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1. Introduction 

Consider a function f(z) ,  analytic in the closed right halfptane and satisfying 
If(z)l<=l on the imaginary axis. We define a mean m(r) along half-circles for  
such functions by the formula 

re(r) = f~/~ �9 ~ -~/~ l~ [f(re~)l cos q~ dq~. 

This mean is convex with respect to the family of  functions Ar+Br -1, according 
to a classical result of  Ahlfors [I]. The integral contains the subharmonic function 
log + lf(z)l, which in fact may be replaced by an arbitrary subharmonic function 
satisfying the corresponding boundary condition, without affecting the validity of  
the theorem. This was shown by Dinghas [2] for a class of  means containing the 
one mentioned. The notion of  convexity with respect to a family of  functions has 
been treated by Heins [6]. 

Here we are going to generalize in another direction by substituting the con- 
dition of  boundedness from above on the imaginary axis for a more general con- 
dition. It is convenient for applications to consider the open complex plane D cut 
along the negative real axis, which we get from a half-plane by a simple transforma- 
tion. Let u(z) be a subharmonic function in D and define its boundary values u(-r),  
r > 0 ,  by ul(-r)=lim sup . . . .  +i0 u(z), u2(-r)=lim supz~_r_i0 u(z) and u ( - r ) :  

1 a �9 1/~ [~(ul(--r)+u2(--r)) ] , where a is a constant to be specified later on. To make 
u(-r)  well defined, we assume the function to be non-negative when a r  and 
~ ~o. We are going to study functions u(z) with the property 

u ( -  r) _~ cos  z,~u (r), 

where 2 is a constant. The odd form of  the constant in the inequality appears to 
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be handy in formulating the results. The following cases will be considered: 

e = t ,  0 < ) ` ~ 1 ,  

1 
0 < ) `  <--~, 

1 

1 
u ( - r )  = ~(ul(--r)+u2(--r)) <- cos ~)`u(r), (la) 

u( - r )  = max [Ux(-r), uz(-r)]  -<- cos 7t2u(r), (lb) 

u( - r )  = (u~(-r)+u~(-r))J <= coslz2u(r). (lc) 

As the inequality (la) fails to secure boundedness from above locally on the bound- 
1 ary when -~<2-<1, we make this boundedness a separate requirement in this 

c a s e .  

Next we define the mean L,(r) and the generalized mean Y(r), which we are 
going to investigate, by putting 

L~(r,u) = L , ( r ) =  [f~_~(u(re'O))'(cos)`~o)~-~sin;~(rc-lq~3dr ~'~, (2) 

u (re ie) (3) 
J(r, u) = J(r) = sup 

I~[<,~ cos ).r 

Note that L,(r), ~r  is defined for non-negative functions only, but Ll(r ) and 
J(r) are defined for functions of any sign. For simplicity we write L(r) for L~(r). 
The parameters ~ and )` are the constants in (1). Knowledge of the growth of L(r) 
and J(r) will provide information about the growth of M(r)=supl~l< . u(rei~). 

2. Convexity  and growth theorems 

Theorem I: Let u(z) be subharmonic in the open complex plane, cut along the 
negative real axis. I f) .  is a constant, 0 < 2  -< 1, such that u(z) satisfies the inequality 
(la) then the mean L(r) is a convex function with respect to the family of  functions 
ArZ+Br -~ (A and B are constants). When 7 < 2 = 1 ,  the boundary values of u(z) 
are assumed to be locally bounded from above. 

The classical case corresponds after a square root transformation to 2=-~ 
a <-)`<--1 in the theorem. Furthermore, in the case 7 one could replace (la) by the 

inequality u(-r)<=cosrc).M+(r), which implies (la). It will be seen from the 
proof that the result is of a local character, i.e. if (la) holds only in a finite interval 
(r~, r2), then the conclusion is valid for the corresponding "cut"  annulus DI=  
{z:rl<lzl<r2, largz/<Tt }. The theorem has been announced previously in the 
survey by Kjellberg [9] and applications are found in Ess6n [3] and Ess6n and 
Shea [4]. 
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Theorem II: Let u(z) be subharmonic in the open complex plane, cut along the 
negative real axis. l f 2  is a constant, 0<2-<_~, such that u(z) satisfies the inequality 

(lb), then the generalized mean J(r) is a convex function with respect to the family 
of  functions ArZ+Br -~ (A and B are constants). 

This is a local result in the same way as Theorem I. The convexity that is the 
conclusion of these two theorems implies a growth property of the functions L(r) 
and J(r) which we state as a corollary. 

Corollary: The functions r-~L(r) and r-~d(r) are non-decreasing, i.e. the 
limits limr_~ r-~ L(r) and l i m ~  r-~ J(r) exist (possibly infinite) under the 
assumptions of Theorem 1 and Theorem H respectively. 

There is a close connection between the two functions L(r) and J(r), which 
may be used to obtain information about M(r). In fact, for large values of  r, J(r) 
and M(r) are almost the same thing although J(r) has a more regular growth. 
From the definition of  J(r) we have u(z)<=J(r) cos ,~q~ and taking the mean L of  
both sides we get L(r)<=rc sin re2 J(r). The precision of  this inequality increases 
with r. This fact and the connection with M(r) constitute the next theorem. 

Theorem HI: Under the assumptions of  Theorem H either 

lim r-~M(r) = oo 
I.~co 

o r  

1 
- -  lim r-aL(r) = lim r-XJ(r) = lim r-aM(r). 

The fact that limro ~ r-XM(r) exists in the present situation is a well-known 
theorem of Kjellberg [8]. As an indication of the usefulness of  Theorem I and 
II, we will show that r-~M(r)--r-~J(r)+o(1) f rom which the existence of 
l imr.~ r-~M(r) is obvious. Finally, if we restrict ourselves to non-negative func- 
tions, we find that the convexity of  L(r) and J(r) is in fact the analogous case of  
the corresponding convexity of  all means L~(r) (~>1). This observation is the 
last theorem. 

Theorem IV: Let u(z) be a non-negative subharmonic function in the open 
complex plane, cut along the negative real axis. I f  ~ and 2 are constants, 0~> l, 0 <  

< 1  ).=-~, such that u(z) satisfies the inequality (lc), then the mean L~(r) is a convex 
function with respect to the family of functions ArZ + Br -z  (A and B are constants). 
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3. Some lemmas 

Lemma 1. The harmonic functions h in D, that 
a) are symmetric on the boundary, h(re~)=h(re-i") ,  
b) satisfy (la) with equality, 0<)~<1,  
c) are O(r ~) when r ~ ,  

are constant multiples o f  r ~ cos 2~o. 

Proof: Let h(z) be a function with the stated properties. Poisson's formula 
applied to h(z) in the right half-plane gives 

r f ~  h(iy) dy = r f o  ( h ( i y ) + h ( - i y ) ) d y  h(r) ~ - _ _  = r2+y2 rZ+y 2 

Applications of  the formula to h (z) in the upper and lower half-planes yield 

y = h ( x ) d x  y ~ ( h ( - x ) + h ( x ) ) d x  
h ( •  = x2+y  z = - fo 

Eliminate h ( •  between these three relations and we get 

2 = (h ( -  x) + h (x)) r log r/x 
h (r) = -~  f o r2_ x 2 dx. 

Here we substitute cos :r2h(x) for h ( - x )  according to (la), and so we end up with 
the integral equation 

h (r) = f o  K(t,  r) h (t) dt, 

where 

K(t, r) = 2 (1+cos  7z~.) r log r/t 
7~ 2 r 2 - -  i 2 

By the change of variables r=e  ~, t=e  ~ and ~o(x)=e-a~h(e~), we get 

-- f_== K0(x- 0 o(s) 

1 + cos re). xe-  ax 
with Ko(x)= ~2 s i n h x "  Since q~(x)=l is a solution we have that 

f ~ = K o ( t ) d t = l .  Taking Fourier transforms we obtain ~(r or 
[ 1 -  /(0 (0] ~ (0  = 0, where 1 - / ~ o ( 0  has a simple zero at the origin. This is seen 
from 

2 , = f ~  x 2sinh2x 1~o(0) x2e-XXdx - 2 i  dx ~ O. 
1 + cos rc)t - i f_= sinh x sinh x 
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The general solution is $(~)=C3(~)  which means that ~o(x) is a constant or 
h(r)=Cr ~. But h(z) is uniquely defined by its values on the real axis. The /emma 
is proved. 

Lemma 2. Let u(x) be a subharmonic and h(z) a harmonic function in DI= 
{z: rl<lzl<r~, largzl<rc}, where u(z) is upper semicontinuous in D1 and h(z) is 
continuous in {rl<= {z I ~=r2}. Suppose that u(z) and h(z) satisfy (lb) (h(z) with equal- 
ity), < 1 0 < 2 = 5 .  I f  h(z) majorizes u(z) on Izl=rl and Izl=r~, then it majorizes 
u(z) in 191. 

Proof: We define v(z)=u(z)-h(z) which is a subharmonic function in D1 
satisfying (lb). The upper semi-continuous function v(z) attains a maximum on 
O 1. By the maximum principle for subharmonic functions this will happen on 
OD1. But we know that v(rleio)<=O and v(r~ei~)<=O by assumption. When 2=1/2  
we also have that v(-r)<=O by (lb), i.e. v(z)NO on OD~ which implies v(z)<=O 
in D~ which was to be proved. In the remaining case 0 < 2 <  1/2 we assume that 
v(z) reaches its maximum at the point - r o  on the negative real axis. From (lb) 
we get v(-ro)<=cos rc2v(ro), which is incompatible with v(-ro) being a maximum 
of v(z) unless the maximum is non-positive. This conclusion is immediate in case 
the maximum is reached on Iz[=rl or [z[=r~. Hence, we have found that the 
maximum of v(z) on OD~, which is the maximum in DI, is non-positive. The proof 
is complete. 

Lemma 3. Let f (x )  be a positive function in Cz(-~,  ~). I f  there are constants 
and 2, g~1 ,  0<2=-~,  such that [~(F(~)+F(-~c))]l/'~-cos~2f(O), then 

I(f) = f'~ ( f ( x )  ] '-~(22f(x ) +f"(x)) sin 2Qr--Ixl) dx o. 
~. cos 2x ) 

Proof: Let 0 < 4 <  1/2. We define the new function g(x) by f(x)=g(x)cos Xx. 
Differentiation yields 

f ' (x)  = g'(x) cos 2x--2g(x) sin 2x, 

f"(x) = g"(x) cos 2x--22g'(x) sin 2x-2~g(x)  cos 2x, 

22f(x)+f"(x) = g"(x) cos 2x-22g'(x) sin 2x. 

The condition [-~ (f '(rO+f'(-n))]al'~cos re2/(0) implies g'(rc)+g'(-~)<-2g'(O). 
We divide I ( f )  in two parts according to the formula I ( f ) = f " ~  =f~ +fo__~ = 
I i ( f )+I2( f )  and substitute g for fi Then we get 

I i ( f )  = f :  g(x)'-l(g"(x) cos 2x-22g'(x) sin 2x) sin 2 ( r r -x)  dx. 
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The first term is integrated by parts and the remaining terms are rearranged to 
yield 

Ii ( f )  = -(g(O))~'- l g" (O) sin 2re 

- f ~  ( a -  t)(g (x)) ~- 2(g,(x))2 cos 2x sin 2 ( n -  x) dx 

+ f2  cos g'(x) dx. 

But h ( f ) = I ~ ( f * )  if f * ( x ) = f ( - x )  and so 

h ( f )  = (g(0)) "-1 g'O) sin ;.re 

_ f o  ~ (~_ 1) (g (x))" -e (g" (x)) 2 cos 2x sin ). (n + x) dx 

- f~ ;.cosrc2(g(x))"-'g'(x)dx. 

Adding these two expressions and performing the integration in the last terms we 
finally get 

l ( f )  = -- f ~,~ ( ~ -  1)(g(x))~'-~(g' (x)) ~ cos 2x sin 2 (re- Ixl) dx 

2 cos n2 
q- - -  WQz)+ g~( -n) -2g ' (0) ) .  

The first term is obviously non-positive and the second one is non-positive by 
assumption. In the case ;~----1/2 we choose e_~0 and consider the interval 
[ - n + e ,  7z-e] and obtain analogously (without the splitting in /1 and /2) 

, , ( f )  = (g(x)y *g'(x)cos,-} (= - l) (g (x)y cos -} ax. 

Since g and g' cos -~ are bounded to the right of x = - r r  and to the left of x=rr,  
we find that the first term vanishes as e ~ 0  because of the factor cos -~. Hence 
I ( f ) ~ O  for 0 < 2 ~ =  ~ as asserted. 

- - Z  

4 .  P r o o f  o f  T h e o r e m  I 

First we notice that the mean (2) and the condition (la) in the assumption 
are both invariant with respect to reflections in the real axis. Hence it is no restric- 
tion to assume that u(z) is symmetric with respect to this axis because otherwise 
we could consider ~(u(z)+u(5)) instead. Thus we suppose in the sequel that 

Next we observe that u(z), which may take the value - ~ ,  is the limit of the 
sequence max (u(z), - n )  of finite subbarmonic functions. The members all satisfy 
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(la) if u(z) does and 0 < 2 <  3 . Consequently we may assume that u(z) is finite 
when 0 < 2 < ~ .  With the function u(z) we associate an auxiliary function u~(z), 
satisfying (la) and subharmonic in a closed annulus, cut along the negative real 
axis. Fix a closed interval O<r:<-r<=r2<oo and choose e>0.  Then there exists 
6 > 0  (independent of  r), such that u(?-~ei"(:-~))<=u(rl-~)coslr2+e, because 
of  the semicontinuity of  the function u(z) (finite when 0 < 2 <  ~). Now put u~(z)-  
u(zl-~)-2e](1 - c o s  n2), which gives 

u~(--r)--u~(r) cos n2 ~ --e < 0. 

Next we make use of  the known fact (Tsuji chap. I I :5  [10]), that it is possible to 
construct a non-increasing sequence u,(z) of  twice continuously differentiable 
subharmonic functions converging to u~(z). Since u~(z) satisfies (la) with some 
margin, we find that u,(z) satisfies (la) for n sufficiently large. To see this, choose 
0 < e : < e / 2  and note that we may increase u.(z) by e: without violating (la). A further 
application of  the uniform semieontinuity on the intervals [ - r~ ,  - r : ]  and [r I, r~] 
shows the existence of  a 61>0 (independent of  r) such that u . ( z ) < u , ( - r ) + e l  
for  Iz+rl<0: and u.(z)<u,(r)+el  for [ z - r l < 6 : .  As u,(z) is constructed as 
a repeated mean of  u,(z) over a disc, the radius of which tends to zero as n 
goes to infinity, we get u . ( - r ) < u ~ ( - r ) + e :  and u. (r )<u. (r )+el  for large n. On 
the other hand, we always have u~(r)<=u.(r) and so, when 0 < 2 < ~  we get 

u, (-- r) -- cos n2u,(r) < u~(--r)+ea--cos n2u~(r) <= el--~ < O. 

In case ~ 2 ~  1 we obtain 

Un(--r)--COS ~2u,(r)  < u , ( - - r )+E~- -cos  n2u~(r)--s~ cos n2 < ~(1 - -cos  ~,~)--~ < 0. 

This discussion shows that regardless of  the sign of cos n)~ it is sufficient to consider 
twice continuously differentiable functions that fulfill the requirements of the 
theorem in a closed annulus cut along the negative real axis. In this case we have 
the inequality 

1 1 
Au = u.. + r u, + 7 Uq, q, >= O, 

which yields the following relation for the mean L(r ) :  

L"(r)+l L'(r)+l f :  u~,~,sin~,(n-kol)dq, >=0. (4) 

To the last term we apply integration by parts twice, remembering that u~(r )=0.  
Hence 

2 fo sin 2 O r -  q~) d~o = 22 (u ( -  r ) -  u (r) cos n2) 

--2'~z f2 u sin 2(n-q~) do  <-- 
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because of (la). Inserting this estimate into (4) yields 

rZL'(r)+rL'(r)-)tZL(r) >= O. (5) 

When we takc thc sign of equality in (5) we obtain the solution Ar x-{-Br -~. Therefore, 
the difference 

F(r) = L(r)--Ar~--Br -~ 

also satisfies (5). For  any two numbers R~ and R2 in Jr1, r2] we choose A and B such 
that F(RO=F(R2)=O. Then it is obvious from 

r2F"(r) + rF' (r)-- 22F(r) _-> 0 

that F(r) cannot have a positive maximum in (R~, R2). For  F ( r ) > 0 ,  F ' ( r ) = 0  
implies F " ( r ) > 0  which corresponds to a minimum! 

The conclusion is that the mean L(r) is a convex function with respect to the 
family ArZ + Br -~. 

Remark. The result is not true when condition (la) is replaced by u ( - r ) ~  
cos~) .M+(r)  in the case 0<z<-~ .  The function u(z)=rsin(q~-q~o), where 
~0 o is a constant, 0<q~0<z~ , furnishes a counterexample. Here u ( - - r ) > 0  and 
u ( r ) <0 ,  so (la) is certainly not satisfied. On the other hand M(r) cos ~)~--u(--r)= 
r(cos zc2--sin ~o0)>0 for q~0 sufficiently small. Furthermore L(r)=kr, where k < 0 .  
Put g(r)=a(r~-r-Z)+kr-Z, so that g(1)=L(1) .  By attributing a negative value 
of  large modulus to the constant a, we can make g(r) and L(r) coincide for a large 
value of  r. Clearly g(r) cannot possibly dominate the linear function L(r) to the 
left of such a point. 

5. Proof  of  Theorem H and the Corollary 

In order to obtain a convenient description of the convexity property we 
introduce the function ez ( t )= t z - t  -~. Let F(r) denote a function which is convex 
with respect to ArX+Br -~ and consider its values on three different radii 0<r l -<  
r<r 2. We define A and B by F(rO=Ar ~ + Br; ~ and F(r2)=Ar ~ +Br~ z. Eliminat- 
ing A and B in F(r)<=ArX+Br -~, we find that 

ez (rJrl) F(r) <= V(rl) ez (rJr) + V(r2) ez (r/ra). 

Assuming that F(r) is bounded from above at the origin (which is the case when 
F(r)=L(r) and F(r)=J(r)) and letting r l ~ 0  we obtain r-ZF(r)~=r~ZF(r~) 
which proves the Corollary. 
To prove the theorem we form a harmonic majorant H(z) of u(z) in D1. To this 
end put 

cos 2~p 
H(z) = [J(r  0 ex (rJr) + J(r2) ea (rlra)] ez (rJrl) " 
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This function is obviously harmonic in D 1, being a linear combination of  Rez  ~ 
and Re z-Z. Furthermore we have that H(rkei~~ 2q~, k =  I, 2 and that 
H(z) satisfies (lb) with equality. As u(z)~J(r)cos Xq~ by definition, it is evident 
that H(z) majorizes u(z) on Iz I = r  1 and lzl = r  2. An application of  Lemma 2 yields 
that u(z)<=H(z) in D1, that is 

cos 2q~ 
u (z) ~ [J(rl) ea (r2/r) + J(rz) ez (r/rO] 

ea(r2/rl) 
or  

ea (r2/r 0 J(r) ~ J(r 0 ez (rJr) + J(r2) e,. (r/r 0 

by the definition of  JO'). This inequality is the desired conclusion. 

6. Proof  of  Theorem HI 

We construct a harmonic majorant HR(z) of u(z) in D2 = {z:lz[<--R}n D in 
the following way. The values on the positive real axis of  a harmonic majorant in 
D2 may be expressed by means of Poisson's formula as 

where 

and 

h(r) = fro Q(r, t )h(- t)  dt+ f_~ T(r, qOh(Re i~~ drp, 

t+r R2+rt 

T(r, (p) = ] / ~ ( R - r )  cos (~0/2) 
(R 2 + r 2-  2Rr cos rp) " 

Here we have assumed that the values on the upper and lower edge of the cut are 
equal. This formula is derived in [7] p. 187. Now put HR(Rei~')--u(Re i~~ and 
HR(--r)=eos~),HR(r ). In se r t i ng  this in the relation above, Poisson's formula 
turns into an integral equation for HR(r) (or HR(--r)), We get 

= c o s  fro Q(r, t)HR(t)dt+f_~ r ( r ,  ~o)u(Re '~) d~o. 

This equation has a unique solution (see [7] p. 189) which defines HR(--r). Let 
H,(z)  be the harmonic function with boundary values HR(--r ) and u(Re i~) in 
D z. By construction HR(-r)=cosn2HR(r ) and an appeal to Lemma 2 with 
r l = 0  and r2=R shows that HR(z ) majorizes u(z). But HR(z) is majorized by 
the harmonic function U(z), where 

U(z) Re 2M(R) re2 ,.zm t z - l - P  -x 
= tan -~- Jo dt lr 1 --t ~ 
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and M(R)=suplzl=R u(z). This is so because U ( - r ) = c o s  rc2U(r) and U(Rei~')= 
M(R), i.e. Lemma 2 is applicable. I f  we assume lim inf,.oo r -z  M(r)< ~, which 
is the only case of  interest here, then U(z) converges to a constant multiple of 
r a cos 2q~ when R tends to infinity through a suitable sequence of  values. This 
implies that lim,_~r-~'J(r)=A<~o. From HR(Rei~')=u(Rei~)<=J(R)cos2q) <- 
AR z cos 2q~ we see by means of  Lemma 2 that HR(z) has an upper  bound Ar ~ cos 2q~ 

in D2 that is independent of  R. 
The same lemma also shows that Hgt (z) <= HR, (z) when RI<R2. By the 

Harnack convergence principle we conclude that H a (z) has a harmonic limit func- 
tion H~(z) in D. But f rom Lemma 1 we find that such a function must  be of  the 
type r z cos 2q~, and so Ht(z)=Ar ~ cos 2q9 since a smaller H~(z) would contradict 

the extremal nature of  A. From the construction of  H~(z) it is clear that 

lim R-XL(R, u) = lim R-XL(R, HR) = R-~L(R,//1) = Arc sinlr2, 

which is the first part  of  the statement in Theorem III.  
To prove the remaining part  we use an idea of Heins [5]. Recall that u(z)<= 

J(r) cos 2q9. From 
u(z) <= min [M(r), J(r) cos 2~0] 

we get 

o r  

L(r, u) <= L(r, min [M(r), J(r) cos )~o1) 

bn sin n 2 - d  <-_ L(r, min (a, b cos 2q~)) 

where a=r-aM(r),  b=r-ZJ(r) and d=blr sin lr2--r-~L(r) for convenience. But 

L(r, rain (a, b cos )~o)) = bzr sin re),-2 fo ~~ (b cos ).q~-a) sin 2(7r-  ~o) d~0 

where a=b c o s 2 % ,  and so 

d 2 f[o (bcos2q)-a)sin)@r-q))dqo. 

The convex factors in the integrand are estimated by b cos 2(p-a>=(b-a)(1-~o/q)o) 
and sin ;L(rc-~o)~ (1-~o/%) sin rc;~, which yields 

o r  

2 4 a 4 ( a ~3/z 
d _-> ~ q~0(b-- a) sin 7r2 => ~- ( b - a )  arc cos f f  > ~ b [1 --b-J ' 

a > b-O,9bl/3d2/3 > b-O,9A1/3d ~/3. 

Here we have also used that  0<~<=1/2 implies sin n2=>2, and in the last step 
2 
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we made use of the inequality b=r-aJ(r)<-lim~= r-ZJ(r)=A, which follows 
from the corollary. We have shown that 

r-XJ(r)-O,9AllZ[r-XJ(r)Tz sin re2-r -ZL(r ) ]  213 < r-ZM(r) <- r-XJ(r) 

from which the remaining part of  the statement in Theorem III follows. 

7. Proof  of  Theorem IV 

A similar discussion, as in the beginning of  the proof  of  Theorem I, shows 
that we need only consider symmetric, twice continuously differentiable functions 
in a closed annulus b 1, cut along the negative real axis. As a result of  this regulariz- 
ation process, the function may now have a negative greatest lower bound in D1. 
We make the function positive in D1 by adding ekr ~ cos 2rp, which has no influence 
on the validity of  (lc). Here k > 0  is a suitably chosen constant (independent of e). 

Clearly, this resulting new function, which we also denote u(z), has a mean 
that is arbitrarily close to the mean of the original function. Put G(r)=L~(r), 
u(z)=q(z)cos2go and note that q(z)>=ekr~l in D1. Differentiating twice, we 
obtain 

G(r) = f~_~ q'(z) cos ;trp sin ,~(rc-191) drp. 

G'(r) = ~ f~ q'-~(z)u,(z) sin 2(7r--]q~l) dcp. 

q'-~(z)u~(z) sin ;t (zr-I~ol) d~ 
G"(O = ~(~- 1 ) f "  

cos 2q~ 

+~ f~_. q'-'(~).,,(~) sin ~(, -I~1) a~. 

Next we apply Cauchy--Schwarz inequality to G'(r) yielding 

(~'(r)), <= ~, c ( r ) f ' _  

Since u(z) is subharmonic we have 

q~-~(z)u~,(z) sin 2(~--t~ol) d~0. 
cos 2rp 

1 1 
U. + r  U, +-~ u,p~ >= O, 

which together with the previous estimate is inserted in the expression for G"(r). 
There results 

(a ' (o)  ~ ~f~ G"(r) >-- 1--G'(r).--~ q~-l(z)u~(z)sin).(Tz-Icpl)dq~. 
<z G(r) r -~ 
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The last term is estimated by means  of Lem ma  3 and  we get 

e - -1  . . . .  (G'(r ) )  2 1 G , ( r )+~) .2G (r ) "  G"(r)  >= 
G(r)  r 

Going  back to L~(r)  this is 

. 1 , 22 
L ~ ( r ) + r L ~ ( r ) - - ~  L~(r) ~ O. 

The remain ing  arguments  are the same as in the proof  of Theorem I. 
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