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1. Introduction 

This is an attempt to classify plane domains by means of Hardy classes. Let 
~p be a convex function, by which we mean throughout this paper any nonconstant, 
nonnegative, nondecreasing, convex function defined on [-~o, + ~o). For a con- 
nected domain D in the Riemann sphere S we shall denote by H,(D) the set of 
functions f analytic on D for which q~(log If(z)l) has a harmonic majorant on 
D. We shall denote by 0, the class of connected domains D in S for which H ,  (D) 
contains only constant functions. We are going to show the following 

Theorem 1.1. Let 9 and ~k be convex functions with the following properties: 

(A) for any fixed s > o 

4,(O/~o(t-s) = o(1), t - ~ + ~ ;  

(]3) t/~o(t)= o(1), t ~+~o .  

Then (9~ strictly includes O,. 

When ~o(t)=e pt with 0 < p <  + ~,, we use HP(D) (resp., r in place of H~(D) 
(resp., O~,). We denote by ~ (resp., 0AB) the class of connected domains D in S 
on which there exist no Green functions (resp., nonconstant, bounded, analytic 
functions) and by OaB, the class 0~ with ~o(t)=max {t, 0}. The preceding theorem 
then implies the following, in which the inequality sign < means strict inclusion. 

Corollary 1.2. (a) Op<Op<(O+p for 0 < p <  + 0% where O; = w{0q: 0 < q < p }  
and ~ = n {Og: p < q <  + ~o}. 

(b) OA,,<n{r ~{O~:O<q<+o~}<r 

Together with the known fact O~=0an, (cf., Sario and Nakai [7, p. 280 and 
p. 332]), this finishes a classification of plane domains in the sense of Heins given 
in his monograph [2, Chapter III]. 
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We explain earlier results briefly. Heins [2] obtained a classification scheme 
for general Riemann surfaces in terms of Hardy classes. For the plane domains, 
however, he only showed ~AB,<0~ and proposed further investigation. Hejhal 
[3, 4] proved the following scheme: 

< es/~ <- e ;  < e3 <--... < u {oq: o < q < + ~ }  < OAB 

Kobayashi [5] improved this by showing 0n/2<0p for any integer n->2 and any 
real number p >n/2. 

This work was done at the Mittag--Leflter Institute. I wish to thank Professor 
Lennart Carleson for enlightening conversations through this work. He conjectured 
the result in the form just stated and provided me with the basic idea of circular sets. 

2. Null sets of class N, .  

For a convex function ~p we say that a set E in S is a null set of class N~ if 
E is a bounded, closed, totally disconnected set and H~(V--E)=H,(V)  for every 
connected domain V in S which contains E. When ~p(t)=e p', 0 < p <  +oo, we 
write N, in place of N~. A similar definition holds for the null classes NAB and 
NAB.. As observed by Hejhal [4], every member of NaB. has zero logarithmic 
capacity. Heins [2, pp. 50--51] showed that a closed linear set belongs to N1 if 
and only if it has zero linear measure. This fact, in a slightly extended form, was 
used extensively by HejhaI in his classification theorems. Various null classes N~ 
will play an important role in this paper, too. As far as we are aware, however, 
not much seems to be known about general null classes, e.g., N1/2. So we should 
begin with showing that the null class N~ contains sufficiently many members 
with nonzero logarithmic capacity as soon as the function ~p satisfies the condi- 
tion (B). Since ~,(t)/q~(t)=O(1), t ~ + ~ ,  implies N~,C=N~, we have only to in- 
vestigate null classes N~ for small ~p. 

Lemma 2.1. Let ~p be a convex function satisfying (B). Then there exists a con- 
vex function 2 such that 

(i) 2(t+log2) = 22(0 for all large t; 

(ii) 2(0 satisfies (B); 

(iii) 2(t)/~p(t)=o(1), t~+oo ,  and 

2(O/t~=oO), t - ~ + o o .  
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This can be proved by a simple construction, which is omitted. The following 
proposition shows the importance of the hypothesis ~0(t+log 2) <_- 2~o (t) or, more 
generally, 

qg(t+log2)/~o(t) = O(1), t ~ + o o ,  

which is equivalent to the A2-condition in the theory of Orlicz spaces (cf., Kras- 
nosel'skii and Rutickii [6]). 

Proposition2.2. Let q~ be a convex function such that t]~o(t)=o(1) and 
~o(t+log2)/~o(t)=O(1), t ~ + ~ ,  and let E be a bounded, dosed, totally discon- 
nected set in S. Then EEN~ if  and only i f  S -E CO~.  

Proof  The necessity is trivial and the sufficiency can be shown by essentially 
the same method as that of [4, Theorems 4 and 5]. The details are left to the reader. 

Before proceeding to actual construction of null sets of the class N~, having 
nonzero logarithmic capacity, we state two probably well-known facts concerning 
harmonic measures. When we write, for example, {]z[ >a}, we include the point 
at infinity ~ in the set. We denote by F(zo; ro), Izo[< + ~ and 0 < t o <  + co, the 
circumference {[Z-Zo{=ro}. When Zo=0, we write simply r(ro). 

Lemma 2.3. Let 0 < a < b <  + ~  and,let F be a bounded closed set in {]zl=>b} 
such that Do= {Iz[ > a } - - F  is a connected domain. Denote by # the harmonic measure 
at the point ~, with respect to D o. Then 

{ d ~  } 21ra 
max (z): zE F(a) <= A(a/b)  #(I '(a))  ' 

where ds denotes the arc-length element on F(a) and A(t) ,  t>0 ,  is a finite, positive, 
nondecreasing function in t. 

Proof  Let Dl={a<lzl<b}, D2={[z[>a} and c=(ab) 11~. By Harnack's ine- 
quality there exists a constant A'=A'(a /b) ,  depending only on the ratio a/b in 
a nondecreasing way, such that U(Zl)<=A'U(z2) for any zl,  z~ in F(c) and any 
nonnegative harmonic function U on D 1. For any arc e on F(a) we denote by Uj(e; z), 
0<j_<-2, the bounded harmonic function on Dj whose boundary values are equal 
to 1 on e and to 0 elsewhere. We then have 

(0 
and 

(2) 

where 

Ua(e; z) ~ Uo(e; z) <= U2(e; z), a < [z I < b 

max {U2(e; w): Iw{ = c} ~ A min {Ul(e; w): Iwl : c}, 

1 + (a/b) 112 
A = A (a/b) = 2A'(a/b) 1 - (a/b) 1/~ " 
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From (I) and (2) it follows at once that 

max {U0(el; w): ]w I = c} <-- A min {U0(e2; w): lwl = c} 

for any arcs el, ez on F(c) with the same length. This shows that p(eO<=At~(e2) 
if [exl--led. The desired inequality is an easy consequence of this. Q.E.D. 

Lemma 2.4. Let O<a2 /b~ao<a<b< + o~ and F1, ..., Fk a finite number o f  
bounded closed subsets of  {Izl>b} such that each S - F  i, l<=i<=k, is a connected 
domain containing all Fj, j r  Let {l(n): n=>l} be an increasing sequence of  pos- 
itive numbers such that l(n)/n=o(1),  n ~ + o o  and l(n)~=n xl2 for  all large n. Let 
w.,j----aoexp(2zcji[n) and K.,j={[z--w.,jl<=aoe-l~"~}. l~j<=n. We set K , =  
U~=I K.,j .  Suppose that each Fj, l ~j~_k,  has nonvanishing logarithmie capacity 
and that we consider only large n so that K, is contained in the disk {Izl<a} and 
K,,j's, 1 ~j<=n, are mutually disjoint. Let I~ and I~, be the harmonic measures at 
the point ,,~ with respect to the domains { [ z l>ao} -F  and S - - K . - - F ,  respectively, 
with F = U ~ = I F j .  Then, for  any 5>0, there exists an integer N = N ( ~ ) > 0  such 
that for n>- N 

I~(r(ao))-~.(OK.) l  < 5, 

[It(Fj)--t~.(Fj) 1 .< 5, 1 <= j <= k, 
and 

I~(OK,,j) >- (Bn)-ll~(F(ao)), l <= j <= n, 

where B=B(a/b)  is a constant depending only on the ratio a/b in a nondecreasing 
fashion. 

Proof. By applying the conformal transformation z~-z/b, we may assume 
without loss of generality that b = l .  Given any ~>0, we first choose # > 0  with 

(3) max {(1 +~ ' ) - (1  +~,)-3, ~,} < 2-'l/~(V(ao))-l~ 

and then choose O < a ' < a o < a " < a  so dose to a0 as to have 

(4) (l + g ) - ~ / z ( r ( a 0 ) )  < # ' (r (a ' ) )  < #"(r(a") )  < (1 + d ) / z ( r ( a 0 ) ) ,  

where #" (resp., #") denotes the harmonic measure at the point o~ with respect to 
the domain { ] z l > a ' } - F  (resp., {[z]>a"}-F) .  Let G(z, w)=log ( ] l - z ~ l / [ z - w l )  
denote the Green function for the unit disk with pole at w. We denote by v. the 
positive measure of mass 1 with support on OK. and uniform density on OK., and 
by Un(z) the Green potential of v., i.e., 

U.(z) = f o a(z,  w) dv.(w), Izl 1. ic, 

U,(z) is continuous on {Izl_-<l}, harmonic on {Izl<l}-g~, and vanishes on F(1). 
An explicit computation, in view of the property of {l(n)}, shows that (i) U,(z) 
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converges uniformly on the circle F(a') to log (l/a0) and (ii) there exists an integer 
N'=N'(5")>O such that 

~0 ~ on Kn, n > N  ". (1 +e ' ) - l log  < U.(z) < (1 +5') log ao ----- 

Let u' (resp., u,) be the solution of the Dirichlet problem for the domain 
{[zl:>a'}-F (resp., S - K , - - F )  with the boundary data equal to 1 on l-'(a') (resp., 
0Kn) and to 0 elsewhere. Take N " = N " ( e ' )  so large that for n>=N ", K,, lies in 
the annulus {a'< Izl<a"} and, by (i), U,(z)_->(1 +e') -1 log (l/a0) on F(a'). Suppose 
n~N(5)=max {N', N"}. Then, by (ii), 

- - 1  

on OKn and therefore everywhere on Izl<= 1. So on r(a') we have u.(z)~(1 +5')-~'= 
(l +5")-~u'(z). Since un(z) is superharmonic on {Iz l>a'}-F and has the same 
boundary value as u'(z) on OF, we see that u.(z)>=(l+e')-~u'(z) everywhere on 
{ I z l>a ' } -F .  This, together with (4), means in particular that 

(5) ~,(OK,) = u~(~) ~ (1 +5 ' ) -~ ' ( r ( a ' ) )  _-> (1 +5')-s#(r(ao)). 

On the other hand, since K, lies inside F(a"), we have 

(6) It,,(OKn) <= lt"(F(a")) <- (1 +~9/t(F(a0)). 

Combining the inequalities (5), (6) and using (3), we get 

[l~(F(ao))--#.(OK.) l < 5 
and 

I#(Fj)-/a.(Fj)l  -< 5, 1 <= j <-- k. 

In order to show the last statement, we fix n so large that aoe-t~176 . 
Let c=a 11~. Let us (resp., ulj, u~j), l<-j~n, be the solution of the Dirichlet prob- 
lem for the domain S - - K n - F  (resp., S - K , ,  {Izl<l}-g , )  with the boundary 
data equal to 1 on OK,,,s and to 0 elsewhere. Because of symmetry, m~- 
rain {u~j(z): lz l :c}  and Ms=max {uu(z): [z[=c}, i=1 ,2 ,  are independent of j 
and by Harnack's inequality M~<=A'(a)rni, i=1,  2, where the constant A'=A'(a) 
already appeared in the proof of the preceding lemma. Since z~.=~ Ulj=l on 
S-K, , ,  we have l<-nM~<-A'nm~<=A" and therefore M~<=A'/n. As our observ- 
ation in the preceding paragraph shows, there exists a positive integer N~ such that 

" z 1 log___.___~a ~ 1 zE F ( a ) ,  n ~ N 1 . 
~j= iu~ i (  ) =~'~" logao = -~-, 

We thus have A'nm~>=nM~>-z~.=i u2j(z)>=l/8, zEF(c), and so A'm2>-l/8n~= 
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M1/8A'. Since we have u2j(z)<=uj(z)<=ulj(z), l<=j<=n, on the annulus {a<lz]<l} ,  
the above inequality shows 

ui(z) >= 8A'2uj(z), zE F(c), 1 <= i, j <= n. 

The same inequality holds in {Izl>c} so that 

g,(0K,.0 = u~(~o) <= 8A'2u~(~) = 8A'Zlz,(OK,,j), 1 <= i, j <= n. 

This implies #,(OK.,j)>=(8A'2n)-llt,(OK,). Since tt(F(a0))#0, we have ft.(OK,)>= 
#(F(ao))/2 for all large n. Hence we have # , (OK, , j )~B- ln - i# (F(ao) )  with 
B = B ( a ) = 1 6 A  "~. Q.E.D. 

We are now in a position to prove the main result of this section. 

Theorem 2.5. Let ~o be a convex function which satisfies (B) and 
~o(t+log2)/~o(t)=O(1), t ~ + ~ .  Let 0 < a < b < + ~ ,  and let Fj, l<-j<=k, be a 
finite number o f  bounded closed subsets o f  {tzt>b} such that each S - F  i is a 
connected domain containing all other Fj, j # i .  Then for  any positive numbers 
5>0 and 0 < 6 < 1  there exists a set EEN~, of  nonzero logarithmic capacity such 
that EC= {6a<--_ Izl<=a}, 
(7) I#(Fj)--pE(Fj)I < 5, 1 ~ j <= k, 
and 

(8) [/~(F(a))-~E(E) I < 5, 

where # (resp., #~) denotes the harmonic measure at the point oo with respect to the 
domain { [ z l > a } - F  (resp., S - E - F )  with F = U ~ = , F  j. 

Proof. By applying Lemma 2.1 to the function t~q~(t/2), we get a convex 
function ~.(t) such that (i) t /2( t)=o(1) ,  t ~ + ~ ;  (ii) 2(t)/q~(t/2)=o(1), t ~ + ~ ;  
(iii) 2(t)<-t 2 for all large t. There exists a positive number to such that both ~p(t) 
and 2 (0  are strictly increasing for t>=to. Let q = m a x  {~p(t0), 2(t0)}. Then the 
inverse functions h(t)  and l ( t )  of q~(t) and 2(0,  respectively, are uniquely deter- 
mined as strictly increasing functions in t for t>=tl . The properties (i)--(iii) imply 
the following: (i') l ( t ) / t=o(1) ,  t ~ + ~ ;  (ii') for any 5>0 there exists a number 
t(8) (=~q) such that h(t/~)<-l(t)/2, t>=tt; (iii') l(t)>=? 12 for all large t. So the 
sequence {l(n): n>=fi} satisfies the conditions in Lemma 2.4. In order to con- 
struct a set E with the desired property, we assume without loss of generality that 
F has nonvanishing logarithmic capacity. We may assume also that ~ is small, i.e., 
O<~<(1-I~(F)) /#(F) .  We set o=(b/a) 114 and B=B(a/b) ,  the constant 
appearing in Lemma 2.4. 

By induction we construct families ~ ,  =r n=0 ,  1 . . . . .  of closed disks con- 
tained in {[zl<=a}. Each ~ (resp., oY'.') consists of a finite number of  mutually 
disjoint, closed disks of the same radius r. (resp., r~) in {[zl<=a}, whose union is 
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denoted by K, (resp., K2). By #n (resp., p') we mean the harmonic measure at the 
point oo with respect to the domain S - K , - F  (resp., S--K' - -F) .  As the 0-th step 
of our induction, we define X0 to be empty and X" o to consist of  only one member 

t �9 {]z[~a), so that #0----# and ro=a. Suppose that we have finished the n-th step 
with n=>0. Namely, we have constructed 3ff~" in such a way that 3r consists of  
closed disks D ' ,  l=<a<=N(n), of  centers w~ and of  common radius r~ so that the 
disks {Iz-w~l<-o%q_~ , ,  are mutually disjoint and also disjoint from F. This con- 
dition is clearly fulfilled by 3fr o,  for b/a=Q 4. 

We define ~ + 1  and 3ff~+ 1 as follows. Let max{Q-1,6}r~<r,+l<G and 
set D~={[z--w~l<=r,+l}, l~a<_-N(n). The family ~r consists of  these disks. 
The value r,+l is fixed so close to r~ as to have 

(9) I~.+x(Fj)-#~,(ei) <- e#(Fj)/2 "+~, 1 ~_j <= k. 
and 

(10) # (01))> p'(OD')/2 1 < < N(n) 

In order to define zC~'+~, we take an integer N ' (n  + 1)_->max {n + 1, q}, which 
will be fixed later. We set 

w~, j = w~ + r n + 1 exp [2nji/N'(n + 1)], 1 <- j <_- N '  (n + 1), 

N(n + l) : N(n)N'(n + 1), r~ +1 = r.+l exp [-- l(N(n + 1))] 
and 

D~,j = {Iz--w~,jf ~-- r;+x}, 1 <_--j _-<N'(n+l).  

The disks ' �9 {D.d. l<=c~<-N(n), l<=j<=N'(n+l)} form the family ~ + 1 .  We fix 
N'(n+ 1) so large that (a) the disks -- < 4 , {lz w~,il= e r.+~} are mutually disjoint and 
also disjoint from F; 

( 1 9 )  I,u,,+I(Fj)--/~,~+I(Fj)/ --< c/2(Fj)/2 "+~, 1 ----<j --~ k; 

(c) /~+I(OD~.j) => (BN'(n+I))-~I~.+~(OD~), 1 <=j -<_N'(n+l),  1 ~ a ~_ N(n); 

r~+x =< 3-1 min {r~--r., r.--&~}; @ 
and 
(e) h ((n + 1)(2B)" +lN(n + 1)) ---< l(N(n + 1))/2. 

This is trivial for (a) and (d). Statements (b) and (c) follow from Lemma 2.4 and 
(e) from the property (i'). Hence, by induction, the families ~ and v~',  n~_0, 
are constructed. 

Combining (9) and (b), we get for n ~ l  

(11) [p.(Fj)--/~.+I(Fj)I -~ e#(Fj)/2", 1 <=j ~_ k. 

It follows from (10) and (c) that for any D2E~Cd~' there is a D~E~'__I such that 
I~(OD~)>=(2BN'(n))-lla'~_I(OD~). Repeating this, we see that for any D_'E.Cd~ 

(12) => 



2 2 0  M o r i s u k e  H a s u m i  

We set 

E = N__~I {Cl(s~. Ks)) 

and denote by/~E the harmonic measure at the point ~ with respect to the domain 
S - E- - F .  

The property (d) shows that the set E lies in the annulus {6a< [zl<a} and also 
P 2~- in the interior of K. ,n=l .  By use of (11) we see for n=>l 

re(F) ~()+Zs-I(~AF)-m-I(F)) 
= F n Zj=x (Ps( FJ) - 14-~ ( F2)) 

(1 +e)#(F)  
and therefore 

ft,(OK,) = 1--p,(F)  _--> 1 - # ( F ) - ~ # ( F )  = i~(r(a))-~l~(F). 
The last member is strictly positive, because of our assumption ~< (1-/~ (F))/l~ (F). 
Let u. (resp., v.) be the solution of the Dirichlet problem for the domain 
S-CI([,A~=.Ks)-F (resp., S - - K , - F )  with the boundary data equal to 1 on 
0[CI(IJ~=nKs)] (resp., OK,) and to 0 on OF. Clearly, the sequence {u.: n_->l} is 
monotonically decreasing and bounded below, so that it converges, by Harnack's 
theorem, to a nonnegative harmonic function, u(z), on S-E- -F .  Obviously, 
0=<u(z)_<-I and u(z)=0 on OF. We know that u.(z)~=v.(z) on the domain of  
u. and that Vn(OO)=l~,(OK,)>=l--(l+~)p(F)>O. Hence u(~o)>0. The function 
u is seen to be the solution of the Dirichlet problem with the boundary data equal 
to 1 on E and to 0 on OF. Thus pE(E)=u(~o)>0 and consequently E has nonzero 
logarithmic capacity. We have 

/~E(E) = u(~o) = lim u,(~o) ~ lim sup v.(oo) 

= lim sup I~n(OK,) >= t~(r(a))-eu(r). 

In order to get the reverse inequality, we note that E is contained in {Izl<=a}. So 
pE(Fj)~=p(Fj) and therefore pE(F)>=#(F). Thus p(l"(a))--el~(F)<-!a~(E) <- 
It(F(a)), which proves (8). On the other hand, we have #F,(Fj)-#(Fj)<=gE(F) - 
t~(F)=I~(r(a))--u~(E)<=~#(F), which shows (7). 

We shall show finally that EEN~. Since q~(t+log2)/q~(t)=O(1), t ~ + ~ ,  
we have only to prove, in view of Proposition 2.2, that S-EEOo. Let f be any 
nonzero element in He(S--E ) and u a harmonic majorant of ~0 (log If[) on S - E .  
To show that f is a constant function, we first note that E is contained in the in- 
terior of K',n>-O. Let us fix n ~ 0  and let D'={z:[z-w'l~=r "} be one of the 
members in ~ . ' .  Then the property (a) says that the annulus {r'<-]z-w'[<-0%' } 
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does not meet with E, F and K'~--D'. Let ~ be the harmonic measure with respect 
to the annulus {r'<lz-w'l<o2r "} at a point w in it. I f  ]w-w'l=or', then 
Harnack's inequality implies that d~w/ds is bounded by A'/(4rrr') on F (w'; r ') and 
by A'/(4rcQ2r ") on F(w'; Q2r'), where A '=A ' (Q -2) is the constant appearing in 
the proof of  Lemma 2.3. Since f is bounded and analytic on the annulus 
{r'<lz-w't<Q~r'}, we have for any w in this annulus 

log tf(w)l <- f l o g  If(()l dr162 

Applying the convex function qg(t) to both sides and using Jensen's inequality, 
we get 

(p(log If(w)l) ~- f , ( log  If(C)l)dew(C) 

= I i + I ~ .  

We now assume that Iw-w'l=or'. We note that F(w' ;  r')=OD'. Let ~/, t/' denote 
the harmonic measures at the point co with respect to the domains D I =  
{Iz-w'l>r'}-E and D2={Iz-w'l>o~r'}-E, respectively. Since EC=K',, we 
see that 

u'(r(w'; o~r')) >- ~(r (w ' ;  r')) _~ p~(0D1). 

By use of  (12) we have I~;(ODI)>-(2B)-"N(n)-I#(F(a)). By applying Lemma 2.3 
to the annuli {r'< [z-w'l<q2r "} and {o*r'<lz-w'l<o4r'}, we see that ds/&l 
is bounded by 2rcAr'/rl(F(w';r')) on r(w';r ' )  and ds/drf is bounded by 
2rcAQ2r'/tf(F(w'; oZr')) on F(w' ;  Q2r'), where A = A ( 0  -z) is the constant given 
in Lemma 2.3. So 

dr ds(~) drl(~) 
z~ = f r(w,;,,, e(log ]f(0l) ds(O dtl (r 

< AA" f0 ~o(log If(ff)l)du(0 = 2 n ( r ( w ' ;  r')) ~ 

1 <= -~ C(2B)'N(n), 

where C=AA'u(~)[p(F(a)). Similarly, we have I2<=2-1C(2B)"N(n). Conse- 
quently, we have ~0(log If(w)!)<=C(2B)~N(n) for Iw--w'l=er'. Since f ~ O ,  we 
have u(~o)~O, so that the right-hand side exceeds t~ for all sufficiently large n>=no, 
say. So we can apply the inverse function h(t) and get the following inequality: 

lf(w)l ~_ exp [h (C(2B)~N(n))]. 



222 Morisuke Hasumi 

We integrate this along the circle F(w'; or'). Since 
we have, by use of  the property (e), 

(13) f r~w';W) 

t s r =G=G exp [-l(N(n))],  

If(w)[ ds (w) ~ 2nor. exp [ -  l(N(n)) + h (C(2B)"N(n))] 

<- 2n0r . exp [ _ 1  l(N(n))], 

if n ~ m a x  {no, C}. We now look at the union F.  of paths F(w'; Qr') corresponding 
to all D' E Jr,'. Then, as we have seen, the set E is contained in the interior of 
F , ,  n ~  1. Since the function f is analytic at ~o, it has an expansion f ( z ) = ~ = 0  cJ z-J. 
Since we have ~o(t+ log 2)/~o(t)=O(1), t ~  + ~o, it is easily seen that f ( z ) - e o  also 
belongs to H ~ ( S - E ) ,  so that we may assume f (oo)=0 .  If  f does not  vanish 
identically, let ep, p ~ l ,  be the first nonzero coefficient of f I f  n is sufficiently 
large, then we can use the inequality (13) and get 

lc l -<- i f  If(w)[lwI'-lds(w) 2re r ,  

[ �89 ) <=0 n) exp - n l /  . 

This is a contradiction, for the last member tends to zero as n ~  ~ .  Hence f must 
be a constant function, as was to be proved. Q.E.D. 

In the preceding theorem we constructed a set in N~ with nonzero logarithmic 
capacity. Trivially, the same result holds for an annulus with arbitrary center. 

3. Classification of plane domains 

Lemma 3.1. Let O < a < b < c <  + ~  and let F be a bounded closed set con- 
tained in {]zl=>c} such that { I z[>b}-F is a connected domain. Let # and v be the 
harmonic measures at the point ~ with respect to the domains {Iz[>b}--F and 
{Izl > a } -  F, respectively. Then 

log (c/b) , . . . .  
log (c/a) I~1(~ <= v(F(a)). 

Lemma 3.2. Let Fj, O<-j<-k, be a finite number of bounded closed sets such 
that S - F ~ f o r  each O~_i<-k is a connected domain containing all Fj, j # i ,  and let 
zoCS--F, F=[.Jk=oFj, be any finite point. Suppose that each F, has positive 
logarithmic capacity. Let t~ be the harmonic measure at the point ~ with respect 
to the domain S - - F  and, for each O < a < i n f  {[Z-Zo]: zE F}, let I~, be the harmonic 
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measure at the point ~ with respect to the domain {]Z-Zo[>a}-F.  Then there 
exists, for any e>0,  a number a with the above property such that p ( F j ) -  
m(Fg<e, 0<_-j<_-k. 

These lemmas, whose proof  is omitted, are used to show the following 

Lemma 3.3. Let q~ be a convex function satisfying (B), {b,: n~0}  a sequence 
o f  positive numbers and 0 < ~ < 6 < 1 .  Then there exist a sequence {a.: n=>0} of  
positive numbers and a sequence {E.: n=>0} in N~ such that a.+l/a.<-Q, a.~=b., 
E.C={ga.<=lz[~=a.}, n~=O, and 

(14) d ~= tp(--log(na.))m(E.) ~_ I, n >= 1, 

where m is the harmonie measure at the point ~ with respect to the domain S - - E  
with E = U ~ = 0 E . w { 0  } and d is a constant, 0<d-< l .  

Proof. Let {d.}, 0 < d . <  1, be a strictly decreasing sequence with l imi t  d > 0 .  
We denote by kt. (resp., v.) the harmonic measure at the point ~ with respect to 
the domain S--(Uk=0Ek) (resp., {[z]>a.+x}--(U"k=oEk)). We write also ~ .=  
cp (-- log (ha.)). 

In order to construct E by induction, we first choose any a0, satisfying 0<a0~=bo 
and q~(- logao)>0,  and any EoCNr which has nonzero logarithmic capacity and 
is contained in the annulus {6ao<=[z[<-ao}. This is possible by Theorem 2.5. 
Suppose that we have chosen EkEN ~, having nonzero logarithmic capacity, in 
{gak<=[Z]<=ak}, O<=k~=n, with the following property (P.): ak<=bk for O~=k<=n, 
O<ak+l/ak<=~ for O<=k~=n--1 and 

(15) dnO~k ~12n(Ek) ~ ~k, l ~= k <= n. 

Then we choose a.+~ so small that 

(16) a.+l -~ b.+l;  0 < a.+l/a. ~= Q; 

(17) d . + ~  k ~ vn(Ek) ~ CCk, 1 ~-- k ~ n; 

(18) v.(F(an+l)) > tp( - log  ((n + 1)an+l)) -1 = ~n+l. 

There is no problem about (16). Statement (18) is clear from (B) and Lemma 3.1, 
for v.(F(ao+a)) decreases as a . + l ~ 0  no faster than ( - l o g  a .+0  -1 while 
q~ ( - l og ( (n+ l ) a .+ 0 )  -1 decreases much faster than this. For (17) we have only 
to set, in Lemma 3.2, F~=E~, O~=i<-n, #=kt.  and /~a=v. with a=a.+~, and 
then use (15). By use of  Theorem 2.5 we can find a set E.+IEN ~ in {6a.+1~= Izl ==a.+l} 
satisfying d.+~%+~<=p.+~(E.+O<=~.+~. Since v.(Ek)<_~.+l(Ek)~_ktn(Ek), l<=k<=n, 
the property (P .+0 is fulfilled. By induction we can construct {E.: n=>0} which 
satisfies (P.) for all n=>l. Set E = U ~ = 0 E . u  {0}. It is easy to see that, for each 
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fixed k, the sequence (#,(Ek):n>=k} tends to m(Ek). So, (17) implies (14), for 
d, od. Q.E.D. 

Let {a.:n>=O} be a sequence of  positive numbers and let 0 < 0 < 6 < 1  be 
constants. Suppose that a,+a/a.<=O, n>-O. For  each n=>0 let E, be a closed 
totally disconnected set contained in {6a,<=[z[<=a,} with nonzero logarithmic 
capacity. We set E =  U~~ u {0}, so that E is bounded, closed and totally dis- 
connected. We call such a set E a circular set with center at the origin. The defini- 
tion of  circular sets with center at an arbitrary point is obvious. By m and m,, n >- 1, 
we denote the harmonic measures at the point ~ with respect to the domains S - E  
and {lz[ >a.} -E ,  respectively. We use various circular sets in order to obtain our 
classification result. Namely, we have the following 

Theorem 3.4. Let q~ and ~ be convex functions satisfying (A) and (B). Then there 
exists a circular set E with center at the origin and with E.E Nq,, n>=O, such that the 
function z-1 belongs to He, ( S -  E), while H,  ( S -  E) contains only constant functions. 

Proof. Let 0 < Q < 6 < l  be fixed. By use of  (A) we can find a sequence 
{b,: n~ 0}  of positive numbers such that bo-=l and for n-->l 

~(log(f-xt))/tp(log(n-lt)) <- 2-", t => b; 1. 

By Lemma 3.3 we get a sequence {a.: n_~0} of  positive numbers and a sequence 
{E.:n~=O} in N~ such that a.+l/a.<-O, a.<-b, and E.C={~a.<-lzl<-a.) for n_->0; 
and d<-_tp(--log(na.))m(E.)<=l, n=>l, where m and d have the same meaning 
as in Lemma 3.3. 

We see first that z - IEHc, (S-E) ,  for we have 

fE ~,(log iz-ll) din(z) = 27=0 f ~k(log Iz-ll) din(z) 

--< ZT=0 ~(-- log (fia.))m(E.) 

i,/s ( - l o g  (6ao)) m (E0) + ,~'~>=, ip ( - l o g  (6a.))14o (-log (na.)) 
~ 2 - "  ~k(-log (~ao))m(Eo)+z~.=l < + oo. 

To show the latter half, we set t r=(f i /0f  14, so that {a.<lz]<a4a.}C=S--E 
for n_->l. Let ~w be the harmonic measure with respect to the annulus 
{a.< [zl<a~a.} at the point w, [w[=aa.. Then we see that dr is bounded 
by A'/(4na.) on F(a.) and by A'/(4na2a.) on F(aZa.), where A '=A' ( t r  -2) is the 
constant appearing in the proof  of  Lemma 2.3. L e t f ~ H ~ ( S - E )  and u a harmonic 
majorant of r [f[) on S - E .  Since each E. belongs to the class N~,, we see 
that f can only be singular at the origin, i.e., f ( z ) = ~ = o c j z  -~, 0 < [ z [ -  -< +oo. 
Let n ~  1. Since f ( z )  is bounded analytic on the annulus {a.< [zl<a~a.}, we have 
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log [f(w)l<-f log If(Old~w(r for any w, Iwl=~a.. Applying tp(t) to both sides 
and using Jensen's inequality, we get 

(log ls(w) r) <: {L,o. ,+L } ( I s ( o ! )  to'o,) ~o log d~w((). 

Using the fact m,(F(a,))>=m(E,)>=d~p(--log(nan)) -1 and computing as in the 
proof of  Theorem 2.5, we see 

(19) (p(log If(w)[)/q~(-log a.) <= C, lwl = aa . ,  

where C=A'(a-~)A(a-1)u(oo)/d. Take an integer N ~ I  so large that ~p(t)/t 
is positive and nondecreasing for t>-a~ 1. Then (19) implies 

If(w)[ ~ an e-l,  Iwl = aa,  and n => N. 

Letting n>-N and writing r=tra., we have 

1 f f ( z )z  k - ld z  ~_ rka2 c-1 o , .  . 

Letting n ~ + o o ,  we see that c~=0, k > C + l ,  and therefore f ( z )  is a polynomial 
in z -x. Let c v be the highest nonzero coefficient of  f (z) .  Suppose p=>l. Then we 
would have [f(z)J>-2-1]ep[[z] -v for all sufficiently small z, say [z[~_au ,, with 
N'>=N. So, 

f r  ~p(log [f(z)[) dm(z) >= Zn=u" ~p(log (2 -11cp[ayl))m(E,) 

=> d Z•=u, ~p (log (2 -11cvlaZl))fip(log (na.) -1) = + co. 

Hence p should be zero. Thus H~,(S--E) contains only constant functions. This 
finishes the proof  of  the theorem and also of  Theorem 1.1. 

Proof o f  Corollary 1.2. To prove Corollary, we have only to apply Theorem 
1,1 with suitable choices of  (o and ~,. This is easy and is omitted. 

4. Remarks 

a) When two null classes of  domains, e.g., 0p and Oq, are distinct, their differ- 
ence is very wide. Namely, we have 

Theorem 4.1. I f  convex functions cp and ~ satisfy (A) and (B), then there exists 
a connected domain D c S such that H,  (D) contains only constant functions, while 
H,(D) is infinite dimensional and contains functions having essential singularities. 
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Sketch of  Proof. For the sake of  simplicity we construct a connected domain 
D for which H~ (D) is trivial but He (D) contains functions with one essential singul- 
arity at the origin. Our domain will be obtained by omitting from S a countable 
number of  circular sets. For any point zoES, Zo~OO, and any ro>0 we denote 
by N~ (z0; r0) the totality of sets in N~ contained in the annulus {15ro/16 <_-[z-z0] <= r0}. 
We define b(n, j ) > 0  by the property: ~O (log (2t))/q~ (log(t/j))<=2 -"-J for 
t_-> b (n, j ) - l ,  n, j ~  1. By induction we construct three sequences of positive numbers 
{A,: n->0}, {a(n, j ) :  n=>l, j=>0}, {z,: n=>l}; and two sequences of  N~o-sets 
{E.':n_->0}, {E(n, j ) :  n=>l, j=>0}. We first require the following: 

A,+I/A,<= I/8, n-_>0; A,<=b(1, n), n = > l ;  

z ,=3A , /4 ,  n>= 1; a(n,O)<=A,/8, n>= 1; 

a (n , j )<-b(n , j ) ,  a (n , j+ l ) /a (n , j )  <- 1/2, n - > l ,  j - > 0 ;  

EnEN~o(O;A.), n_->0; E(n, j )EN,  p(z,;a(n,j)), n>- l ,  j>=O. 

We see that all E.' and E(n, j)  are mutually disjoint. We set 

E . = u { E ( n , j ) : j ~ O } u { z , } ,  n ~  1, 

and finally E to be the union of  all E, with n ~ l ,  E,' with n_~0 and the origin. 
E is thus bounded, closed and totally disconnected. Let m be the harmonic measure 
at the point ~o with respect to the domain S--E. Our final requirement is this: 

d <= ~o(--log(nA,))m(E~,) <= 1, n >-_ 1, 
and 

d <= ~o(--log(ja(n,j)))m(E(n,j)) <-- 1, n, j  >= 1, 

where d is a given constant, 0 < d <  1. The induction arguments are similar to the 
ones used in the proof  of Lemma 3.3 but are a little bit more involved. We omit 
the details. 

Let fEH~,(S--E) be any nonzero function. Since E~ and E(n, j)  belong to 
the class N~, f can be extended analytically to points in these sets. So the possible 
singularities of  f a r e  z,, n=>l, and the origin. The point z, for each n=>l is the 
center of  the circular set E,,  for which we know 

a(n , j+l ) /a(n , j )~_  l/2, j = > 0 ;  

E(n,j) c= {15a(n,j)/16 <= [z-z,[ ~ a(n,j)}, j ~ 0; 
and 

d <- q~(-log(ja(n,j)))rn(E(n,j)) <- 1, j >= 1. 

As we immediately see from our proof  of  Theorem 3.4, these conditions are enough 
to conclude that z. is a removable singularity of f .  For the origin we note that 
the domain S - E  contains annuli {A.-<IzI<4A.}, n>=l, with constant modulus. 
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So our requirement on m(E~) again says that f has a removable singularity at 
the origin. Hence f is a constant function. 

Finally it follows f rom the properties of  a(n, j )  and m(E(n, j ) )  that H ~ ( S - - E )  
contains functions of  the form 

h(z) = Z T = l c n ( z - z n )  -I,  c. o, 

when c, are small enough. In this way we can show that H c , ( S - E )  is infinite di- 
mensional and contains functions with essential singularities. 

b) Let E be a bounded, closed subset of  an analytic curve. I f  EENan, then 
E has zero linear measure and thus belongs to N 1 (cf., [4, Theorem 9]). Namely, 
all Np, l=<p< +0% coincide on analytic curves. As shown by [4, Theorem 17], 
this is no longer true for 0 < p <  1. There exists a bounded, closed set E, on the 
real axis, of  zero linear measure such that z - I E H P ( S - - E )  for all 0 < p < l .  It  
looks like on open problem to find linear sets belonging to the class N~, when 
t/cp(t)=o(1), t ~ + ~ .  For  function-theoretic null sets, see also Ahlfors and 
Beuding [1]. 

c) The condition (A) cannot be replaced by ~(t)/~o(t)=o(1), t ~ + o o ,  as 
we see f rom the example cp(t)=exp (2e t) and ~ ( t ) = e x p  (el). 
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