An independence structure on indecomposable modules

István Beck*)

Introduction

A module A is called an *Le-module* provided its endomorphism ring is local, and a module M has an *Le-decomposition* if it is isomorphic to a direct sum of Le-modules.

In this paper we first give a simple proof of Azumaya's theorem concerning Le-decompositions. If $M = \bigoplus_I A_i$ is an Le-decomposition and A is any Le-module, we show that

$$\# \{i | A_i \cong A\} = \dim_{\mathcal{A}_A} F_A(M),$$

where $F_A(M)$ is a vector space over the divison ring Λ_A . Since $F_A(M)$ depends only on A and M the uniqueness of an Le-decomposition follows.

In the second section we show that the family $\mathfrak{L}(M)$ of direct summands of M which are Le-modules can be considered as an independence structure. This independence structure decomposes into simpler structures $\mathfrak{L}_A(M)$ which are closely related to the classical independence structure on the vector space $F_A(M)$. In particular, $\dim_{A_A} F_A(M) = \dim \mathfrak{L}_A(M)$.

Any independence structure has a basis, and in theorem 2.10 we show that the Le-decomposition $M = \bigoplus_{i} A_{i}$ complements direct summands iff for any basis $\{B_{i}\}_{J}$ for $\mathfrak{L}(M)$ we have that $\bigoplus_{J} B_{i} = M$.

Terminology: Our notation follows Anderson and Fuller [1] and we refer the reader to this book. There is some overlap with results in [3] where some of the ideas in this paper are more developed.

We are considering left modules over an associative ring R with an identity. All the maps between modules are R-homomorphisms and map=R-homo-

*) Supported by The Norwegian Research Council for Science and the Humanities

morphism. Furthermore, mono=monomorphism, epi=epimorhpism, and iso=isomorphism.

If $f: X \to \bigoplus_I Y_i$ we let $f_i = \prod_i f$ where \prod_i is the projection on Y_i . Furthermore, if $g: \bigoplus Y_i \to X$, we let $g_i = g\varepsilon_i$, where ε_i is the injection of Y_i into $\bigoplus_I Y_i$.

We emphasize the use of \oplus in this paper. It is used exclusively on submodules of a given module (*internal sum*).

The expression $M = N_1 \oplus N_2$ signifies that N_1, N_2 are submodules of $M, N_1 \cap N_2 = (0)$ and $N_1 + N_2 = M$. An expression $\bigoplus_I N_i \lhd M$ expresses that the sum $\sum_I N_i$ is direct and that $\sum_I N_i$ is a *direct summand* of M. Therefore, $\bigoplus_I N_i \lhd M$ means that the sum $\sum_I N_i$ is not direct or $\sum_I N_i$ is not a direct summand of M.

If M is a module, we let J_M denote the Jacobson radical of End M.

A decomposition $M = \bigoplus_I M_i$ complements direct summands if for any direct summand K of M, $M = K \oplus (\bigoplus_J M_i)$ for some subset $J \subset I$.

A module M has the exchange property if for any module Ω , if

$$\Omega = M' \oplus L = \bigoplus_i N_i$$

with $M' \cong M$ then there are submodules $N'_i \subset N_i$ such that $\Omega = M' \oplus (\bigoplus_I N'_i)$.

A finite sum of Le-modules has the exchange property. A simple proof of this is given in [3] (Remark after Theorem 4). Another proof can be found in [1, Lemma 26.4].

1.

In this section we give a simple proof of Azumaya's theorem. Our proof is a combination of a few elementary observations.

Lemma 1.1. Let $f: M \to \bigoplus_I M_i$ and $g: \bigoplus_I M_i \to M$ be maps such that gf(x) = x for some $x \in M, x \neq 0$. Then $g_i f_i \notin J_M$ for some $i \in I$.

Proof. For some finite set $\{i_1, \ldots, i_k\} \subset I$ we have that

 $x = (g_{i_1}f_{i_1} + \ldots + g_{i_k}f_{i_k})(x).$ Hence $g_{i_1}f_{i_1} + \ldots + g_{i_k}f_{i_k} \notin J_M.$

Lemma 1.2. Let A be an Le-module and $f: A \rightarrow \bigoplus_I M_i$. Then f is a split mono iff f_i is a split mono for some $i \in I$.

Proof. If f_i is a split mono then trivially f is a split mono. Conversely assume that f is a split mono and let $g: \bigoplus_I M_i \to A$ have the property that $gf=I_A$. Hence $g_i f_i \notin J_A$ for some $i \in I$. This implies that $g_i f_i$ is an isomorphism, so f_i is a split mono.

For any Le-module A and arbitrary module M we let J(A, M) denote the subset of $\operatorname{Hom}_R(A, M)$ consisting of all maps $f: A \to M$ which are not split mono. One easily verifies that J(A, M) is a submodule of the right End A-module $\operatorname{Hom}_R(A, M)$, and furthermore $\operatorname{Hom}_R(A, M) \cdot J_A \subset J(A, M)$. Hence $F_A(M) =$

 $\operatorname{Hom}_{R}(A, M)/J(A, M)$ is a right Δ_{A} -module where Δ_{A} denotes the division ring $\operatorname{End} A/J_{A}$. We note that $F_{A}(A) = \Delta_{A}$.

Lemma 1.3. $F_A(\coprod_I M_i) \cong \coprod_I F_A(M_i)$ (\varDelta_A -isomorphism).

Proof. We have a canonical map $\varphi: F_A(\coprod_I M_i) \to \prod_I F_A(M_i)$ defined by $\varphi(\vec{f}) = (\vec{f}_i)$ for any $f: A \to \coprod_I M_i$. Lemma 1.2 implies that θ is 1-1. Trivially im $\varphi \supset \coprod_I F_A(M_i)$. Moreover, for any $f: A \to \coprod_I M_i$, f_i is a (split) monomorphism for at most a finite set of $i \in I$. Hence $\vec{f}_i = 0$ for almost all $i \in I$. Hence im $\varphi = \coprod_I F_A(M_i)$.

The uniqueness of an Le-decomposition follows from these lemmas.

Theorem 1.4. Let $M = \bigoplus_I A_i$ be an Le-decomposition. For any Le-module A, $[F_A(M): \Delta_A] = \#\{i | A_i \cong A\}$.

Proof. For any indecomposable module B, $F_A(B) \cong \Delta_A$ if $B \cong A$ and zero otherwise. The result follows now from Lemma 1.3.

Theorem 1.4 implies that if $M = \bigoplus_I A_i = \bigoplus_J B_j$ are two Le-decompositions of M, then we have a bijection $\sigma: I \rightarrow J$ such that $A_i \cong B_{\sigma(i)}$ for all $i \in I$. To complete the proof of Azumaya's theorem we need two more simple lemmas.

Lemma 1.5. Let $f: M \to N$ and $g: N \to M$ be R-homomorphisms. Then $l_N + fg$ is an isomorphism iff $l_M + gf$ is an isomorphism.

Proof. $(l_N + fg)^{-1} = l_N - f(l_M + gf)^{-1}g$ whenever $l_M + gf$ is an isomorphism.

Lemma 1.6. Let $f: A \rightarrow M$ and $g: M \rightarrow A$ be R-homomorphisms. Suppose that A is an Le-module and $fg \notin J_M$. Then f is a split mono and g a split epi.

Proof. If $fg \notin J_M$ then $l_M + hfg$ is not an isomorphism for some $h \in \text{End } M$. Hence $l_A + ghf$ is not an isomorphism (lemma 1.5), so ghf is an isomorphism. This proves lemma 1.6.

We are ready to prove the remaining part of Azumaya's theorem.

Theorem 1.7. (Azumaya) Let $M = \bigoplus_I A_i$ be an Le-decomposition and let $X \oplus L = M, X \neq (0)$. Then

i) X contains a direct summand A which is isomorphic to A_i for some $i \in I$.

ii) If X is indecomposable, then for some $i_0 \in I$, $M = A_{i_0} \oplus L = X \oplus (\bigoplus_{i \neq i_0} A_i)$.

Proof. Let $f: \bigoplus_I A_i \to X$ be the projection on X along L, and let $g: X \to \bigoplus_I A_i$ be the injection of X into M. Then $f_i g_i \notin J_x$ for some $i \in I$, hence (lemma 1.6) f_i is a split mono and g_i a split epi. This proves i).

Assume now that X is indecomposable and that f_{i_0} is a split mono and g_{i_0} a split epi. Since both X and A_{i_0} are indecomposable it follows that f_{i_0} and g_{i_0} are isomorphisms, and this proves the second statement in Theorem 1.7.

Remark. Lemma 1.6 has several other interesting corollaries, (see [3]).

2.

Let M be an R-module. We define $\mathscr{L}(M)$ to be the set of direct summands of M which are Le-modules. For any Le-module A we let $\mathscr{L}_A(M)$ be the subset of $\mathscr{L}(M)$ consisting of those elements which are isomorphic to A. We let supp Mbe a set containing one representative from each isomorphism class in $\mathscr{L}(M)$. Hence $\mathscr{L}(M) = \bigcup_{\text{supp } M} \mathscr{L}_A(M)$.

Independence structures arise when one considers abstract properties of linear independence of vectors in a vector space.

Definition. Let E be a non-empty set. A non-empty collection \mathscr{E} of subsets of E is called an *independence structure* if it satisfies the following three axioms. 11. If $X \in \mathscr{E}$ and $Y \subset X$ then $Y \in \mathscr{E}$.

12. If X, Y are finite members of \mathscr{E} and |X| = |Y|+1, then there exists an element $x \in X$ such that $Y \cup \{x\} \in \mathscr{E}$.

13. A set $X \in \mathscr{E}$ iff any finite subset of X is in \mathscr{E} .

The members of \mathscr{E} are called the *independent subsets*. A maximal independent subset is called a *basis* for *E*. Any two bases have the same cardinal number (R. Rado), and we let *dim E* denote this cardinal number.

For each *R*-module *M* we shall define an independence structure on $\mathscr{L}(M)$ and $\mathscr{L}_A(M)$. We let $\mathscr{E} = \mathscr{E}(M)$ be the following collection of subsets of $\mathscr{L}(M)$: A set $\mathscr{A} \in \mathscr{E}$ iff for any finite subset $\{A_1, \ldots, A_k\} \subset \mathscr{A}, A_1 \oplus \ldots \oplus A_k \lhd M$. For any Le-module *A* we similarly define $\mathscr{E}_A = \mathscr{E}_A(M) = \{\mathscr{A} \cap \mathscr{L}_A(M)\}_{\mathscr{A} \in \mathscr{E}(M)}$.

Proposition 2.1. a) \mathscr{E} is an independence structure on $\mathscr{L}(M)$

- b) \mathscr{E}_A is an independence structure on $\mathscr{L}_A(M)$ ($A \in \text{supp } M$).
- c) Let $E \subset \mathscr{L}(M)$. Then $E \in \mathscr{E}$ iff $E \cap \mathscr{L}_A(M) \in \mathscr{E}_A$ for all $A \in \text{supp } M$.
- d) A set $E \subset \mathscr{L}(M)$ is a basis iff $E \cap \mathscr{L}_A(M)$ is a basis for $\mathscr{L}_A(M)$ for all $A \in \text{supp } M$.

Proof. a) I1 and I3 are trivially satisfied. We need to show I2. Let $X = \{A_1, \ldots, A_{n+1}\} \in \mathscr{E}$ and $Y = \{B_1, \ldots, B_n\} \in \mathscr{E}$. Let $A_1 \oplus \ldots \oplus A_{n+1} \oplus C = M$. Since $B_1 \oplus \ldots \oplus B_n \lhd M$ and $B_1 \oplus \ldots \oplus B_n$ has the exchange property, we have

$$(B_1 \oplus \ldots \oplus B_n) \oplus (A'_1 \oplus \ldots \oplus A'_{n+1} \oplus C') = M.$$

If $A'_1 = A'_2 = \ldots = A'_{n+1} = (0)$ we would get that $B_1 \oplus \ldots \oplus B_n \cong A_1 \oplus \ldots \oplus A_{n+1} \oplus C''$. Hence $A'_i = A_i$ for some $1 \le i \le n+1$ and therefore $\{B_1, \ldots, B_n, A_i\} \in \mathscr{E}$.

b) The restriction of an independence structure to a subset is again an independence structure.

c) By definition $E \in \mathscr{E} \to E \cap \mathscr{L}_A(M) \in \mathscr{E}_A$. Conversely, let $E \subset \mathscr{L}(M)$ and assume that $E \cap \mathscr{L}_A(M) \in \mathscr{E}_A$ for all $A \in \text{supp } M$. To show that $E \in \mathscr{E}$ it can be

assumed that E is a finite set. Let

$$E = \{A_{1,1}, \dots, A_{1,r_1}, A_{2,1}, \dots, A_{2,r_2}, \dots, A_{s,1}, \dots, A_{s,r_s}\}$$

where $A_{ij} \cong A_{kl}$ iff i = k. Hence

$$B_{1} = A_{1,1} \oplus \ldots \oplus A_{1,r_{1}} \lhd M$$
$$B_{2} = A_{2,1} \oplus \ldots \oplus A_{2,r_{2}} \lhd M$$
$$\vdots$$
$$B_{s} = A_{s,1} \oplus \ldots \oplus A_{s,r_{s}} \lhd M.$$

Let $B_1 \oplus X_1 = M$. The module B_2 has the exchange property so $B_2 \oplus B'_1 \oplus X_2 = M$, $B'_1 \subset B_1$ and $X_2 \subset X_1$. Hence $B_2 \cong B''_1 \oplus X'_1$ where $B'_1 \oplus B''_1 = B_1$ and $X'_1 \oplus X_2 = X_1$. The Krull—Schmidt theorem implies that $B''_1 = (0)$, hence $B_1 \oplus B_2 \oplus X_2 = M$. We now use that B_3 has the exchange property. Since no direct summand of $B_1 \oplus B_2$ (different from (0)) is isomorphic to a direct summand of B_3 we get that $B_1 \oplus B_2 \oplus$ $B_3 \oplus X_3 = M$ etc.

d) Follows from b) and c).

Since the independence structure on $\mathscr{L}(M)$ is the disjoint sum of the independence structures on $\mathscr{L}_{\mathcal{A}}(M)$ we may concentrate on these structures.

Theorem 2.2. Let A be an Le-module and let $\{f_i\}_{i \in I}$ be a family of split monomorphisms from A to M. Then the family $\{f_i(A)\}_I$ is independent in $\mathcal{L}_A(M)$ iff the family $\{\overline{f}_i\}_I$ is independent in $F_A(M)$. Furthermore, $\{f_i(A)\}_I$ is a basis for $\mathcal{L}_A(M)$ iff the family $\{\overline{f}_i\}_I$ is a basis for $F_A(M)$.

Proof. We want to show $\{f_i(A)\}_I$ independent $\Leftrightarrow \{\overline{f}_i\}_I$ independent We can assume that $|I| < \infty$. Let $\overline{f}_1, \ldots, \overline{f}_n$ be an independent set in $F_A(M)$ and let $A_i = f_i(A)$ $(1 \le i \le n)$. Let $1 \le k \le n-1$ and assume that $A_1 \oplus \ldots \oplus A_k \lhd M$.

Let $A_1 \oplus ... \oplus A_k \oplus X = M$ and let $\pi_1, ..., \pi_k, \pi_x$ be the projections associated with this decomposition. Hence $\pi_1 + ... + \pi_k + \pi_x = 1_M$. Therefore,

$$f_{k+1} = \pi_1 f_{k+1} + \ldots + \pi_k f_{k+1} + \pi_x f_{k+1}$$

Since im $\pi_i = \inf f_i$ $(1 \le i \le k)$ and the f_i 's are monomorphisms, we have maps $\varphi_i \in \text{End } A$ $(1 \le i \le k)$ such that $\pi_i f_{k+1} = f_i \varphi_i$ $(1 \le i \le k)$. Hence

$$f_{k+1} = f_1 \varphi_1 + \ldots + f_k \varphi_k + \pi_x f_{k+1}.$$

Since the set $\{f_1, \dots, f_k, f_{k+1}\}$ is lin. independent it follows that $\overline{\pi_x f_{k+1}} \neq 0$. Hence $\pi_x f_{k+1}$ is a split mono. Therefore $\pi_x (A_{k+1})$ is a direct summand of X and π_x restricted to A_{k+1} is a monomorphism. Let $\pi_x (A_{k+1}) \oplus X' = X$. Then one easily proves that $A_1 \oplus \ldots A_k \oplus A_{k+1} \oplus X' = M$, hence $A_1 \oplus \ldots \oplus A_{k+1} \lhd M$. Since $A_1 \lhd M$, we can conclude that $A_1 \oplus \ldots \oplus A_n \lhd M$ which shows that $\{A_1, \dots, A_n\}$ is independent.

István Beck

Conversely assume that $A_1 \oplus ... \oplus A_n \oplus X = M$. We claim that $\{\overline{f}_i\}_{i=1,...,n}$ are independent. Let $\pi_1, ..., \pi_n, \pi_x$ be the projections associated with the decomposition $A_1 \oplus ... \oplus A_n \oplus X = M$, and assume that $f = f_1 \varphi_1 + ... + f_n \varphi_n \in J(A, M)$. Then $\pi_i f = f_i \varphi_i \in J(A, M)$. This implies that φ_i is not an isomorphism in End A, hence $\varphi_i \in J_A$. Hence $\overline{\varphi}_1 = ... = \overline{\varphi}_n = \overline{0}$ in Δ_A . Therefore $\{\overline{f}_1, ..., \overline{f}_n\}$ are independent over Δ_A .

It is now trivial that $\{f_i(A)\}_{i \in I}$ is a basis for $\mathscr{L}_A(M)$ iff $\{f_i\}_{i \in I}$ is a basis for $F_A(M)$.

Corollary 2.3. dim $\mathscr{L}_A(M) = [F_A(M) : \Delta_A].$

Corollary 2.4. Let $\{B_i\}_I$ and $\{C_i\}_J$ be two bases for $\mathscr{L}(M)$. Then $\bigoplus_I B_i \cong \bigoplus_J C_j$.

Proof. Let $B = \{B_i\}_I$. Then $B \cap \mathscr{L}_A(M)$ is a basis for $\mathscr{L}_A(M)$. Hence $\#\{i | B_i \cong A\} = [F_A(M) : \Delta_A]$. This shows that $\bigoplus_I B_i \cong \bigoplus_J C_j$.

Let A_1, \ldots, A_n be Le-modules and $M = A_1 \oplus \ldots \oplus A_n$. Then $\{A_1, \ldots, A_n\}$ is trivially a maximal independent set in $\mathscr{L}(M)$; in other words $\{A_1, \ldots, A_n\}$ is a basis for $\mathscr{L}(M)$. Let $\{B_1, \ldots, B_n\}$ be another basis. Then $B_1 \oplus \ldots \oplus B_n \lhd M$. If $B_1 \oplus \ldots \oplus B_n \neq M$, theorem 1.7i implies that $\{B_1, \ldots, B_n\}$ is not a maximal independent set.

We have shown

Theorem 2.5. Let A_1, \ldots, A_n be Le-modules and let $M = A_1 \oplus \ldots \oplus A_n$. Then $\dim \mathcal{L}(M) = n$, and $\{B_1, \ldots, B_n\}$ is a basis for $\mathcal{L}(M)$ iff $B_1 \oplus \ldots \oplus B_n = M$.

Proposition 2.1, Theorem 2.2 and Theorem 2.5 reduce combinatorial problems on finite decompositions $M = A_1 \oplus ... \oplus A_n$ to similar problems on finite dimensional vector spaces over division rings.

As an example let us prove

Proposition 2.6. Let $X = \{x_1, ..., x_n\}$ and $Y_n = \{y_1, ..., y_n\}$ be two bases for a vector space V over a division ring D. Then there exists a permutation $\sigma \in S_n$ such that $(Y - \{y_{\sigma(i)}\}) \cup \{x_i\}$ is a basis for all $1 \le i \le n$.

Proof. Any element $x \in V$ is a linear combination $x=r_1y_1+\ldots+r_ny_n$ $(r_i \in D)$. Let supp $x = \{y_i \in Y | r_i \neq 0\}$. Then $(Y - \{y_i\}) \cup \{x\}$ is a basis iff $y_i \in \text{supp } x$. Since $x \in \langle \text{supp } x \rangle$, we note that

$$\#(\operatorname{supp} x_{i_1} \cup \operatorname{supp} x_{i_2} \cup \ldots \cup \operatorname{supp} x_{i_k}) \ge k$$

for any set $1 \le i_1 < i_2 < ... < i_k \le n$. From Hall's theorem about distinct representatives it follows that the sets supp $x_1, ..., \text{supp } x_n$ have a distinct system of representatives, say, $y_{\sigma(1)}, ..., y_{\sigma(n)}$, and this proves Prop. 2.6.

Proposition 2.1, theorems 2.2 and 2.5 now imply

Theorem 2.7. Let $M = A_1 \oplus ... \oplus A_n = B_1 \oplus ... \oplus B_n$ be two Le-decompositions. There exists a permutation $\sigma \in S_n$ such that $B_{\sigma(1)} \oplus ... \oplus B_{\sigma(k-1)} \oplus A_k \oplus B_{\sigma(k+1)} \oplus ... \oplus B_{\sigma(n)} = M$ for all $k, 1 \le k \le n$.

Proof. We leave it to the reader to verify the simple reduction to proposition 2.6.

Remark R. A. Brualdi [4] has shown that if B_1 and B_2 are bases of an independence structure then there is an injection $\sigma: B_1 \rightarrow B_2$ such that $(B_2 - \{\sigma(e)\} \cup \{e\})$ is a basis for all $e \in B_1$. The theorem of Brualdi together with Proposition 2.1 and Theorem 2.5 therefore imply Theorem 2.7

We shall extend theorem 2.5 to arbitrary Le-decompositions.

Definition. Two direct summands X and Y of a module M are equivalent provided they have identical sets of complements in M, and we write $X \sim Y$.

Lemma 2.8. Let $A_1, A_2 \in \mathscr{L}(M)$. Then $A_1 \sim A_2$ iff $A_1 \oplus A_2 < \exists M$.

Proof. Lemma 2.8 is proved in [3], but we repeat the simple proof.

Let $A_1 \oplus X_1 = A_2 \oplus X_2 = M$ and assume that $A_1 \oplus X_2 \neq M$. Since A_1 has the exchange property, we get that $A_1 \oplus A_2 \oplus X_2' = M$. Hence $A_1 \oplus A_2 \lhd M$.

Conversely, assume that $A_1 \oplus A_2 \lhd M$ and let $A_1 \oplus A_2 \oplus X = M$. Then $A_2 \oplus X$ is a complement of A_1 but not a complement of A_2 .

Lemma 2.9. Let $X \triangleleft M$ and let $A \in \mathscr{L}(M)$. Then $X \oplus A \triangleleft \exists M$ iff $A \sim A'$ for some $A' \subset X$.

Proof. Assume first that $A \sim A' \subset X$. Let $A' \oplus X' = X$ and let $X \oplus A \oplus Y = M$. Then $A' \oplus X' \oplus A \oplus Y$, and lemma 2.8 implies that $A \not\sim A'$. Hence $X \oplus A \neg \neg M$.

Conversely, assume that $X \oplus A < | \exists M$. Let $X \oplus Y = M$ and let $\pi_X + \pi_Y = 1_M$. Let $i: A \to M$ be the injection of A into M. Then $i = \pi_X i + \pi_Y i$. If $\pi_Y i$ is a split mono it is easily seen that $X \oplus A \lhd M$ (see proof of theorem 2.2). Hence we know that $\pi_Y i \in J(A, M)$. Since $i \notin J(A, M)$ it follows that $\pi_X i$ is a split monomorphism. Furthermore $\overline{i} = \overline{\pi_X i}$ in $F_A(M)$, and therefore i(A) and $\pi_X(i(A))$ are dependent (theorem 2.2), i.e., $A \oplus \pi_X(A) < | \exists M$. Therefore $A \sim \pi_X(A) \subset X$ (Lemma 2.8).

We are now prepared to state and prove the generalization of theorem 2.5.

Theorem 2.10. The following properties for a module M are equivalent

1) For any basis $\{A_i\}_I$ in $\mathcal{L}(M)$ we have that $M = \bigoplus_I A_i$.

2) M has an Le-decomposition that complements direct summands.

Proof $1 \Rightarrow 2$). Since any independence structure has a basis we may assume that M has an Le-decomposition $M = \bigoplus_{I} A_{i}$. Let $\{B_{i}\}_{i \in I}$ be any set of direct summands of M for which $B_{i} \sim A_{i}$ for all $i \in I$. We shall show that $\bigoplus_{I} B_{i} = M$ and

the implication $1 \rightarrow 2$ follows then from theorem 18, [3]. It therefore suffices to show that $\{B_i\}_I$ is a basis for $\mathcal{L}(M)$.

For any finite subset $\{i_1, \ldots, i_k\} \subset I$ we have $(A_{i_1} \oplus \ldots \oplus A_{i_k}) \oplus (\bigoplus_{j \in I'} A_j) = M$, and since $B_{i_1} \sim A_{i_1}, \ldots, B_{i_k} \sim A_{i_k}$ we get that $(B_{i_1} \oplus \ldots \oplus B_{i_1}) \oplus (\bigoplus_{I'} A_j) = M$. Hence the family $\{B_i\}_I$ is independent, and since $B_{i_1} \oplus \ldots \oplus B_{i_k} \sim A_{i_1} \oplus \ldots \oplus A_{i_k}$ one easily proves that $\{B_i\}_I$ is a maximal independent set.

2) \Rightarrow 1). Assume that $M = \bigoplus_{I} A_{i}$ complements direct summands and let $\{B_{j}\}_{J}$ be a basis for $\mathscr{L}(M)$. For each $i \in I$, the set $\{A_{i}\} \cup \{B_{j}\}_{J}$ is dependent, so $(B_{j_{1}} \oplus \ldots \oplus B_{j_{k}}) \oplus A_{i} \triangleleft M$ for some finite subset $\{j_{1}, \ldots, j_{k}\} \subset J$. Hence $A_{i} \sim C_{i} \subset B_{j_{1}} \oplus \ldots \oplus B_{j_{k}}$ (Lemma 2.9). Therefore $\bigoplus_{J} B_{j} \supset \bigoplus_{I} C_{i}$ where $C_{i} \sim A_{i}$ for all $i \in I$. Theorem 18 [3] implies that $\bigoplus_{J} B_{j} = M$.

Remarks. I. Let R be a local ring with maximal ideal m and let $P = R^{(I)}$ be a free module. We see that

 $F_R(P) = \operatorname{Hom}(R, P)/J(R, P) \cong P/mP.$

Theorem 2.10 in this case says that $P = R^{(I)}$ complements direct summands iff *mP* is small in *P*. (Anderson and Fuller [1]).

II. Let $\{E_i\}_I$ be a family of injective indecomposable modules and let $E = \bigoplus_I E_i$. We observe from lemma 2.8 that two injective indecomposable submodules of a module M are equivalent iff they have a non-zero intersection. From lemma 2.9 we see that a family $\{F_j\}_J$ of injective indecomposable modules is a basis for Eiff $\bigoplus_J F_j \cong E$ and the extension $\bigoplus_J F_j \subset E$ is essential. In particular, we get from theorem 2.10 that an Le-decomposition of an injective module complements direct summands (Warfield [6]).

References

- 1. ANDERSON, F. W., and FULLER, K. R., Rings and Categories of Modules. Springer G. T. M.
- 2. AZUMAYA, G., Corrections and supplementaries to my paper concerning Remak—Krull— Schmidt's theorem. Nagoya Math. J. 1 (1950) 117—124
- 3. BECK, I., On modules whose endomorphism ring is local, Israel J. Math. 29 (1978), 393-407.
- 4. BRUALDI, R. A., Comments on bases in dependence structures, Bull. Austral. Math. Soc. 1 (1969) 161-167.
- 5. HARADA, M. and SAI, Y., On categories of indecomposable modules I, Osaka J. Math. 7 (1970) 323-344.
- 6. WARFIELD, R. B., Decompositions of Injective Modules, Pacific J. Math. 31 (1969), 263-276

Received December 1, 1976

István Beck Department of Mathematics, University of Bergen 5014 Bergen NORWAY