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Let D be a bounded domain with smooth boundary, 019, in the complex plane 
C. Various authors ([1], [2], [3]) have used a representation of the Green's func- 
tion g(z, w, t) for the heat equation 

Ou O~u O~u 
(1) O--'t- = Ox ~ b Oy-- 7 

and D in terms of the so-called elementary solution 

1 --~-- 
(2) p (z, t) = ~ exp 

of (l), amounting to the following: 
Take At=2-"  with n large. Then, if t > 0  is an integral multiple of At, say 

t = ( k + l ) 2 - " ,  and z, wED, g(z, w, t) is approximately 

f f .. f f p (w- e l ,  a t) p ((1 - -  ~2, A t) . . .  p ((k - -  Z, A t) d~l drh ... rick drh. 

(Here, and in all that follows, we write (~=~+i~/l and similarly ~=~+ir/, z = x + i y ,  
and w=u+iv . )  

This representation for g(z, w, t) has a simple physical explanation in terms 
of diffusion ([1], p. 13) and can be established rigorously with the help of Brownian 
motion theory ([2], p. 238 - -  although [4] does not give the representation explicitly, 
it is also worth consulting in this connection). One must know considerable probab- 
ility theory in order to follow such a rigorous derivation. The formula has, how- 
ever, such a strong intuitive appeal that one feels it must have a simple direct 
proof. Such a proof, based essentially on the property of upper semi-continuity, 
is given here. 

I learned about the product integral representation in a lecture given by Serge 
Dubuc at McGill University in the fall of 1976. He and Gilles Deslauriers used 
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it in deriving some convexity properties for solutions of (1). Later on C. Borell 
who had also done similar work, pointed out to me that this application had 
already been made by Brascamp & Lieb in [3]. I am thankful to Mr Borell, and to 
H. McKean as well, for having provided me with references and told me something 
about the history of  this material. 

After I had submitted the MS of this paper, E. Calabi told me about Yamabe's 
earlier non-probabilistic proof  [5] of a more elaborate version of  the product 
integral representation. Yamabe's argument is different from the one given below, 
and is more difficult technically. 

w 1. The following treatment applies to fi =V2u in R" (after one adjusts, of 
course, (2) for n spatial dimensions), but we present it for the case n = 2  in order 
to preserve the essential difficulties while keeping the notation as simple as possible. 
We take, then, a bounded domain D in C. In what follows, we assume that OD 
fulfills at each o f  its points the Poincard cone condition, i.e. i f  zoEOD there is a sector 
S with vertex at Zo and a disk A centered at Zo such that A n D and S do not overlap 
(save at Zo). 

It is easier to write the product integral approximations to g(z, w, t) in piece- 
wise fashion: 

Definition. I f  n = l ,  2, 3, ..., t > 0 ,  wED and zEC(sic!), put 

(3) g,(z, w, t) = p(z - -w,  t) for O < t <= 2-", 

(4) g,(z, w, t) = f f o p(z-r t - k .  2-")g,(~, w, k . 2-")d~ d~l 

for k . 2 - " < t < = ( k + l ) . 2  -", k = 1 , 2 , 3  . . . . .  

We are to prove that, for zED, wED, and t>O, g,(z, w, t) tends, as n - * ~ ,  to a 
function g(z, w, t) having the following properties: 

(i) g(z, w, t) is non-negative and measurable on D XD X(O ,  ~). For each wED 
the function u(z, t )=g(z ,  w, t) is C ~ on DX(O, ~)  and satisfies (1) there. 
(ii) For each wED, g(z, w, t) is continuous for zED and t>0 ,  and g(z, w, t ) = 0  
for zEOD, t>0 .  
(iii) For each zED, g(z ,w, t )dudv acts, on D, like 6 (w- z )d u d v  as t-~0, where 
fi is the Dirac &function on C. 

Taken together, (i), (ii) and (iii) amount to a description of  g(z, w, t) as the Green's 
function of  ~=VZu for the domain D. 

Lemma 1. Each function gn(z, w, t) is >=0 and continuous on D X D X ( 0 ,  oo). 
For f ixed t > 0  and wED it is continuous in z on C. For f ixed wED it is upper semi- 
continuous in (z, t) on DX(0, co), i.e., i f  z0ED and t0>0, 

(5) lim sup g,(z, w, t) <_- gn(z0, w, to). 
(z, z)~(~o, to) 
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Proof. Everything is immediate from (3) and (4) and the well-known approx- 
imate identity property of p(z ,  t), except perhaps the upper semi-continuity. If 
k =  1, 2, 3 . . . .  , g.(z, w, t) is evidently continuous in (z, t) for zE C and ( k -  1)2-"< 
t<=k.2 -", so we need only verify (5) for zoCD, to of form k .2-" ,  and t tending to 
t o from above. For such t, (4) gives 

g,(z, w, t) <= f f c p(z-r t - k .  2-")g,(~, w, k . 2-")d~ dq. 

Now g , ( ~ , w , k . 2 - " )  is clearly bounded and continuous in ~ over C, so the 
approximate identity property of p(z,  t) implies that the last integral tends to 
g,(z  o, w, k-2-")  as z ~ z  o and t ~ k . 2 - " .  The inequality just written thus yields (5). 

Remark. Let F(w) be continuous and of compact support in D, and non- 
negative. The function 

(z, t) = f f  g.(z, w, t) F(w) du dv v. 

has the same continuity and semi-continuity in (z, t) as is established for g.(z, w, t) 
in Lemma 1. The proof of this is the same as that of the lemma. 

We now give two formulas. The first is the well-known reproducing property 

(6) p ( z - w , t + t ' ) ~ - f f c p ( Z - ~ , t ) p ( ~ - w , t ' ) d C d ~ l ,  validfor t & t ' > 0 .  

The second is an immediate consequence of (3) and (4), and says that 

(7) g.(z, w, t+r )  = f f  g.(z, ~, t )g.(( ,  w, r) d~ an 

whenever t > 0  and r is o f  the special form k . 2 - " ,  k = 1 , 2 , 3  . . . . .  

Lemma 2. g.+l(z, w, t)~_g.(z, w, t). 

Proof. If 0<t<_-2 -"-1, gn+l(z, w, t )=g. (z ,  w, t) by (3). If t = t '  +2 -"-1 with 
0<t '<-2  -"-1, then by (3), (6) and (4), g . ( z , w , t ) = p ( z - w , t ' + 2 - " - x ) ~  
f f op(z-(, t ' ) p ( ( - w ,  2-"-~)acan--g.+l~z,  w, t )  The desired inequality is now 
proved for O<t<-2 -". Suppose it has been established for O < t ~ k . 2 - " ,  where 
k = l ,  2, 3 . . . . .  To extend its validity to the range k . 2 - " < t < - ( k + l ) 2  -", write 
t = t ' + k . 2 - " = t ' + ( 2 k ) . 2  -" -x  with 0<t'_<-2 -", and apply (7) twice: 

gn+l(Z, W, t) = ffD gn+l(Z'  ~' t')g,+~((, w, k .  2-")d~ d~/ 

<- f f  o g" (z, ~, t') g. ((, w, k .  2-") d~ dr 1 

= g . ( z , w , t ) .  

The lemma thus holds by induction on k. 



156 Paul Koosis 

Remark. By the same argument, 

(8) g.(z, w, t) <= p ( z - w ,  t). 

Now g,(z, w, t)>=O, so by Lemma 2, lim,~= g,,(z, w, t) exists and is ~0 .  

Definition. For t>0 ,  zED and wED, 

(9) g(z, w, t) = lira g,(z, w, t). 

Lemma 3. For each wED, g(z, w, t) is upper semi-continuous in (z, t). 

Proof By Lemmas 1 &2, and advanced calculus. 

Lemma 4. I f  t > 0  and r > 0  is a dyadic rational, then 

g(z, w, t + r) = f f D g(z, (, t) g((, w, r) d~ d~l. 

Proof By (7), (8), (9) and Lebesgue's dominated convergence theorem. 
w 2. We proceed to verify properties (ii), (i) and (iii) (in that order) for the 

function g(z, w, t) defined by (9). 

Theorem 1. g(z, w, t ) = 0  for t>O, wED and zEOD. 

Proof Given t>0 ,  wED and zEOD let S be a sector of  opening 2 a > 0  with 
vertex at z which does not contain any ~ED with 0 < l ~ - z l < c o ,  say, where co:~0. 
(This is the Poincar6 cone condition.) Taking any e > 0  we can, by Lemma 3, 
find c, 0 < c < co, such that 

(10) g ( ~ , w , t ' ) < g ( z , w , t ) + e  for I t ' - t [ < c  and ~ED, [ ~ - z [ < c .  

There exist arbitrarily small 6 with 0 < 6 < c  and t - 6  a dyadic rational. For such 
6, by Lemma 4 and the remark to Lemma 2, 

g(z, w, t) = f f  D g(z, ~, 6)g(~, w, t - 6 )  d~ drt 
(11) 

f f  D P ( z -  6) g (r w, t -  6) dJT. 

Break up the right-hand integral in (11) into two, the first over D n{( ;  l(-z[-<c} 
and the second over the rest of D. By (10) and our choice of 6, the first integral is 

<= (g(z, w, t)+O f f  c~  p(r 6) de dtl 

which is seen to be ~ [ g ( z ,  w, t )+e]  by direct calculation. Using (8) and (2) 
7~ 

one shows easily that the second integral is 

1 f f l ~  zinc p ( ~ - - z ,  6) d~ dr 1. - 4re ( t -  6) - - 



Green's function for the heat equation as a limit of product integrals 157 

If  we fix c and take 5 > 0  small enough (keeping t - 3  a dyadic rational), we can 
make this last expression <~. Going back to (11), we get 

g(z, w, t) ~_ ~--~g(z,  w, t)+ 2rc--~t s. 
7[ 7~ 

Since e>O is arbitrary and ~ > 0  depends only on the choice of zEOD, we have 
g(z, w, t)=O. Q.E.D. 

Corollary. For any wED and t > 0 ,  g(z, w, t)~O whenever zE D approaches OD. 

Proof. By the non-negativity of g(z, w, t), the theorem, Lemma 3, and 
compactness of D. 

Theorem 2. For each wED, the function u(z, t)=g(z, w, t) is C ~ in D• co) 
and satisfies ti=V2u there. 

Proof. I f  the assertion holds for each of the functions gn(z, w, t) it also holds 
for g(z, w, t) by Lemma 2, (9), and well known elementary theorems about the 
heat equation. 

So, for any given n and fixed wED, consider the function v(z, t)=gn(z, w, t). 
From (3) or differentiation under the integral sign in (4) it follows that v(z, t) 

is C ~ on each of  the slabs DX((k--1)2-n,k .2-n) ,  k = 1 , 2 , 3 ,  ..., and satisfies 
ti = V ~ v there. 

We have to check that the behaviour of v (z, t) is alright when t is near any 
of  the values k .2-" ,  k = 1 , 2 , 3  . . . . .  Take any fixed k. For  t > ( k - 1 ) 2  -~ and 
zEC, put 

[p(z-w,t) in case k = l  

02) V(z, t) = { f f o p ( z - r 1 6 2  w, (k- 1)2-0 de de 
! m case k > 1. 

Observe that V(z , t )=v(z , t )  for ( k -1 )2 -*<t<-k .2  -n by (3) or (4). V(z,t)  
is clearly C ~ and satisfies I?=VaV on DX((k- - I ) -2 -n ,  oo). If  k - 2 - n < t <  
( k + l ) . 2 - ' ,  we have from (12) and (6), followed by (3)or  (4)with Fubini's the- 
orem in case k > 1, 

g(z, t) = f f c p ( Z - r  t - k .2 -n)g . (~ ,  w, k .2-n)d~ dr/. 

With (4) this yields finally 

(13) V(z, t )-~(z ,  t) = f f c ~ o  p ( z -  r t - k .  2-")g,(~, w, k -2-") de dr/. 

Now if  t - k . 2 - n ~ - 0 +  and z~zoED it is easy to see from (13) and (2) that 
V(z, t ) -v ( z ,  t) and all the partial derivatives thereof tend to zero. This is so 
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R 2 ) At 
because exp - - ~ -  goes to zero faster than any power of  -~- when the latter 

goes to zero ~ to estimate g.((, w,k .2-")  in (13) one may use the remark to 
Lemma 2. 

We see that v(z, t) is C = and satisfies ~)=V2v near t=k  . 2 - "  because V(z, t) 
has that behaviour there. We are done. 

Theorem 3. g(z, w, t) is the Green function for fi =V2u and the domain D. 

Proof. Since g(z, w, t)>-O it suffices to establish the following: 
Take any continuous and non-negative f with compact support in D, and write 

for z~D and t>0 ,  

u (z, t) = f f D  g (z, w, Of(w) du dr. 
Then: 

(a) u(z, t) is C ~ in DX(0,  ~o) and satisfies fi = V2u there. 

(b) If  t > 0, then u (z, t) ~ 0  as z approaches 019. 

(c) I f  t ~ 0 +  and Z~ZoED, then u(z,t)~f(zo).  

We proceed. Let 

(14) un(z, t) = f f D g,(z, w, t)f(w)du dr. 

The argument used in proving Theorem 2 shows that each u,(z, t) is C = on DX(0,  oo) 
and satisfies ~,=V2u,  there. By (9), the remark to Lemma 2, and Lebesgue's 
dominated convergence theorem we have u,(z, t)~u(z, t) as n - ~ .  This con- 
vergence is monotone (decreasing) by Lemma 2 and the non-negativity of  f(w). 
So (a) follows from standard theorems about the heat equation. 

The corollary to Theorem 1, the remark to Lemma 2, and Lebesgue's dominated 
convergence theorem now give (b). 

We must prove (c). By (14) and (3), for 0 < t ~ 2  -",  

u. (z, t) = f f o  p ( z -  w, t)f(w) du dv, 

so, since f (w)  is of compact support in D, 

(15) u.(z,t) ~f(zo) whenever t ~ 0  and z ~  z0CD. 

In particular, u.(z, t)~O if t ~ 0  and z~zo~OD, so, if we define u.(z, 0) to be 
zero for z~OD, the remark to Lemma 1 shows that each u.(z, t) is upper semi-con- 
tinuous on OD X [0, oo). 

By Theorem 1 u(z,t)-=O on ODX(O, ~o), so u.(z,t)~O for zEOD & t > 0  
as n ~  ~ .  By (14), Lemma 2, and the non-negativity of  f(w) we also have u.(z, t)~= 
u.+~(z, t). Since OD is compact, Dini's theorem now implies that u.(z, t)~O uni- 
formly on any set of  the form 0DX[0, T] as n-~ ~o. 
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Fix any T > 0 ,  and let 8 > 0  be given. As we have just seen, there exists an 
N such that O<-un(z,t)<s whenever n > N ,  zEOD and O<t<=T. Let N < n < m ,  
O<t<:T and z tend to zoEOD f rom D. By Lemma 2 and upper  semi-continuity 
of u~(z, t), 

(16) 0 -< lim sup (u.(z,  t ) -um(z ,  t)) ~_ lim sup u,(z,  t) ~_ u,(zo, t) < ~. 
Z~2 o Z ~  0 

Also by (15), if z tends to z0ED from D and t-~0, 

(17) u,(z,  t)--um(z, t) ~ f (zo)-- f (zo)  = O. 
O 

However, -ff f(u,--Um)=W(u,-Um) so by (16), (17) and the principle o f  maximum 

for  the heat equation, O<-u,(z, t)--Um(Z, t ) < ~  on O •  T] whenever m > n > N .  
Now keep n > N  fixed and make m ~ o o .  We get in the limit 

(18) O ~ _ u , ( z , O - u ( z , O ~ _ 8  on BX(0 ,  T] if  n > N .  

Let t ~ 0  + and zED tend to z0EB. Choosing n > N ,  we have by (15) and (18), 

lim sup [u(z, t ) - f (zo)[  -~ e. 
Z ~ Z  0 

But 5 > 0  was arbitrary. So u(z, t )~f(Zo) if  t ~ 0  + and z~zoED.  We are done. 

Remark. The argument has actually furnished a p roof  of  the existence of  the 
Green's function for f i=V2u and the domain D. 

Remark. The same method can be applied to some other problems of  the 
form f i=Lu. 
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