On the integrability of Fourier—Jacobi transforms

Yoshimitsu Hasegawa

1. Introduction

For a=f>—1/2 and x, A€[0, <), the Jacobi function ¢*#(x) of order (x, f)
is defined by
@§P (x) = [y ((e+ih)/2, (e—iM)2; a+1; —(sinh x)?),

where ,F; denotes the hypergeometric function (see [2, ch. 2]), and where ¢=a+f+1
and i=)—1. It is known from [4] that

1.1) PEPO) =1, = P (g =0
and

(4000 - (4es () Lo () =2+ NP (),
where

4, 5(x) = 2%(sinh x)***+*(cosh x)*#+1,

Let L?(du, ), 1=p<-<=, be the class of all measurable functions f(x) on [0, =)
such that

"f”p,”a’ﬁ = {f: If(x)lp dﬂg,p(x)}l/p<°°,
dﬂa.ﬂ(x) = "1%3_‘1—)‘ Aa,ﬂ(x) dx.

We denote L(dp, g)=IL*(du, ) and | f] wa,p =1 N, ,- Further, let L= (da, )
be the class of all measurable functions f(x) on [0, ) such that

where

Voo, p = ess sup [F(0)| <eo.

Sx <o

Let L%(dv,p), 1=g<<, be the class of all measurable functions g(1) on [0, <)
such that

il = (/e O <=
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where
dva’,;(l) = —I,—(Z%)— lCayﬁ(l)l“zdl
and
2D iINT((1+iD)2)
(1.2 Cas D = TGN (e T iN2—F)

(see [6]). For feL(du, ), the Fourier—Jacobi transform of f is defined by

for® = [T S0P (x) dptg 5 (),

and further the inverse transform is given formally by

[ 2@ () dv,, 5 (3)

(see [3]). Flensted—Jensen and Koornwinder [4] proved that the Fourier—Jacobi
transform is injective on L?(dy, ;) for 1=p=2.

S. Bernstein proved that if f is periodic with period 2n and satisfies a Lipschitz
condition with exponent exceeding 1/2 then the Fourier series of f converges absolutely
(see [9, p. 240—241]). The analogous theorems were obtained by C. Ganser [5]
and H. Bavinck [1] for the Fourier—Jacobi series and by A. L. Schwartz [8] for
the Hankel transforms. We give the analogous theorem for the absolute integrability
of the Fourier—Jacobi transforms.

Throughout the paper, the letter M, with or without a suffix, denotes a positive
constant, not necessarily the same on each appearance.

2. Preliminaries

There are the integral representations of ¢%™#(x) as follows (see [3]):
1 n
«, ) - : i |id—
2.1 958 (x) fr=0 fw=0 lcosh x+4-(sinh x) re™|*~2dm, 4(r, ¥)

for a=p=—1/2, where

dma,ﬁ(r’ 'ﬁ) = 2r(a+1)

Var(«—B)I(x+1/2)

(1 =r?y-F-1p28+1(sin \2P dr i,
and
o9 (x) = f : {cosh 2x +(sinh 2x) cos Y }FA=2=V/2dm ()

for a=>—1/2 (a=p), where

dm, ) = —— Ot

Varl(x+1/2) (singy=dy.
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The following three equalities are known (see [6, p. 148 and p. 151]).

do$P(x) _

—_ 2 2 T at+1,8+1)
2.2) T TPERY) (e2+23) (sinh 2x) 9§ (x),
dm‘PS.a'm(x) (n24 12 dn- (QCOShZX-}—OC—B (@+LB+1) (1) __ @ B) )

for m=2,3,...
(put d°u/dx"=u), and

(2.4) f: P8P (y) dpty, 5 (¥) = 2772(I (2+2)) 2 (sinh 2x) "y 41, 541 (6) 97V (x).

We define the function KX, ;(x,y,z) for x,y,z=0 as follows:

(K1) for a = f=>—1/2 and z¢([x—y|, x+y),

K, 5(x,7,2) =0
(K2) for = f>—1/2 and |x—y|<z<x+Y,
202 —2(P (g4 1))?

Val(a—B)T(B+1/2)
—(cosh y)2—(cosh z)2+2 cosh x cosh y cosh z cos y}%# 1 (sin ) dyy,

K, p(x,y,2)= (sinh x sinh y sinh z)~2* f : {1 —(cosh x)?

where
u for u=0

fud :{0 for u=0.
(K3) for a>—12(a=p) and |x—y|<z<x+y,
2-2-12(F (g 4+ 1))
Val(e+1/2)
—(cosh 2y)2—(cosh 2z)?+2 cosh 2x cosh 2y cosh 2z}%~1/2,

K, (x, y,2) = (sinh 2x sinh 2y sinh 2z)~2*{1 —(cosh 2x)?

The function K, 4z(x, v, z) is symmetric in the three variables, and further it has
the following four properties:

2.5) K, s(x,y,2) =0,
(2.6) OEP DD () = [ 9P (DK, 5%, ¥, 2) dpt, p(2),
@ I Kap Gy, Db 4(2) = 1,

[ S@Kep (0, v, Ddp, 5(2) = F).

For a=p> —1/2, Flensted—Jensen and Koornwinder [4] started with (2.1) and
obtained (K1) and (K2). It is easy to see that (K1) and (K3) for a=f can be ob-
tained by a limit.
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Let f be a suitable function on [0, =), and let x=0. The generalized translation
operation T&# is defined by

TEPF0) = [ F@Kep(x, ¥, 2) ditg 5 (2).
Obviously T&P f(y»)=T=P f(x), and

2.8) TP £ i, 5 = 1 e, 5

for feLP(du,,), 1=p=c, and x=0 (see [4]).
For suitable functions f and g on [0, =), the convolution product fxg is
defined by

(F*8us ) = [ SN TEPg(3) dpt 4
= 77 f0) 8 Kep, 3, 2)dity 5(2) it 5 0.

Then the following three properties are obtained (see [4]).

2.9 IO * 8)e, plle 5 = 1S e, 518N, fOT f, g€ L{dity,p),
(2.10) I * 8)a,pll o, e, 5 = 1 f i, s 18l o, e,
for feL(du,,,) and g€ L>(dy, p), and

(F* 8)e, (D) =fo,p(Ngz,p(D) for f, g€ L(dp,,p)-

Flensted—Jensen [3] showed that the Fourier—Jacobi transform gives an
isometric mapping from L%(du, g) onto L2(dv, ) as follows:

For fel*(du, ), the Fourier—Jacobi transform f,?ﬁ (A) exists as a limit in
L*(dv, g) of
e
J7 F05P () dite, 5 (%)

as X—oo, and inversely f(x) exists as a limit in L*(dy, g) of
4 .
Jo 12sMefP () dve 5 ()
as A—oo. Further the Parseval’s formula

(2.11) 1o gllz,ve, s = 1SNz, e,
holds. (See also Koornwinder [6, Remark 3].)
For f¢L(du,s) or feL?(dy,,), we have easily, by the symmetric property
of K, 4(h,y,2), (2.6), (2.8) (p=1 or 2) and the above-mentioned results,
(2.12) (TP 1)e sV = f s Dei=P () for h=0,

where the equality holds a.e. A for f€L*(dy,,p).
We give the following two definitions.
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Definition 1. We define 2°f(x)=f(x) on [0, ). Also, if f(x) is n-times differ-
entiable on [0, «) for a positive integer n, then we define

m—1
9™ f(x) = (sinh 2x)~?! did;f—(ﬁ for m=1,2,..,n.

Definition 2. Let n be a non-negative integer. If f(x) is n-times differentiable
on [0, <), and if all its derivatives are uniformly bounded on [0, «), then we define
the integral moduli of continuity of ¢ for j=0,1,...,n by

wih; £, atn, f+n) = Wy -3 Do, pon for B=0,

Wj(h, x; f) = sup |fD ()~ fD ()],
taking the supremum over all y such that |x—y|=h. (We put f@(x)=f(x).)

where

3. Results

First we give a theorem as follows:

Theorem 1. Let a=f>—1/2, >a+1 and n=[a+1], where the symbol [{]
denotes the greatest integer not exceeding {. Let f¢ L*(dy, ). For positive integer
n, let f(x) be a n-times differentiable function on [0, =) such that

3.D D™ f(x) = o(x"te~ @) 45 x w0 for m=0,1,..,n—1.
Moreover, suppose that, for non-negative integer n,

(3.2) T+ m 4 D f D flly ., = O™ as b —++0.
Then f, p€L(dv,,p). ‘

Remark. For a positive integer n in Theorem 1, we have easily f(x)€L*(dv,, )
from the n-times differentiability and (3.1) (m=0).

Since the result of Theorem 1 depends on the behavior of TE+™f+™grf
rather than only on f and its derivatives, we are not entirely satisfied with it. Now,
in order to obtain fajﬂEL(dva,p), we give the following theorem depending on f,
its derivatives and their integral moduli of continuity.

Theorem 2. Let a=f=>—1/2, é=a+1 and n=[a+1]. Suppose that
feL(du,, ), and that
33 wih;f,a+n, B+m)y=0H"") as h—->+0 for j=0,1,..,n
For positive integer n, let
(3.9 F@Px) =o0(x"te"?) as x —»oo.
Then f, 4€ L(dv,,p)-
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4. The proof of Theorem 1

We need the following three lemmas.

Lemma 1. We have the three estimates as follows: For each a, f and for each
non-negative integer m there exists a positive constant  such that

d" i P (x)

= m —ex oo),
F =Q(1+H)™"(1+x) for all  x, A€ [0, =)

@.1)

For each o, B there exist two positive constants 2, and Q respectively such that

4.2) |Ce, s (D] = 2,472(0 +)7*Y2 for all 1 =0,
and such that
4.3) [Cpp) ™t = Q,(1+2)*+V2 for all 1 =0.

The estimate (4.1) is due to Flensted—Jensen [3, Lemmas 13 and 15]. Since
C(A)=C(—1) by (1.2), the estimates (4.2) and (4.3) are due to Flensted—Jensen
[3, Corollary 9] (see also Koornwinder [6, Lemma 2.2 and Remark 2] for (4.3)).

Lemma 2. For a positive integer n, we have the equality

44 D f(x) = 2o A, " () + STy By ()f "M P (%),
where
n—1 n—3
m=— and n, = > =0 for odd n,
n—2
my=iy=— for even n,

and where
A;(x) i _, ai(n, j)(sinh 2x) "%,

B;(x) = 37 _, by(n, j)(cosh 2x)(sinh 2x)~"~%-1,
the constants a,(n, j) and b, (n, j) depending only on n, j and k. Further we have

Oox—""% as x—-+0
@3 4,09 ={ g r-sme G=01, 0 m)

and
O(x""%-1 as x—-+0

(4.6) Bj(x)={0(e_m) e xow =01y,
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Proof. We can easily prove (4.4) by induction, and so we omit it. The estimates
(4.5) and (4.6) are trivial from

sinh2x = 0(x) and cosh2x =0(1) as x —+40,
sinh 2x = O(e?*) and cosh 2x = O(e®*) as x —oo.
Thus Lemma 2 is proved.

Lemma 3. Let n be a positive integer. Suppose that f(x) is n-times differentiable
on [0, =) and satisfies (3.1). Then fcL*(dp, ;) and

@) S50 = (1P 2@ s pind) e

Proof. From Remark, we have fcL?(dy,,). For n=2, since f(x), m=
1,2, ...,n—1, are uniformly bounded on [0, -~} by assumption, we obtain, from
Lemma 2 (replace n by m),

(4.8) Z"f(x) =0(x"2™+) as x—-+0 for m=1,2,...,n—1.
Integrating repeatedly by parts and using (2.4), we get, for X=0,

-1 ""1 i
f:( Fx) P (x)dp, p(x) = Zmmo 24'"+7/2(F(oc)+m+2)

X [(me(x))(sinh Zx)_l¢$.a+m+l’ﬁ+m+1) (x)Au+m+l,ﬁ+m+1(x)](’)(
+E 12 [ (@) 9 () ity ).

From the continuity of f(x), (4.1) (for m=0), (4.8) and (3.1), the finite series on
the right-hand side is o(1) as X—<. Hence we have (4.7), since f, ,€ L*(dv, 5).
Thus Lemma 3 is proved.

Proof of Theorem 1. Applying (2.11) and then (2.12) to the left-hand side of
(3.2), we have

@9) [ (A= B Y@ )z 1 pen D20, pa ) = OHP=2) a5 h —-+0.

We get, by (1.1) and (2.3),

@I (x)
dx?

_ (Q+2n)2+12 d3¢$a+n,ﬂ+n)(x) _0

4.10
( ) x=0 2(oc+n+l) ’ dx? x=0

When we put m=4 in (4.1), there exists a positive constant Q, depending only
on «, § and n such that

gt ()

@.11) —

=Q,A* forall x=0 andall 2=1.
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By Maclaurin’s theorem, (1.1) and (4.10), there exists a positive number <1
such that
{(Q+2n)2+/12}h2 h 44 goff‘*""’*") (u)

(a+n,p+n) — 11— s ¥ . .
P (h)y =1 4(@+n+1) 23 du* =0k

Now we put, for s=1,2, ...,

1|/ 3 .
E A = — —_— ST = ézs'
h=27%¢ =5 CEETEIION and 27'=1

Then, by (4.11),

{(Q+2n)2+/12}2—2s£2 3 2—dsgd

1_¢S'a+n,ﬁ+n)(2—s&) = 9014

4(a+n+1) 24
_ ( 1 B Qoéﬁ]g _ 3 ~0
T 2@+n+1) 3 18  128(a+n+1)2Q, ’

Hence, from (4.9),

e @ D g en DV, pa(2) = OQ252)

Thus, by Schwarz’s inequality, (4.2), (4.3) and Lemma 3, we have

. _ YT (a+nt D)2
fzs_, [fa (D] dve,p (1) = I'@+1)

(4.12)
X CatmainDRICa s D dY [ 1f2 gDt pen DY

z —2(az+n -3 2 n ~ /
e S I b A e L7 S I I ) WP ) RPN O))
= M12(“_" +Ds+n—d)s — MIZ_(J_“_I)S.

Since f€L2(du, ), we obtain, by Schwarz’s inequality, (4.3) and (2.11),
1, .. 1, .. / 1 1/2
S 12Dl dve s = ([, s DEdve s D] ([ @V, s (B)

= M fogllev, , = MISle,ue, 5

Now, by this and (4.12), we have

Hf[,g\lv,,,, = (f:+ Doy f::_l) fogDldv, g(A) = M+ M, Z77, y—@-a-1s _ o

Thus Theorem 1 is proved.
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5. Proof of Theorem 2

We need the following two lemmas.

Lemma 4. Suppose that g(x) is an infinitely differentiable function on [0, <)
with compact support. Then, for each o and B, g; ,(4) is an analytic function on [0, =)
and there exist positive constants Ny (s=0,1,2,..)) such that

|8x s (W] = N(1+1)~°
SJor all A€[0, =) and all 5s=0,1, ....
Lemma 4 is due to Flensted—Jensen [3] (or Koornwinder [6]).

Lemma 5. Let A4;(x) (j=0,1,...,n) and B;(x) (j=0,1,...,n,) be defined
as in Lemma 2, and let 0=h=1/2. Then we have the following estimates:

(CRY (4;0)~4;0)| = Mh Z{_, Znag~ xmmtymnos
for 0<x, y=2 and |x—h|=y=x+h,
(52) |4,()— 4;()| = Mh
for 12=x=1,1=y=3/2 and x—h=y=x+h,
(5.3) |4;(x)—4;(»)| = Mh 2i=o :.+%k =1 p—(zm+1)x +(2m—2n—k+1)y

for x=1/2, y=1 and x—h=y=x+h,
and further

|B;(x)—B;()| = Mh Z}_((Sht xmm-tymon-t-ly yon—skt)
for O<ux, y=2 and |x—h|=y=x+h,

|Bi(x)—B;()| =Mh for 12=x=1, 1=y=32 and x—h=ypy=x+h,
|B;(x)—B;(»)| = MhZ 0(2"+2k —(2m—1)x+(zm—zn—4k—1)y+ex—(zm+4k+1)y)
for x=1/2, y=1 and x—h=y=x+h,
where the constants M depend only on n.
Proof. The estimates (5.1)—(5.3) are easily obtained from
|4;(x)—4;(n)| = M i _, |(sinh 2x) =" =% —(sinh 2y) "%
= M |(sinh 2x)~*—(sinh 2y)~1| 37 _, >"+%* (sinh 2x)~™(sinh 2y)y" " —2+1
= M, |sinh (x—y)| cosh (x+y) Ji_, Sr+3- 1(smhzx)— ~1(sinh 2yym—"—2%
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Also, the three estimates for [B;(x)—B;(y)| are clear from
[B;(x)—B;(»)| = M JI_, {cosh 2x |(sinh 2x)~"~%*~1—(sinh 2y) " ~%*~|
+|cosh 2x —cosh 2y| (sinh 2y)~"~%*~-1}
= M, |sinh (x—y)| 31_,{ 3% cosh (x+ y) cosh 2x(sinh 2x)~™~!(sinh 2y)" "~

m=0

+sinh (x+ y)(sinh 2y) "%},
Thus Lemma 5 is proved.

Proof of Theorem 2. 1t is sufficient to show that the assumptions of Theorem
2 satisfy those of Theorem 1 and especially (3.1) and (3.2).

For positive integer n, by integrating repeatedly (3.4) on [x, ) for sufficiently
large x, we have

(5.4) F™(x) =o(x"te ®) as x—>o for m=0,1,...,n—1.

Hence, from Lemma 2, we get (3.1).

Next, we show that (3.2) is obtained by the assumptions. From (3.3), we remark
that f¥(x), j=0,1,...,n, are uniformly bounded on [0, «<). Let g(x) be an in-
finitely differentiable function on [0, =) with compact support such that

g0 =f9P0Q) for j=0,1,..,n

If we put s=[20+1]+2 in Lemma 4, then g ,€L(dv,,) by (4.3). Now, f, ,€
L(dv,, ) if and only if ( fﬂg); s€L(dv, 5). Thus we may assume

fP0)=0 for j=0,1,...,n
Hence, applying Maclaurin’s theorem to the case n=0,
(5.5) O =Mx"—/ for x=0 and j=0,1,....,n (n=0).
By Schwarz’s inequality and (2.7), we have
(5.6) TR+ P+ D" — D"l e s 51
= ([ [T 190V =2 F Ko penlhy X, 9) At 40 () bt p e n ()

First we consider the case —1/2<a<0. Then n»=0. Now, from (5.6), (K1),
{2.10) and (3.3).

1T oy = ([0 VO —F P Kap (B X, 3) b 0) it 5 ()
= ([ [ Wb, x; 132K, g (b, %, ) bty s ) dpty s ()

=wy(h; f,a, ) =O0(® as h—~+0.
Thus (3.2) is obtained for —1/2<a=<0.
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Secondly, we consider the case «=0. Then » is a positive integer. Without
loss of generality, we may assume

a+l<d=n+1, O0<h=1/2

Hereafter, for the sake of simplicity, we write

Pasng+n =Mt Kyinpsa(h, x,y) = K(h, x, y)

T+ 8m =T, wi(h; f, at+n, B+n) = w;(h; f).
We have, from (5.6), (4.4) and Minkowski’s inequality,
(5.7) 112" ~D"fla, = o (f, [ 14,0722 (%)

—A;Mf O ) RK (B, x, y) du(y) dp())
+ 250 ([, [y 1B D () By () "D )R K(h, X, y) () du(9))
= 2L G;(W)+ 3%, H(h),

say. Further, from Minkowski’s inequality,

(58) Gime = [ [T 1A4,PIF 2 () —f O (WP K(h, X, y) du(y) du(x)

+ [ [ 14,0~ 40P 2P 3Kk, x, y)du(y) du(x) = P;(h)+Q,(h),
(=01, ..,ny),

and

say.
We put

1 o © moo
(5.9) Py = [ [T+ [ [7=Ppa+P () (j=0,1,...,my.
We estimate P; ;(h). By (K1), (2.9), (4.5) and (3.3), we get, for j=0, 1, ..., n,,

(5100 P = [, [T 1A, Womy(h, y: NP (h, x, ) dpa(3) du(x)
= Wamgy (0 2 |4, ()2 dp ()
=ome) [ ; O(x~ =4O (M) dx = O(h2*-") as h - +0.

Secondly, we estimate P; ,(h). Since A;(x) is uniformly bounded on [1, =) from
Lemma 2, we have, by the symmetric property of K(#, x, ), (K1), (2.10) and (3.3),

Piahy = [T [ O Wosy(h, x5 12K (R, %, ) dp(y) dp(x)
= 0()wW,_g;(h; R =0(R*®) as h —+0.
Thus, from this, (5.10) and (5.9),
(5.11) Pi(h) =O0(h*@® ™) as h->4+0 for j=0,1,...,n,.
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We set

G12) QW = [, [+ L [T [T T = 2000 (=01, ..

We estimate Q;,(#). By Minkowski’s inequality, (5.5), (5.1) and (2.9),
Qja(h) = MB? 3]y Smt [ [y xmem=2 yometn sk K, x, y) du(y) du )

G13) = MR 02"*2“ P [yt y)
=O0(h) = O(h~") as h —+0.

We estimate Q; »(#). By the symmetric property of K(h, x, y) and (K1), we have
K(h,x,»)=0 unless y—h<x or y<x-+h Moreover f*=*)(y), j=0,1,...,n,
are uniformly bounded on [0, ). Hence, from (5.2) and (2.9),

(5.14) 0w = Mk [ [ K(h, x, ) du() du()

3/2
=Mw [} du) [ du() = 00 = 0H4") as h~+0.

Similarly we get
(5.15) Q;s(h) = O(H*@=") as h—-+0.

Lastly, we estimate Q; ,(h). By Minkowski’s inequality, (5.3), (5.4), (3.4), (K1)
and (2.10), we have

(5.16) Q=M 3i_ > n+2k 1/ fy+h0(y_2 —%0)
Xe—2(2m+1)x+2(2m —2n— 4k+1)yK(h, X, _V) d,u(x) du(y)
‘ ; o py+h
=M 3], [ [ 0 2emer = 0 K(h, x, y) du(x) dp(y)
= MhJi_, f:o0(y"2e—2(0+2n+4k)}’)du(y)

= 0(h?) = O(h**~™) as h —~+0.
Thus, by (5.12)—(5.16),

Q;j(h) =0(h**™) as h—-+0 for j=0,1,...,m
From this, (5.11) and (5.8), we have
(5.17) Gi(hy=0M®™™ as h—-+0 for j=0,1,...,n

Using the three estimates of |B;(x)— B;(y)| of Lemma 4 (j=0, 1, ...,ny) and
so on, we get similarly

Hi(h) =0 as h-+0 for j=0,1,..,n,

Hence, combining this with (5.17) and (5.7), we obtain (3.2). Thus Theorem 2 is
proved.
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