x+h,
\end{gathered}
$$

where the constants M depend only on n.
Proof. The estimates (5.1)-(5.3) are easily obtained from

$$
\begin{aligned}
& \quad\left|A_{j}(x)-A_{j}(y)\right| \leqq M \sum_{k=0}^{j}\left|(\sinh 2 x)^{-n-2 k}-(\sinh 2 y)^{-n-2 k}\right| \\
& =M\left|(\sinh 2 x)^{-1}-(\sinh 2 y)^{-1}\right| \sum_{k=0}^{j} \sum_{m=0}^{n+2 k-1}(\sinh 2 x)^{-m}(\sinh 2 y)^{m-n-2 k+1} \\
& \leqq M_{1}|\sinh (x-y)| \cosh (x+y) \sum_{k=0}^{j} \sum_{m=0}^{n+2 k-1}(\sinh 2 x)^{-m-1}(\sinh 2 y)^{m-n-2 k} .
\end{aligned}
$$

Also, the three estimates for $\left|B_{j}(x)-B_{j}(y)\right|$ are clear from

$$
\begin{gathered}
\left|B_{j}(x)-B_{j}(y)\right| \leqq M \sum_{k=0}^{j}\left\{\cosh 2 x\left|(\sinh 2 x)^{-n-2 k-1}-(\sinh 2 y)^{-n-2 k-1}\right|\right. \\
\left.+|\cosh 2 x-\cosh 2 y|(\sinh 2 y)^{-n-2 k-1}\right\} \\
\leqq M_{1}|\sinh (x-y)| \sum_{k=0}^{j}\left\{\sum_{m=0}^{n+2 k} \cosh (x+y) \cosh 2 x(\sinh 2 x)^{-m-1}(\sinh 2 y)^{m-n-2 k-1}\right. \\
\left.+\sinh (x+y)(\sinh 2 y)^{-n-2 k-1}\right\} .
\end{gathered}
$$

Thus Lemma 5 is proved.
Proof of Theorem 2. It is sufficient to show that the assumptions of Theorem 2 satisfy those of Theorem 1 and especially (3.1) and (3.2).

For positive integer n, by integrating repeatedly (3.4) on [x, ∞) for sufficiently large x, we have

$$
\begin{equation*}
f^{(m)}(x)=o\left(x^{-1} e^{-p x}\right) \quad \text { as } \quad x \rightarrow \infty \text { for } m=0,1, \ldots, n-1 \tag{5.4}
\end{equation*}
$$

Hence, from Lemma 2, we get (3.1).
Next, we show that (3.2) is obtained by the assumptions. From (3.3), we remark that $f^{(j)}(x), j=0,1, \ldots, n$, are uniformly bounded on $[0, \infty)$. Let $g(x)$ be an infinitely differentiable function on $[0, \infty)$ with compact support such that

$$
g^{(j)}(0)=f^{(j)}(0) \text { for } j=0,1, \ldots, n .
$$

If we put $s=[2 \alpha+1]+2$ in Lemma 4 , then $g_{\alpha, \beta}^{\wedge} \in L\left(d v_{\alpha, \beta}\right)$ by (4.3). Now, $f_{\alpha, \beta}^{\wedge} \in$ $L\left(d v_{\alpha, \beta}\right)$ if and only if $(f-g)_{\alpha, \beta}^{\wedge} \in L\left(d v_{\alpha, \beta}\right)$. Thus we may assume

$$
f^{(j)}(0)=0 \quad \text { for } \quad j=0,1, \ldots, n .
$$

Hence, applying Maclaurin's theorem to the case $n \neq 0$,

$$
\begin{equation*}
\left|f^{(j)}(x)\right| \leqq M x^{n-j} \quad \text { for } \quad x \geqq 0 \quad \text { and } \quad j=0,1, \ldots, n \quad(n \geqq 0) . \tag{5.5}
\end{equation*}
$$

By Schwarz's inequality and (2.7), we have

$$
\begin{equation*}
\left\|T_{h}^{(\alpha+n, \beta+n)} \mathscr{D}^{n} f-\mathscr{D}^{n} f\right\|_{2, \mu_{\alpha+n, \beta+n}} \tag{5.6}
\end{equation*}
$$

$$
\leqq\left(\int_{0}^{\infty} \int_{0}^{\infty}\left|\mathscr{D}^{n} f(y)-\mathscr{D}^{n} f(x)\right|^{2} K_{\alpha+n, \beta+n}(h, x, y) d \mu_{\alpha+n, \beta+n}(y) d \mu_{\alpha+n, \beta+n}(x)\right)^{1 / 2}
$$

First we consider the case $-1 / 2<\alpha<0$. Then $n=0$. Now, from (5.6), (K1), (2.10) and (3.3).

$$
\begin{gathered}
\left\|T_{h}^{(x, \beta)} f-f\right\|_{2, \mu_{\alpha, \beta}} \leqq\left(\int_{0}^{\infty} \int_{|x-h|}^{x+h}|f(y)-f(x)|^{2} K_{\alpha, \beta}(h, x, y) d \mu_{\alpha, \beta}(y) d \mu_{\alpha, \beta}(x)\right)^{1 / 2} \\
\leqq\left(\int_{0}^{\infty} \int_{0}^{\infty} W_{0}(h, x ; f)^{2} K_{\alpha, \beta}(h, x, y) d \mu_{\alpha, \beta}(y) d \mu_{\alpha, \beta}(x)\right)^{1 / 2} \\
=w_{0}(h ; f, \alpha, \beta)=O\left(h^{\delta}\right) \quad \text { as } \quad h \rightarrow+0
\end{gathered}
$$

Thus (3.2) is obtained for $-1 / 2<\alpha<0$.

Secondly, we consider the case $\alpha \geqq 0$. Then n is a positive integer. Without loss of generality, we may assume

$$
\alpha+1<\delta \leqq n+1, \quad 0<h \leqq 1 / 2 .
$$

Hereafter, for the sake of simplicity, we write
and

$$
\mu_{\alpha+n, \beta+n}=\mu, \quad K_{x+n, \beta+n}(h, x, y)=K(h, x, y)
$$

$$
T_{h}^{(\alpha+n, \beta+n)}=T_{h}, \quad w_{j}(h ; f, \alpha+n, \beta+n)=w_{j}(h ; f)
$$

We have, from (5.6), (4.4) and Minkowski's inequality,

$$
\begin{equation*}
\left\|T_{h} \mathscr{D}^{n} f-\mathscr{D}^{n} f\right\|_{2, \mu} \leqq \sum_{j=0}^{n_{1}}\left(\int_{0}^{\infty} \int_{0}^{\infty} \mid A_{j}(x) f^{(n-2 j)}(x)\right. \tag{5.7}
\end{equation*}
$$

$$
\left.-\left.A_{j}(y) f^{(n-2 j)}(y)\right|^{2} K(h, x, y) d \mu(y) d \mu(x)\right)^{1 / 2}
$$

$$
+\sum_{j=0}^{n_{2}}\left(\int_{0}^{\infty} \int_{0}^{\infty}\left|B_{j}(x) f^{(n-2 j-1)}(x)-B_{j}(y) f^{(n-2 j-1)}(y)\right|^{2} K(h, x, y) d \mu(y) d \mu(x)\right)^{1 / 2}
$$

$$
=\sum_{j=0}^{n_{1}} G_{j}(h)+\sum_{j=0}^{n_{2}} H_{j}(h)
$$

say. Further, from Minkowski's inequality,

$$
\begin{align*}
& G_{j}(h)^{2} \leqq \int_{0}^{\infty} \int_{0}^{\infty}\left|A_{j}(x)\right|^{2}\left|f^{(n-2 j)}(x)-f^{(n-2 j)}(y)\right|^{2} K(h, x, y) d \mu(y) d \mu(x) \tag{5.8}\\
&+ \int_{0}^{\infty} \int_{0}^{\infty}\left|A_{j}(x)-A_{j}(y)\right|^{2}\left|f^{(n-2 j)}(y)\right|^{2} K(h, x, y) d \mu(y) d \mu(x)= \\
& P_{j}(h)+Q_{j}(h) \\
&\left(j=0,1, \ldots, n_{1}\right)
\end{align*}
$$

say.
We put

$$
\begin{equation*}
P_{j}(h)=\int_{0}^{1} \int_{0}^{\infty}+\int_{1}^{\infty} \int_{0}^{\infty}=P_{j, 1}(h)+P_{j, 2}(h) \quad\left(j=0,1, \ldots, n_{1}\right) . \tag{5.9}
\end{equation*}
$$

We estimate $P_{j, 1}(h)$. By (K1), (2.9), (4.5) and (3.3), we get, for $j=0,1, \ldots, n_{1}$,

$$
\begin{gather*}
P_{j, 1}(h) \leqq \int_{0}^{1} \int_{0}^{\infty}\left|A_{j}(x)\right|^{2} W_{n-2 j}(h, y ; f)^{2} K(h, x, y) d \mu(y) d \mu(x) \tag{5.10}\\
\leqq w_{n-2 j}(h ; f)^{2} \int_{0}^{1}\left|A_{j}(x)\right|^{2} d \mu(x) \\
=O\left(h^{2(\delta-n)}\right) \int_{0}^{1} O\left(x^{-2 n-4 j}\right) O\left(x^{2(\alpha+n)+1}\right) d x=O\left(h^{2(\delta-n)}\right) \text { as } h \rightarrow+0 .
\end{gather*}
$$

Secondly, we estimate $P_{j, 2}(h)$. Since $A_{j}(x)$ is uniformly bounded on $[1, \infty)$ from Lemma 2, we have, by the symmetric property of $K(h, x, y),(K 1),(2.10)$ and (3.3),

$$
\begin{gathered}
P_{j, 2}(h) \leqq \int_{1}^{\infty} \int_{0}^{\infty} O(1) W_{n-2 j}(h, x ; f)^{2} K(h, x, y) d \mu(y) d \mu(x) \\
\leqq O(1) w_{n-2 j}(h ; f)^{2}=O\left(h^{2(\delta-n)}\right) \quad \text { as } \quad h \rightarrow+0 .
\end{gathered}
$$

Thus, from this, (5.10) and (5.9),

$$
\begin{equation*}
P_{j}(h)=O\left(h^{2(\delta-n)}\right) \quad \text { as } \quad h \rightarrow+0 \text { for } j=0,1, \ldots, n_{1} . \tag{5.11}
\end{equation*}
$$

We set

$$
\begin{equation*}
Q_{j}(h)=\int_{0}^{1} \int_{0}^{1}+\int_{0}^{1} \int_{1}^{\infty}+\int_{1}^{\infty} \int_{0}^{1}+\int_{1}^{\infty} \int_{1}^{\infty}=\sum_{s=1}^{4} Q_{j, s}(h) \quad\left(j=0,1, \ldots, n_{1}\right) . \tag{5.12}
\end{equation*}
$$

We estimate $Q_{j, 1}(h)$. By Minkowski's inequality, (5.5), (5.1) and (2.9),

$$
Q_{j, 1}(h) \leqq M h^{2} \sum_{k=0}^{j} \sum_{m=0}^{n+2 k-1} \int_{0}^{1} \int_{0}^{1} y^{4 j} x^{-2 m-2} y^{2 m-2 n-4 k} K(h, x, y) d \mu(y) d \mu(x)
$$

$$
\begin{gather*}
\leqq M h^{2} \sum_{k=0}^{j} \sum_{m=0}^{n+2 k-1} \int_{0}^{1} x^{-2 m-2} d \mu(x) \int_{0}^{1} y^{4 j+2 m-2 n-4 k} d \mu(y) \tag{5.13}\\
=O\left(h^{2}\right)=O\left(h^{2(\delta-n)}\right) \text { as } h \rightarrow+0
\end{gather*}
$$

We estimate $Q_{j, 2}(h)$. By the symmetric property of $K(h, x, y)$ and (K1), we have $K(h, x, y)=0$ unless $y-h<x$ or $y<x+h$. Moreover $f^{(n-2 j)}(y), j=0,1, \ldots, n_{1}$, are uniformly bounded on $[0, \infty$). Hence, from (5.2) and (2.9),

$$
\begin{gather*}
Q_{j, 2}(h) \leqq M h^{2} \int_{1 / 2}^{1} \int_{1}^{3 / 2} K(h, x, y) d \mu(y) d \mu(x) \tag{5.14}\\
\leqq M h^{2} \int_{1 / 2}^{1} d \mu(x) \int_{1}^{3 / 2} d \mu(y)=O\left(h^{2}\right)=O\left(h^{2(\delta-n)}\right) \quad \text { as } \quad h \rightarrow+0 .
\end{gather*}
$$

Similarly we get

$$
\begin{equation*}
Q_{j, 3}(h)=O\left(h^{2(\delta-n)}\right) \quad \text { as } \quad h \rightarrow+0 \tag{5.15}
\end{equation*}
$$

Lastly, we estimate $Q_{j, 4}(h)$. By Minkowski's inequality, (5.3), (5.4), (3.4), (K1) and (2.10), we have

$$
\begin{gather*}
Q_{j, 4}(h) \leqq M h^{2} \sum_{k=0}^{j} \sum_{m=0}^{n+2 k-1} \int_{1}^{\infty} \int_{y-h}^{y+h} O\left(y^{-2} e^{-2 e y}\right) \tag{5.16}\\
\times e^{-2(2 m+1) x+2(2 m-2 n-4 k+1) y} K(h, x, y) d \mu(x) d \mu(y) \\
\leqq M h^{2} \sum_{k=0}^{j} \int_{1}^{\infty} \int_{y-h}^{y+h} O\left(y^{-2} e^{-2(e+2 n+4 k) y}\right) K(h, x, y) d \mu(x) d \mu(y) \\
\leqq M h^{2} \sum_{k=0}^{j} \int_{1}^{\infty} O\left(y^{-2} e^{-2(e+2 n+4 k) y}\right) d \mu(y) \\
=O\left(h^{2}\right)=O\left(h^{2(\delta-n)}\right) \text { as } h \rightarrow+0
\end{gather*}
$$

Thus, by (5.12)-(5.16),

$$
Q_{j}(h)=O\left(h^{2(\delta-n)}\right) \quad \text { as } \quad h \rightarrow+0 \text { for } j=0,1, \ldots, n_{1}
$$

From this, (5.11) and (5.8), we have

$$
\begin{equation*}
G_{j}(h)=O\left(h^{\delta-n}\right) \text { as } h \rightarrow+0 \text { for } j=0,1, \ldots, n_{1} \tag{5.17}
\end{equation*}
$$

Using the three estimates of $\left|B_{j}(x)-B_{j}(y)\right|$ of Lemma $4\left(j=0,1, \ldots, n_{2}\right)$ and so on, we get similarly

$$
H_{j}(h)=O\left(h^{\delta-n}\right) \text { as } h \rightarrow+0 \text { for } j=0,1, \ldots, n_{2} .
$$

Hence, combining this with (5.17) and (5.7), we obtain (3.2). Thus Theorem 2 is proved.

References

1. Bavinck, H., A special class of Jacobi series and some applications. J. Math. Anal. Appl. 37 (1972), 767-797.
2. Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G., Higher transcendental functions, Vol. I. McGraw-Hill, New York, 1953.
3. Flensted-Jensen, M., Paley-Wiener type theorems for a differential operator connected with symmetric spaces. Ark. Mat. 10 (1972), 143-162.
4. Flensted-Jensen, M. and Koornwinder, T., The convolution structure for Jacobi function expansions. Ark. Mat. 11 (1973), 245-262.
5. Ganser, C., Modulus of continuity conditions for Jacobi series. J. Math. Anal. Appl. 27 (1969), 575-600.
6. Koornwinder, T., A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat. 13 (1975), 145-159.
7. Luke, Y. L., The special functions and their approximations, Vol. I. Academic Press, New York, 1969.
8. Schwartz, A. L., On the absolute integrability of Hankel transforms: An analog to Bernstein's theorem. J. Math. Anal. Appl. 34 (1971), 202-213.
9. Zygmund, A., Trigonometric series, Vol. I. Cambridge Univ. Press, Cambridge, 1959.

Received April 14. 1977
Yoshimitsu Hasegawa
Department of Mathematics
Faculty of General Education Hirosaki University
Hirosaki, Aomori-ken Japan

