
On the integrability of Fourier--Jacobi transforms 
Yoshimitsu Hasegawa 

1. Introduction 

and 

0.0 

and 

For ~ _ ~ p > - l / 2  and x, 2E[0, co), the Jacobi function q~]"#)(x) of  order (~, fl) 
is defined by 

r a) (x) = ~F1 ((e + i2)/2, (Q-  i2)/2; ~ + 1 ; - (sinh x)2), 

where zF1 denotes the hypergeometric function (see [2, ch. 2]), and where Q = ~ + f l +  1 

i =  ~ 1. It is known from [4] that 

d ,~(,,#) 
qr = 1, ~ - ~ . ~  (x)l~=o = 0 

where 
A~,#(x) -- 2~(sinh x)2~+1(cosh x) ~p+ '. 

Let LV(dy~,#), l~p<~,, be the class of all measurable functions f(x) on [0, o.) 
such that 

,:j),,..,, = {f? l:(x): 
where 

~ ~ (x) ax. dlz.,#(x) = r ( u +  1) ' 

We denote L(dy~,#)=Ll(dp~,#) and [[flIu.,=llfHl,~,.,. Further, let L=(dy~,,#) 
be the class of  all measurable functions f ( x )  on [0, ~)  such that 

Ufl[~*,..,, = ess sup lf(x)l < co. 
O~_X<~ 

Let Lq(dv~,#), I =<q<~,, be the class of  all measurable functions g(2) on [0, ~)  
such that 

ilgJl,...., = {f: lg(~)]qdvo~,,(/~)} l/q<~176 
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where 

and 

(1.2) 

dv,,~(,~) = r(~+l)IC"~(~t)l-2d'~ 

2~F((1/2) i2) F((l  + i2)/2) 
C,, p (2) =- "F ((Q + i2)/2) F (( Q + i2)/2 - fl) 

(see [6]). For fEL(d#,.a), the Fourier--Jacobi transform of f is defined by 

f2~()~) = f o f (x )  q~(~'~)(x) dla~.p(x). 

and further the inverse transform is given formally by 

fo f ;  ~ (2) (p~z ~' p) (x) dv~., (2) 

(see [3]). Flensted--Jensen and Koornwinder [4] proved that the Fourier--Jacobi 
transform is injective on LP(dl~..~) for 1 ~=p~2. 

S. Bernstein proved that i f  f is periodic with period 2re and satisfies a Lipschitz 
condition with exponent exceeding 1/2 then the Fourier series o f f  converges absolutely 
(see [9, p. 240--241]). The analogous theorems were obtained by C. Ganser [5] 
and H. Bavinck [1] for the Fourier--Jacobi series and by A. L. Schwartz [8] for 
the Hankel transforms. We give the analogous theorem for the absolute integrability 
of  the Fourier--Jacobi transforms. 

Throughout the paper, the letter M, with or without a suffix, denotes a positive 
constant, not necessarily the same on each appearance. 

2. Preliminaries 

There are the integral representations of  q~"a)(x) as follows (see [3]): 

(2.1) (o~.a'(x)-~ f; '=of:=olcoshx+(sinhx)re'~' l 'X- 'dm..a(r.r  

for ~>f l> - -1 /2 .  where 

dm..,(r. @) = 2 F ( ~ +  1) (1 -- r2)~-P-lr2P+l(sin ~)2t~drd~b. 
I/-~F(ot- fl)F(ot + 1/2) 

and 

q~',') (x) ~ f ~  {cosh 2x+(sinh 2x) cos ~b} "~-2"-1)/2 drn,,,(r 

for ~ > - 1/2 (~ =fl), where 

dm...(~k) = 
r (~+ l )  

1/~r(. + 1/2) 
(sin ~)~ d~0. 
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The following three equalities are known (see [6, p. 148 and p. 151]). 

& 6  ~, ~ (x) 1 
- - - ( Q ~ + 2  ~) (sinh2x)~o~+x,~+X)(x), 

dx 4(~+ 1) 

d "-~ /Ocosh2x+g-f l~pi ,+x,~+l)(x  ) r d" ~o~ ~.p> (x) _ ( ~  + ~ )  
de" ~ t  2(-(gTg 

for m = 2 , 3  . . . .  
d~176 and 

f :  ~0~, a) (y)  d/t,, p (y)  = 2-v/3  (F  (~ + 2 ) ) -x  (sinh 2x)-  XA ~ + x, a +x (x)  q~t, + x, ~ + x) (x).  

We define the function K~,a(x, y, z) for x,y,z>=O as follows: 

(K1) for ~t _-> fl > - 1 / 2  and z r  x+y) ,  

K,,tj(x, y , z) = 0 

(K2) for g > f l > - l / 2  and I x - y  I - < z < x + y ,  

1)) 3 
(sinh x sinh y sinh z ) - ~ ' f :  {1 - (cosh x) ~ K,,p(x, y, 0 = v~r(~-~)r6~+ 1/2) 

(2.2) 

(2.3) 

(put 

(2.4) 

- (cosh y )~ -  (cosh 0 2 + 2  cosh x cosh y cosh z cos O}~_-P-x (sin ~b)2P d~O, 
where 

u for u > 0  

{u}+= 0 for u<=0. 

(K3) for ~ > - 1 / 2 ( ~  = fl) and Ix -y l  < z <  x + y ,  

K,,, (x, y, z) = 2-  ~'- 1/~ (F (~ + 1)) ~ (sinh 2x sinh 2y sinh 2z)-2, {1 - ( c o s h  2x) ~ 
r + 1/2) 

-- (cosh 2y)2-- (cosh 2 0 ~ + 2  cosh 2x cosh 2y cosh 2z}~. -x/~. 

The function K~,p(x,y, z) is symmetric in the three variables, and further it has 
the following four properties: 

(2.5) K~,a(x, y, z) >= O, 

(2.6) ~ot. ~' P' (x) ~ "  ~ (y) = f ~  ~ "  ~' (z) K~,, (x, y, z) d/z~, p (z), 

(2.7) f :  K,,p(x, y, z)dp,,p(z) = 1, 

f .  f (z)  K,,p (0, y, z) dlt,,p (z) = f(y).  

For ~>f l> - -1 /2 ,  Flensted--Jensert and Koornwinder [4] started with (2.1) and 
obtained (K1) and (K2). It is easy to see that (K1) and (K3) for ~=fl  can be ob- 
tained by a limit. 
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Let f be a suitable function on [0, oo), and let x _->0. The generalized translation 
operation T~ (~'p) is defined by 

T(~, a)f(y) = f o f ( z )  K~, a (x, y, z) dye, # (z). 

Obviously T(~,P) f ( y ) =  T(r~,a) f (x) ,  and 

(2.8) IIZs <-- Ilfllp,~.,, 

for fELP(dlz~,a), l<-_p<=~, and x_->0 (see [4]). 
For suitable functions f and g on [0, ~o), the convolution product f . g  is 

defined by 

( f*  g)~, a (x) = f ?  f (y)  T (~, a) g (y) dp~, a (y) 

= f o f o  f (y)  g (z) K~, # (x, y, z) dp., a (z) dlt~,a (Y). 

Then the following three properties are obtained (see [4]). 

(2.9) II(f*g)~,all~,a =< Ilfll~.,allgll~.,# for f ,  gCL(d#~,a), 

(2.10) II(f* g)~,#ll ~,.~, ~ ~ II/'ll~, # 11 gN ~,~., a 

for f~L(dy~,#) and g~L~(dp~,a), and 

(f.g)~',a().) =f~#(2)g~',#(2) for f ,  g~L(dp~,#). 

Flensted--Jensen [3] showed that the Fourier--Jacobi transform gives an 
isometric mapping from L2(dp~,a) onto L~(dv~,a) as follows: 

For fEL2(d#~,a), the Four&r--Jacobi transform f~a(2) exists as a limit in 
L 2 (dye, a) of  

f (x)  q~(~' p) (x) dp~, # (x) 

as X~oo ,  and inversely f (x )  exists as a limit in L2(dl~,,#) o f  

f a  ~ f~,#(2)~ol~'#)(x)dv~.#(2) 

as A ~  co. Further the Parsevars formula 

(2.11) llf~alh .... # = llflh,..,# 

holds. (See also Koornwinder [6, Remark 3].) 
For f~L(dp~,#) or f6L2(dlt~,#), we have easily, by the symmetric property 

of K~,#(h,y, z), (2.6), (2.8) ( p = l  or 2) and the above-mentioned results, 

(2.12) (T(h~'P)f)~,#(2) =fs for h _-> 0, 

where the equality holds a.e. 2 for f~L~(dp~,#). 
We give the following two definitions. 
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Definition 1. We define ~~ on [0, ~). Also, if f (x)  is n-times differ- 
entiable on [0, co) for a positive integer n, then we define 

~mf(x) = (sinh 2X) -1 d~"-a f (x )  for m = 1, 2 . . . .  , n. 
dx 

Definition 2. Let n be a non-negative integer. I f  f (x)  is n-times differentiable 
on [0, ~,), and if all its derivatives are uniformly bounded on [0, ~), then we define 
the integral moduli of  continuity of  f(J) for j = 0 ,  1 . . . . .  n by 

w j ( h ; f , ~ + n , # + n )  = IIWj(h, " ; f ) l l ~ , .  . . . .  ~+, for h _->0, 
where 

Wj(h, x; f )  = sup ]f(~)(x)-f(J)(y)], 

taking the supremum over all y such that Ix-y[<=h. (We put f(~ 

3. Results 

First we give a theorem as follows: 

Theorem 1. Let ~ f l > - l / 2 ,  6 > ~ + 1  and n = [ ~ + l ] ,  where the symbol [~] 
denotes the greatest integer not exceeding ~. Let fCL2(d/~,,p). For positive integer 
n, let f (x)  be a n-times differentiable function on [0, ~)  such that 

(3.1) Nmf(x) = o(x-Xe -(o+2m)~) as x - ~  for m = O, 1, ..., n--1. 

Moreover, suppose that, for non-negative integer n, 

(3.2) tlT~+"'a+")~"f-~"fl]2, ~ . . . .  ,+ = O ( h  ~-") as h--,+O. 
Then f,~,p ~ L (dv,,p). 

Remark. For a positive integer n in Theorem 1, we have easily f(x)CL~(dv,,p) 
from the n-times differentiability and (3.1) (m=0).  

Since the result of  Theorem 1 depends on the behavior of  T~h'+"'P+")~"f 
rather than only on f and its derivatives, we are not entirely satisfied with it. Now, 
in order to obtain f,~,p~L(dv,,p), we give the following theorem depending on f ,  
its derivatives and their integral moduli of  continuity. 

Theorem2. Let a ~ f l > - l / 2 ,  5 > a + l  and n = [ ~ + l ] .  Suppose that 
fEL~(dlt~,p), and that 

(3.3) wj (h ; f ,~+n ,  f l + n ) = O ( h  ~-") as h ~ + O  for j = 0 , 1  . . . . .  n. 

For positive integer n, let 

(3.4) f ( " ) ( x ) = o ( x - l e  -~)  as x ~ .  
Then f~,a ~ L (dv~, ~). 
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4. The proof of  Theorem 1 

We need the following three lemmas. 

Lemma 1. We have the three estimates as follows: For each ct, fl and for each 
non-negative integer m there exists a positive constant f2 such that 

(4.1) dmq~}?,#)(x) i ~l ~ ( l + 2 ) m ( l + x )  -Qx for  all x, 2~[0, co). 
dx" I 

For each ~, fl there exist two positive constants g21 and ~ respectively such that 

(4.2) IC,,#(2)I <= ~1;~-1(1 +2) -~+1/2 for all 2 > O, 

and such that 

(4.3) lC,,#(2)[ -~ ~- f2z(l+2) "+~/2 for  all 2 >-O. 

The estimate (4.1) is due to Flensted--Jensen [3, Lemmas 13 and 15]. Since 
C ( 2 ) = C ( - 2 )  by (1.2), the estimates (4.2) and (4.3) are due to Flensted--Jensen 
[3, Corollary 9] (see also Koornwinder [6, Lemma 2.2 and Remark 2] for (4.3)). 

(4.4) 

where 

Lemma 2. For a positive integer n, we have the equality 

~ " f ( x )  = ~, ~=o Aj ( x ) f  ("-2-/) (x) + ~'~Lo Bj ( x ) f  (" -21-x)(x), 

n--1 n--3 
and n 2 -  =>0 for odd n, n l -  2 2 

and where 

n--2 
for even n, nl ---- n2 - 2 

Ai(x)  ~ = 0  ak( n, j)(sinh 2x) -"-2k, 

Bj(x) = Z~ :k=o bk (n, j)(cosh 2x)(sinh 2x) -"-2k-1, 

the constants ak(n, j )  and bk(n, j )  depending only on n, j and k. Further we have 

(4.5) 

and 

(4.6) 

{ O(x -"-=j) as x - - + 0  
A i ( x ) =  O(e -~'x) as x--*~ 

O(x "-ei-1) as x ~ + 0  

B~(x)= O(e_2,x) as x ~ o ~ .  

(j  ---- O, 1 . . . . .  nl) 

( j  = O, 1, . . . ,  n~). 
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Proof We can easily prove (4.4) by induction, and so we omit it. The estimates 
(4.5) and (4.6) are trivial from 

sinh 2x = O(x) and cosh 2x = O(1) as x ~ +0, 

s i n h 2 x = O ( e  zx) and c o s h 2 x = O ( e  2x) as x - ~ o .  

Thus Lemma 2 is proved. 

Lemlna 3. Let n be a positive integer. Suppose that f (x )  is n-times differentiable 
on [0, oo) and satisfies (3.1). Then fEL~(dl~,p) and 

(4.7) f~a(2) = (--1)"2-4"(~nf)~+,,t~+,(2) a.e.. 

Proof From Remark, we have fELZ(d!a,,p). For n~2 ,  since f(")(x),  m =  
1, 2, ..., n - 1 ,  are uniformly bounded on [0, ~)  by assumption, we obtain, from 
Lemma 2 (replace n by m), 

(4.8) ~ ' f ( x ) = O ( x  -~"+x) as x--*+0 for r e = l , 2  . . . . .  n - 1 .  

Integrating repeatedly by parts and using (2.4), we get, for X>0,  

( -1 ) "  Yo f (x)  q~i"P)(x)dll"'o(x) = Z~-=l~ 24m+W~F(=+m+ 2) 

• 

+ ( -  1)" 2 - "  f0  x (~"f(x))~oi =+",e+") (x) din+,, ,  +,(x). 

From the continuity of f (x) ,  (4.1) (for m=0),  (4.8) and (3.1), the finite series on 
the right-hand side is o(1) as X--*~. Hence we have (4.7), since f ,  TpEL=(dv,,tj). 
Thus Lemma 3 is proved. 

Proof o f  Theorem 1. Applying (2.11) and then (2.12) to the left-hand side of 
(3.2), we have 

(4.9) f o [(1-q~(a=+"'P+")(h))(~"f)2+".P+"(2)l'dv=+","+"(2) = O(h~a-=") as h - - + 0 .  

We get, by (1.1) and (2.3), 

x=o= (~+2n)~+2~ d3~~ I = O. 
(4.10) dx 2 2 ( ~ + n + l )  ' dx a ~=o 

When we put m = 4  in (4.1), there exists a positive constant ~o depending only 
on ~, fl and n such that 

(4.11) I d4q~t~+"'P+~)(x) l < ~o24 for all x - O and all 2 > 4 = = = 
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By Maclaurin's theorem, (1.1) and (4.10), there exists a positive number 0<1 
such that 

g~ {(0+2n)Z+22}h2 hi dirP(:c+n'O+n)(u)u=Oh 
4 ( u + n + l )  ~ 24 du 4 " 

Now we put, for s = 1, 2 . . . . .  

h = 2 - ~ ,  ~ =  ( a + n + l ) ~ o  and <=2 

Then, by (4.11), 

1-9(~+. ,a+.)(2- .~)  => {(o+2n)~+)3}2-z'~ 2 2 -4~  4 
4 ( a + n +  1) 24 f2~ 

=> 2(oc+-n+l) 8 - 128(oc+n+l)2f2o 

Hence, from (4.9), 

> 0 .  

f~r I(~"f)~'+.,a+.0.)l 2 dv=+.,a+.(A) = O(2~..-2~ 0. 

Thus, by Schwarz's inequality, (4.2), (4.3) and Lemma 3, we have 

(4.12) 21/' ( r  (0~ + n + 1)) 1/2 

2s ^ 2 1/2 
• {f .l IC~+.,p+.(~)l ~lC~,aO)1-4 d2~1/2flf2", , . ,  2.-1 Ifg, a(2)[ dv~+",a+"(2)} 

. ^ 2 v ). I18 M ~  f 2s t~ -2(~ d l ~ l / 2 1  f 2s 1(~ f L + . , a + . ( 2 ) [  d ~+.,a+.( )} 
t d  2s-x 1 I.d 2s-a 

< = M12(~-.+1)s+( ~ - ~  = M12-(6-~-x)s. 

Since f ~ L ~ ( d l ~ , a ) ,  we obtain, by Schwarz's inequality, (4.3) and (2.11), 

fo x If;A )l I C , ( ~ ) i  2 dYae,,8 (~))11~:(fol dYa,13( )) 1/2 

< M l l f ~ a  ~ = MII f l l2  = , ,ve~ # ,l~,t, .a 

Now, by this and (4.12), we have 

(fl f2. )If; IIf~all~.,~ = 0 +Z7=1  2"-: 'a( '~)ldv~'a(2) <- M~+M2Z~'=12-( ' -~-~)~<~176 

Thus Theorem 1 is proved. 
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5. Proof of Theorem 2 

We need the following two lemmas. 

Lemma 4. Suppose that g(x) is an infinitely differentiable function on [0, co) 
with compact support. Then, for each ~ and fl, g~p(2) is an analytic function on [0, ~)  
and there exist positive constants N, (s=0,  I, 2 . . . .  ) such that 

[g~.p(2)[ <= Ns(1 +2)  -s 

for all 2 ~ [0, o~) and all s = O, 1 . . . . .  

Lemma 4 is due to Flensted~Jensen [3] (or Koornwinder [6]). 

Lemma 5. Let Aj(x)  ( j = 0 ,  1, ..., nO and Bj(x) ( j=0 ,  1 . . . .  ,n2) be defined 
as in Lemma 2, and let 0~=h<=1/2. Then we have the following estimates: 

][4"h ~ J  ~ffn+~k-I x--m-t  ym--n--2k (5.1) IAi( x ) - A j ( y ) I  ~ ~'~- z-, k=0 ~,,=0 

for 0 < x , y < = 2  and I x - h l < - y < = x + h ,  

(5.2) [Ai(x)-A~(y)l  <- Mh 

for 1/2<=x<:l ,  1~_y<=3/2 and x - h < - y < - x + h ,  

(5.3) [aj (x) -Ai(y)]  "< Mh ~,i ~.+~k-a e_t~+l)x+(2,._z,_~,+l)y 
= l-.J k = O  l - . Jm=O 

for x>=l/2, y>=l and x - h < = y < : x + h ,  
and further 

[Bj(x)--Bj(y)[ < Mh S'i  [~n+2k x--m--1, m--n--2k--ll , , - - n - - 2 g - - 1 ) t  
= ~ - J k = 0  \,~-.z m = 0 Y - I - y  J 

for 0 < x ,  y_-<2 and [ x - h [ ~ y _ < - x + h ,  

[Bj(x)--Bj(y) l<-Mh for 1 /2~_x<- l ,  1 < = y ~ 3 / 2  and x - h < = y < = x + h ,  

{Bj(x)--Bi(y)I  <= Mh S'J [ ~fim+2k e_(2m--1)x+(gm--?,n_4k_l)Y +eX--(2n+4k+l)y) 
= k.~ k = 0  k~,dm=O 

for x=>l /2 ,  y = > l  and x - h < = y < = x + h ,  

where the constants M depend only on n. 

Proof. The estimates (5.1)--(5.3) are easily obtained from 

IAj(x)-Aj(y)[  <= M ~'~=o [(sinh 2x)-"-~k--(sinh 2y)-"-~k I 

= M[(sinh 2x) - ~ -  (sinh 2y)-l[ 5"i  S 'n+~k-~ (sinh 2x)-m(sinh 2y) m-"-~k +1 
X--/k = 0 ~ . a m = O  

< tx+ ,~  S ' i  S"+~k-~ (sinh 2x)-~'-l(sinh 2y) . . . .  2k. = M l l s i n h ( x - y ) l  cosh,  J/~-tk=0,g.am=0 
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Also, the three est imates for  IBj(x)--B~(y)[ are clear f rom 

= M  J IBj(x)--B~(y)[ < ~'~=o {cosh 2x l(sinh 2x)-"-Zk-l--(sinh 2y) - " -~ ' -11  

+ Icosh 2 x - c o s h  2yl (sinh 2y) -" -2k-1} 

< Ma Isinh ( x - y ) l  S ' i  / S'"+2k cosh (x+y)  cosh 2x(sinh 2 x ) - " - l ( s i n h  2y) . . . .  u - i  

+ sinh (x + y) (sinh 2 y ) - " -  2k-- 1}. 
Thus L e m m a  5 is proved.  

Proof of  Theorem 2. I t  is sufficient to show tha t  the assumpt ions  of  Theorem 
2 satisfy those of  Theorem 1 and  especially (3.1) and  (3.2). 

For  positive integer n, by integrating repeatedly (3.4) on [x, ~ )  for  sufficiently 
large x, we have 

(5.4) f(")(x) = o(x - le  -~)  as x ~ for  m = 0, 1 . . . .  , n - -1 .  

Hence,  f rom L e m m a  2, we get (3.1). 
Next,  we show that  (3.2) is obta ined by the assumptions.  F r o m  (3.3), we remark  

that  f(J)(x), j = 0 ,  1 . . . .  , n, are uniformly bounded  on [0, ~) .  Let  g(x) be an in- 
finitely differentiable function on  [13, ~ )  with compac t  suppor t  such tha t  

g(J) (0) = f(J)  (0) for  j = 0, 1 . . . .  , n. 

I f  we put  s = [ 2 ~ + 1 ] + 2  in L e m m a  4, then g~,p(L(dv,,p) by (4.3). Now,  f s  
L(dv~,p) if  and only if (f-g)~,p~L(dv,,p). Thus we m a y  assume 

.f(J)(O) = 0 for j = 0, 1 . . . . .  n. 

Hence,  applying Maclaur in 's  theorem to the case n # 0 ,  

(5.5) IfO)(x)l ~ Mx  n-j for  x _-> 0 and j = 0, 1 . . . . .  n (n ~ 0). 

By Schwarz's  inequality and (2.7), we have 

(5.6) [IT(J+"a+")~"f -~"fl[~,~ . . . .  , +~ 

<= { fo fo  Y)du'*","+"(Y)du'+",'"(x)) 
First  we consider the case - 1 / 2 < a < 0 .  Then n = 0 .  Now,  f rom (5.6), (KI) ,  

(2.10) and (3.3). 

]lr~',a)f-fll2,u.,. <~ (f= fx+  If(y)--f(x)12K. e(h, x, y)d#. ,(y)dlt ,  a(x)) x/~ 
0 I x - - h i  " " ' 

<= [Solo Wofh, x; f)"s<;,,(h, x, y)dlx=,#j(y)dl4,,,(x)) 
= w o ( h ; f , ~ , f l ) = O ( h  ~) as h ~ + 0 .  

Thus (3.2) is obta ined for  - 1 / 2 < ~ < 0 .  
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Secondly, we consider the case ~=>0. Then n is a positive integer. Without 
loss of generality, we may assume 

ct+l  <6<_- n + l ,  0 <  h<_- 1/2. 

Hereafter, for the sake of simplicity, we write 

#~+,,~+. = ~, K~+,,t~+.(h, x, y) = K(h, x, y) 
and 

T(h ~+n'p+") = Th, wj(h; f ,  ~+n, fl+n) = wj(h;f) .  

We have, from (5.6), (4.4) and Minkowski's inequality, 

<= "~ ( fo fo  (5.7) IlTh~"f --~"fll2,~, ,~. /=o IAJ(x)f(n-2J)( x ) 

-- Aj(y)f("-2j) (y)l~ K(h, x, y) d~(y) cl~(x)) 1/~ 
n2 ~ + • j = 0 ( f s  fo  IBj(x)f("-~J-~)(x)--Bj(Y)f("-~J-1)(Y)l~K(h' x, y)dp(y)d#(x)) lt~ 

I11 n2  = • j=0 Gj(h)+Zj=o Hj(h), 

say. Further, from Minkowski's inequality, 

(5.8) Gg(h) 2 <= f o f o LAJ (x)l'lf("-'j)(x)-f("-~J)(y)l~K(h, ~, y)d#(y)dkt(x) 

+ f~ f~ IAj (x)- Aj (y) l~ If ("- 2j) (y) 12 K(h, x, y) dl~ (y) d~ (x) = ej  (h) + Qj (h), 

(j  ---- O, l, ..., Ol) , 
say. 

We put 

Pj (h )=s  Pj,~(h)+ej,,(h) ( j = 0 , 1  . . . . .  , 0 -  (5.9) 

We estimate Pj, l(h). By (K1), (2.9), (4.5) and (3.3), we get, for j = 0 ,  1 . . . .  , n l ,  

P J'a (h) <=./'1o f o [aj(x)12 W"- z-i(h' y ; f)~ K(h, x, y) dlz(y) dp(x) (5.10) 

w._~j(h; f)~ f~ IAj(x)l ~ d~(x) 
= O(h~(~-"))f~ O(x-~"-~J)O(x 2('+")+~) clx = O(h  2(~-")) as h +0. 

Secondly, we estimate Pj,2(h). Since Ay(x) is uniformly bounded on [1, co) from 
Lemma 2, we have, by the symmetric property of  K(h, x, y), (K1), (2.10) and (3.3), 

f;~176 Pj.2(h) <- O(1)Wn-2j(h, x; f )2K(h,  x, y)dl.t(y)d,(x) 

<= O(1) wn_2j(h;f)~ = O(h 2(~-")) as h ~ + 0 .  

Thus, from this, (5.10) and (5.9), 

(5.11) Pj(h) = O(h ~(n-")) as h ~ + 0  for j = 0, 1, ..., nx. 
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We set 
1 1 1 ~ ~ 1 ~ 

= .~,s=lQj, s(h) (J = 0 , 1 , . . . , n a ) "  (5.12) QAh) fo+ f o s  + f;  f l  f;  = ' 
We estimate Qj, a(h). By Minkowski's inequality, (5.5), (5.1) and (2.9), 

aj, t (h) <= Mh2 .~J-o- ~,~=oS'"+2k-1 flo f Y'J x -= ' - '  x, y) d#(y) d#(x) 

(5.13) < Mh 2S'j 3 "~+=k-1 flx-=m-=dl.t(x)f~yaj+2m-2"-4kdp(y) 
-~- , ~ / k  = 0 ~ m = 0  J O  

= O ( h  2) = O(h z(6-")) a s  h ~ + 0 .  

We estimate Qj,2(h). By the symmetric property of K(h, x,y) and (K1), we have 
K(h,x,y)=O unless y - h < x  or y<x+h,  Moreover f("-2~)(y),j=O, 1, ... ,hi, 
are uniformly bounded on [0, ~o). Hence, from (5.2) and (2.9), 

( 5 . 1 4 )  Oj'2(h) ~ Mh~ f~/2 ., lf3/2 K(h, x, y) dlt(y) dlt(x) 

Mh 2 d~(x d#(y) = O(h 2) = O(h 2(6-")) as h ~ + 0 .  
2 

Similarly we get 

(5.15) Qj,3(h)=O(h ~(a-')) as h ~ + 0 .  

Lastly, we estimate Qj,4(h). By Minkowski's inequality, (5.3), (5.4), (3.4), (K1) 
and (2.10), we have 

(5.16) 2 J ~ n + 2 k - I  f~"  f y + h  , --2 --2r 
Qj,4(h) ~ Mh ,~ 'k=0~,=o J1 Jy-h u t y  e Y) 

X e-2(2m+l)x+z(2m-2"-*k + l)r K(h, x, y) d#(x) dp(y) 
y+h 

x,3 s f Ot,,-~e-*(Q+~+v')YaKth x <=Mh~k=oj~ dr_h ~y J t , ,y)dg(x)dlt(y) 

S'J  f*~ O(v-2e-2(~+~+4k)y) d#(y) Mh2 Z.ak=O J1 ~'' 
= O(h 2) = O(h 20-n)) as h -~ +0. 

Thus, by (5.12)--(5.16), 

Qj(h)=O(h ~(~-')) as h ~ + 0  for j = 0 , 1  . . . . .  n x. 

From this, (5.11) and (5.8), we have 

(5.17) Gj(h)=O(h 6-") as h - ~ + 0  for j = 0 ,  l , . . . , n a .  

Using the three estimates of IB~(x)-Bj(y) I of Lemma 4 ( j = 0 ,  1 . . . . .  nO and 
so on, we get similarly 

H~(h)=O(h ~-") as h ~ + 0  for j = 0 , 1  . . . . .  n,. 

Hence, combining this with (5.17) and (5.7), we obtain (3.2). Thus Theorem 2 is 
proved. 
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