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Introduction 

A module A is called an Le-module provided its endomorphism ring is local, 
and a module M has an Le-decomposition if it is isomorphic to a direct sum of  
Le-modules. 

In this paper we first give a simple proof  of  Azumaya's theorem concerning 
Le-decompositions. I f  M =  0 i  As is an Le-decomposition and A is any Le-module, 
we show that 

# {iId ~ ~ A} = dimaAFa(M), 

where Fa(M)  is a vector space over the divison ring Aa. Since Fa (M)  depends only 
on A and M the uniqueness of  an Le-decomposition follows. 

In the second section we show that the family ~ (M) of  direct summands of  
M which are Le-modules can be considered as an independence structure. This 
independence structure decomposes into simpler structures t3 a (3/)  which are closely 
related to the classical independence structure on the vector space Fa(M). In par- 
ticular, dimaa Fa(M ) = dim :~a (M). 

Any independence structure has a basis, and in theorem 2.10 we show that 
the Le-decomposition M =  O i  At complements direct summands iff for  any basis 
{BJs for  ~ ( M )  we have that OsBj=M.  

Terminology: Our notation follows Anderson and Fuller [1] and we refer the 
reader to this book. There is some overlap with results in [3] where some o f  the 
ideas in this paper are more developed. 

We are considering left modules over an associative ring R with an identity. 
All the maps between modules are R-homomorphisms and map=R-homo-  
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morphism. Furthermore, mono--monomorphism,  epi--- epimorhpism, and iso = 
isomorphism. 

I f  f :  X---OI Yi we let fi=l-li f where H i is the projection on Yi. Further- 
more, if g : @ Yi--'X, we let gi=gei, where ei is the injection of Y, into ~ x  Yi. 

We emphasize the use of  | in this paper. It is used exclusively on submodules 
of  a given module (internal sum). 

The expression M=N1E3N * signifies that NI, N2 are submodules of 
M, NlnN,=(O ) and NI+N2=M. An expression G xN i .~M expresses that the 
sum ~ x  N~ is direct and that ,~x Ni is a direct summand of M. Therefore, Gt  N~-I~M 
means that the sum z~, Ni is not direct or ~ N~ is not a direct summand of M. 

If  M is a module, we let J u  denote the Jacobson radical of End M. 
A decomposition M =  O I  M, complements direct summands if for any direct 

summand K of M, M = K @ ( ~ j  Mj) for some subset J ~ L  
A module M has the exchange property if  for any module f2, if 

f2 = M'@L = �9 N, 
I 

with M'_~M then there are submodules N.~cNi such that f2=M'@(@IN~'  ). 
A finite sum of  Le-modules has the exchange property. A simple proof  of this 

is given in [3] (Remark after Theorem 4). Another proof  can be found in [1, 
Lemma 26.4]. 

. 

In this section we give a simple proof  of  Azumaya's theorem. Our proof  is 
a combination of a few elementary observations. 

Lemma 1.1. Let f : M ~ O I M  i and g : G I M i - ~ M  be maps such that 
g f ( x ) = x  for some xEM, x~O. Then gifi~JM for some iEL 

Proof. For some finite set {i 1 . . . .  , ik}cI  we have that 

X = (gil f i l  q-. . .  q- glkfi~)(X ). Hence gilfix q-. . . 'q-gikfik ~ JM. 

Lemma 1.2. Let A be an Le-module and f:  A ~ 9 1 M ~ .  Then f is a split mono 
iff f~ is a split mono for some iEL 

Proof. Iff~ is a split mono then trivially f is a split mono. Conversely assume 
t h a t f i s  a split mono and let g: O1 M ~ A  have the property that gf=IA.  Hence 
g~fiC~Ja for  some iEL This implies that gifl is an isomorphism, so fi is a split mono. 

For  any Le-module A and arbitrary module M we let J(A, M) denote the 
subset of  Hom R (A, M) consisting of  all maps f :  A ~ M  which are not split mono. 
One easily verifies that J(A, M) is a submodule of the right End A-module 
Horn R (A, M), and furthermore HomR (A, M ) . J a c J ( A ,  M). Hence FA(M)= 
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Horn R (A, M)/J(A, M) is a right Aa-module where A a denotes the division ring 
End A/J a. We note that Fa(A)=A a. 

Lemma 1.3. Fa(ll I Mi)~- II x Fa(Mi) (Aa-isomorphism). 

Proof. We have a canonical map q~: Fa(_tLtM~)~IlIFa(Mi) defined by 
q~(f)=(f~) for any f :  A - ~ & I M  i. Lemma 1.2 implies that 0 is 1 - 1 .  Trivially 
im ~0 D &, Fa(Mi). Moreover, for any f :  A ~ ~I Mi, ft is a (split) monomorphism 
for at most a finite set of iEL Hence f~=0 for almost all iEL Hence 
im ~o= II, FA(Mi). 

The uniqueness of  an Le-decomposition follows from these lemmas. 

Theorem 1.4. Let M = O I A s  be an Le-decomposition. For any Le-module 
A, [Fa(M) :AA]= ~: {iIA,~A}. 

Proof. For any indecomposable module B, Fa(B)~-A a if B_~A and zero 
otherwise. The result follows now from Lemma 1.3. 

Theorem 1.4 implies that if M =  ~), A~= ~ s  By are two Le-decompositions of 
M, then we have a bijection a:I-~J  such that Ai-~Bo(i) for all iEL To complete 
the proof of Azumaya's theorem we need two more simple lemmas. 

Lemma 1.5. Let f :  M ~ N  and g: N-*M be R-homomorphisms. Then lu+fg 
is an isomorphism iff 1M+gf is an isomorphism. 

Proof. (IN+fg)-l=lN--f(1M+gf)-*g whenever 1M+g f is an isomorphism. 

Lemma 1.6. Let f :  A-~M and g: M ~ A  be R-homomorphisms. Suppose that 
A is an Le-module andfg~JM. T h e n f i s  a split mono andg a split epi. 

Proof. I f f g ~ J  M then 1M+hfg is not an isomorphism for some h E E n d M .  
Hence 1 a +ghf  is not an isomorphism (lemma 1.5), so ghf is an isomorphism. This 
proves lemma 1.6. 

We are ready to prove the remaining part of Azumaya's theorem. 

Theorem 1.7. (Azumaya) Let M = ~ ) ,  A i be an Le-decomposition and let 
X |  X~(O). Then 

i) X contains a direct summand A which is isomorphic to Ai for some iEL 
ii) I f  X is indecomposable, then for some ioEL M=A~o @L=X@(O,r  o A,). 

Proof. Let f :  O t  Ai ~ X  be the projection on X along L, and let g: X ~ ) ,  Ai 
be the injection of X into M. Then f~gi~J~ for some iEL hence (lemma 1 . 6 ) f  is 
a split mono and gi a split epi. This proves i). 

Assume now that X is indecomposable and that f/o is a split mono and g~o 
a split epi. Since both X and Aio are indecomposable it follows that f~0 and g~o are 
isomorphisms, and this proves the second statement in Theorem 1.7. 

Remark. Lemma 1.6 has several other interesting corollaries, (see [3]). 
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. 

Let M be an R-module. We define ~q'(M) to be the set of direct summands 
of  M which are Le-modules. For  any Le-module A we let 5ea(M ) be the subset 
of ~ ( M )  consisting of those elements which are isomorphic to A. We let supp M 
be a set containing one representative from each isomorphism class in s 
Hence .o~e(M) = U~p M s (M). 

Independence structures arise when one considers abstract properties of  linear 
independence of vectors in a vector space. 

Definition. Let E be a non-empty set. A non-empty collection ~ of  subsets 
of  E is called an independence structure if  it satisfies the following three axioms. 

11. If  X E 8  and Y c X  then YES. 
12. If  X, u are finite members of  g and ]XI=IY]+I, then there exists an 

element x E X  such that Yu{x}ES.  
13. A set XE ~ iff any finite subset of X is in g. 
The members of  8 are called the independent subsets. A maximal independent 

subset is called a basis for E. Any two bases have the same cardinal number 
(R. Rado), and we let dim E denote this cardinal number. 

For  each R-module M we shall define an independence structure on .oq~ 
and ~ a ( M ) .  We let # = 8 ( M )  be the following collection of  subsets of  s 
A set ~r iff for any finite subset {A1 . . . .  , A k } c d ,  AI@.. .@Ak.~M. For  any 
Le-module A we similarly define o~a=~a ( M ) =  { d  n.oCea(M)}d~(M). 

Proposition 2.1. a) g is an independence structure on .~(M)  
b) ga is an independence structure on .~a(M) (.4 E supp M). 
c) Let E c s  Then EEg iff EnL#a(M)Egafor  all AEsuppM.  
d) A set Ec .L: (M)  is a basis iff EnLP a(m  ) is a basis for ~Pa(M) for all 

A ~ supp M. 

Proof. a) I1 and I3 are trivially satisfied. We need to show I2. Let 
X={A1 . . . .  ,A,+a}Eg and Y={BI  . . . .  ,B,}Eg.  Let A~@. . .OA,+lOC=M.  Since 
B I @ . . . O B , . ~ M  and B10 . . .@B . has the exchange property, we have 

( n l ~  . . .  onn)~(A~... ~ A ~ + I ~ C  t)  = M .  

t t �9 ,,p I f  A~=A~ . . . . .  A ,+I=(0  ) we would get that BI@.. .@B,~A~@.. .q3A,+IGC . 
Hence A~=A i for some l<--i<=n+l and therefore {B1 , . . . ,B , ,A i }Eg .  

b) The restriction of  an independence structure to a subset is again an in- 
dependence structure. 

c) By definition EES=*EnSYa(M)E8 a. Conversely, let E c S e ( M )  and 
assume that Ec~L~~ for all AEsuppM.  To show that E E 8  it can be 
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assumed that E is a finite set. Let 

E = {AI,1, .. . ,  AI,,x, A2,1 . . . . .  A2,r~ . . . . .  As,1 . . . .  , A .... } 

where Au~-Ak~ iff i=k.  Hence 

B1 = AI, I@...@AI, rl<~ M 

B2 = A~,I@...@A2,r,'~ M 

Bs = As, l@... @As, r, "~ M. 

Let B10X1=M. The module B z has the exchange property so B~@B~@X~=M, 
B~cB 1 and X~=X 1. Hence B2~-B~'@X'~ where B~@B~'=B1 and XI@X~=X 1. 
The Krull--Schmidt theorem implies that B~�9 hence BI@B~@X,~=M. We 
now use that B3 has the exchange property. Since no direct summand of Bx@B2 
(different from (0)) is isomorphic to a direct summand of Bz we get that BI~B~@ 
B3@X3=M etc. 

d) Follows from b) and c). 
Since the independence structure on _re(M) is the disjoint sum of the independ- 

ence structures on ~ a ( M )  we may concentrate on these structures. 

Theorem 2.2. Let A be an Le-module and let {f~}~cl be a family of  split mono- 
morphisms from A to M. Then the family {f~(A)}1 is independent in &Ca(M) tff the 
family {f~}, is independent in Fa(M). Furthermore, {f~(A)}z is a basis for .~ea(M) 
iff the family {~}x is a basis for Fa(M). 

Proof. We want to show {fi(A)}/ independent,~{fi}1 independent We can 
assume that [I1< ~o. Let f l  . . . . .  f~ be an independent set in Fa (M ) and let A~=fi(A) 
(l<-/<=n). Let l<=k<=n-1 and assume that Ax~...@Ak<~M. 

Let A~@.. . |  and let zc I . . . . .  nk, n~ be theprojections associated 
with this decomposition. Hence nx+. . .  + n k + n x =  1M. Therefore, 

fk+l = 7~lA+l'}-"" q-nl~fk+x q-7~xfk+l" 

Since im rq=imf t  (l<-i-<k) and the fi 's are monomorphisms, we have maps 
@~EndA (l~_i<=k) such that rC~fk+~=f~rp~ (l<=/<--k). Hence 

A+I =fl(Pl +''" +f~qg~q-n~A+~. 

Since the set {fl ,  "",fk,fk+~} is lin. independent it follows that n ~ f k + ~ 0 .  Hence 
rC~fk+l is a split mono. Therefore n=(Ak+O is a direct summand of X and r~x re- 
stricted to Ak+l is a monomorphism. Let rcx(Ak+0| Then one easily 
proves that AI~3. . .Ak~A~+~@X':M , hence AI~.. .@Ak+I.~M. Since AI<~M, 
we can conclude that AI~. . .@A,<~M which shows that {AI, . . . ,A~} is in- 
dependent. 
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Conversely assume that AI(~.. .OAn(~X=M. We claim that {f i}i=l ...... 
are independent. Let rq, . . . ,  re,, rc x be the projection s associated with the decom- 
position A I | 1 7 4  and assume that f=f~qh+.. .+f,q~,EJ(A,M).  
Then rtlf=fKoiEJ(A, M). This implies that ~0i is not  an isomorphism in End A, 
hence qhEJa. Hence 91 . . . . .  ~ , = 0  in A A. Therefore {fl  . . . . .  f ,} are independent 
over A X" 

It is now trivial that {fi(A)}i~ i is a basis for .WA(M ) iff {fi}iCt is it basis for 
FA(M). 

Corollary 2.3. dim ~A(M)=[F~(M) : AA]. 

Corollary 2.4. Let {B~} t and {Cj}] be two bases for ~(M) .  Then O t  Bi~- OsCj.  

Proof. Let B={Bi} I. Then B n ~ A ( M )  is a basis for &~ A(M). Hence 
# {i]Bi~-A}=[FA(M):AA]. This shows that O , B ~ - ~ O j C j .  

Let A~ . . . . .  A, be Le-modules and M = A t e . . . |  Then {A1 . . . . .  A,} is 
trivially a maximal independent set in .~~ in other words {A~, ..., A,} is a 
basis for .~q'(M). Let {B 1, ..., B,} be another basis. Then BI@...@B,.~M. If  
BI@. . . |162  theorem 1.7i implies that {B~ . . . . .  B~} is not a maximal inde- 
pendent set. 

We have shown 

Theorem 2.5. Let A~ . . . . .  A, be Le-modules and let M=A~@...@A,. Then 
dim .oq'(M)=n, and {B1 . . . . .  B,} is a basis for s iff B1G...@B,=M. 

Proposition 2.1, Theorem 2.2 and Theorem 2.5 reduce combinatorial problems 
on finite decompositions M=A~@... @A, to similar problems on finite dimensional 
vector spaces over division rings. 

As an example let us prove 

Proposition 2.6. Let X=  {x~ . . . . .  x,} and Y, = { Y l  . . . . .  y,} be two bases for 
a vector space V over a division ring D. Then there exists a permutation trES, such 
that (Y--{y,(i)})u{xi} is a basis for all l<=i<-n. 

Proof. Any element xE V is a linear combination x=rly~+. . .+r,y ,  (riED). 
Let supp x =  {YiE Y[ n~0}.  Then ( Y -  {yi}) w {x} is a basis iff YiE supp x. Since 
xE(supp x), we note that 

# (supp xi~ u supp xi~ u ... u supp xi~) >- k 

for any set l<=ix<i2<...<ik<=n. From Hall's theorem about distinct represent- 
atives it follows that the sets supp Xl . . . . .  supp x, have a distinct system of  represent- 
atives, say, y,(1) . . . .  ,y~(,), and this proves Prop. 2.6. 

Proposition 2.1, theorems 2.2 and 2.5 now imply 
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Theorem 2.7. Let M : A I |  n be two Le-decompositions. 
There exists a permutation aES,, such that B~(1)O...OB~(k_~)OAk@B~@+a)~... 
@B~(,)=M for all k, l<~k<=n. 

Proof We leave it to the reader to verify the simple reduction to proposi- 
tion 2.6. 

Remark R. A. Brualdi [4] has shown that if Bt and B2 are bases of an independ- 
ence structure then there is an injection a:BI~B 2 such that (B2-{a(e)}u{e} is 
a basis for all eEB1. The theorem of  Brualdi together with Proposition 2.1 and 
Theorem 2.5 therefore imply Theorem 2.7 

We shall extend theorem 2.5 to arbitrary Le-decompositions. 

Definition, Two direct summands X and Y of a module M are equivalent pro- 
vided they have identical sets of complements in M, and we write X ~  Y. 

Lemma 2.8. Let A1, A~ELP(M). Then AI~A2 iff A~@A2-,I~M. 

Proof Lemma 2.8 is proved in [3], but we repeat the simple proof. 
Let AI@XI=A~@X2=M and assume that Aa@X2r Since Aa has the 

exchange property, we get that AI|163 Hence A~| 
Conversely, assume that Aa| and let AI@Ae@X=M. Then A~.OX 

is a complement of A~ but not a complement of As. 

Lemma 2.9. Let X < M  and let A E.La(M). Then X@A-,]zM if/" A ,,,A" for some 
A ' cX .  

Proof Assume first that A ~ A ' c X .  Let A '@X'=X  and let X@A@ Y=M. 
Then A'|174 Y, and lemma 2.8 implies that A ~A' .  Hence X@A<I~M. 

Conversely, assume that X@A~I~M. Let X O Y = M  and let ZCx+nr=l M. 
Let i: A-~M be the injection of A into M. Then i=nxi+nri .  If  nr i  is a split 
mono it is easily seen that X @ A ~ M  (see proof of theorem 2.2). Hence we know 
that ~riEJ(A, M). Since i~J(A, M) it follows that nxi is a split monomorphism. 
Furthermore i=nxi in Fa(M),  and therefore i(A) and nx(i(A)) are dependent 
(theorem 2.2), i.e., A | M. Therefore A ~ nx(A)~X (Lemma 2.8). 

We are now prepared to state and prove the generalization of  theorem 2.5. 

Theorem 2.10. The following properties for a module M are equivalent 
1) For any basis {Ai}r in ~ (M)  we have that M= O~Ai. 
2) M has an Le-decomposition that complements direct summands. 

Proof 1)=>2). Since any independence structure has a basis we may assume 
that M has an Le-decomposition M =  Ox Ai. Let {Bi}i~ I be any set of direct sum- 
mands of  M for which B~A~ for all iEL We shall show that OzB~=M and 
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the implication 1)=.2) follows then f rom theorem 18, [3]. I t  therefore suffices to 
show that {B~}~ is a basis for ~ ( M ) .  

For  any finite subset {il . . . . .  ik}~I we have (A~I@...@Aik)@(Gje r Aj)=M, 
and since Bi,,,Aix . . . . .  Bik~Ai~ we get that (Bi@. . .@Bq)@(OrAj)=M.  Hence 
the family {Bi}1 is independent, and since B i l @ . . . ~ B ~ A i @ . . . Q A i ~  one easily 
proves that {Bi}z is a maximal independent set. 

2) =.1). Assume that M =  O i  At complements direct summands and let {Bj} 1 
be a basis for s For  each iF1, the set {Ai}u{Bj}s is dependent, so 

(Bjl@.. .~Bj)@Ar~IoM for some finite subset {Jl . . . . .  A } c J .  Hence A i ~ C i ~  
Bh@...~Bj~ (Lemma 2.9). Therefore O s B j D G ~ C i  where C~',~Ai for all iEL 
Theorem 18 [3] implies that G J  Bj=M. 

Remarks. L Let R be a local ring with maximal ideal m and let P = R  ~ be 
a free module. We see that 

FR(P ) = H o m  (R, P)/J (R, P) ~ PIMP. 

Theorem 2.10 in this case says that P = R  tr~ complements direct summands iff 
mP is small in P. (Anderson and Fuller [1]). 

II.  Let {El} l be a family ofinjective indecomposable modules and let E =  O~ Ei. 
We observe f rom lemma 2.8 that two injective indecomposable submodules of  
a module M are equivalent iff they have a non-zero intersection. From lemma 2.9 
we see that a family {F]}s o f  injective indecomposable modules is a basis for E 
iff OjF]_~E and the extension O j F j c E  is essential. In particular, we get f rom 
theorem 2.10 that an Le-decomposition of  an injective module complements direct 
summands (Warfield [6]). 

References 

1. ANDERSON, F. W., and FULLER, K. R., Rings and Categories of Modules. Springer G. T. M. 
2. AZUMAYA, G., Corrections and supplementaries to my paper concerning Remak~Krull-- 

Schmidt's theorem. Nagoya Math. J. I (1950) 117--124 
3. BECK, I., On modules whose endomorphism ring is local, Israel J. Math. 29 (1978), 393--407. 
4. BRUALDI, R. A., Comments on bases in dependence structures, Bull. Austral. Math. Soc. 1 

(1969) 161--167. 
5. HARADA, M. and SAt, Y., On categories of indecomposable modules I, Osaka J. Math. 7 (1970) 

323--344. 
6. WAR.FIELD, R. B., Decompositions of Injective Modules, Pacific J. Math. 31 (1969), 263--276 

Received December 1, 1976 Istv~in Beck 
Department of Mathematics, 
University of Bergen 
5014 Bergen 
NORWAY 


