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1. Introduction 

The reasonings in our recent work [5] conceals a considerably stronger result 
than that which we had stated as our main theorem. Specifically, the requirement 
on the domain D to be a Carath6odory domain can be replaced by a weaker assump- 
tion, namely that D possesses the so called Farrell--Marku]eviE property (to be 
defined later). We are grateful to J. Brennan for drawing our attention to this 
possibility. 

We retain the notation of [5]. However, here D stands for an arbitrary bounded 
simply connected domain, not necessarily a Carath6odory domain. I f  a(z) is a 
continuous positive function in D, we denote by HV(a:D) the class of all analytic 
functions f ( z )  in D for which 

Ilfil• = ffo ]f(z) lPa(z)dxdy <oo, 0 < P . < 7 o o .  

Throughout this paper ~o will denote a conformal map of  D onto the open unit 
disc U and ~b = r will be the inverse mapping. We denote by 6 0 (z) the distance 
from z to 019 and 2o(z ) stands for the Poincar6 metric of  D. Here 2v(w)= 
0-Iw12)  -1 and 2o(z)=2v(~o(z)) ko'(z)l. The fact that 2o(z) is decreasing with 
D and Koebe's I/4 theorem imply that 

(1.1) 1/4 _<- lo(Z)6o(Z) ~-- 1, z6 D. 

We shall confine our attention to those weights a(z) which behave like 6$(z), aER. 
In view of (1.1) and the conformal invariance of 2o(Z), it is more convenient to 
replace a(z) by 2~,~(z). Specifically, we let 

to = Sup {qE R: uq(D) ---- co}, u~(D) = ffo ax dy. 

Then 1 <_-to <-2; and, moreover, t o= 1 if  OD is rectifiable. For these and further 
properties of to see [5]. 
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We define the interval 
~[ [to, oo), 

I(t~ = [ (to, o~), !a,D (D ) = 0% 

and note that {qER:pq(D)<~o}=I(tD). Of course, I(1)=(1, o~) and I(2)= 
[2, ~). 

For qEI(to) and 0 < p <  ~ we define B~(D) as the space HP(2=o -q :D). APqlp(D)= 
B~(D) is called the Bets space; it is a Frech6t space of analytic functions, f(z) 
D, "normed" by 

= lf(z)l~ab-a(z) dx c l y } .  

Since D is bounded, the assumption qEI(tD) implies that the polynomials belong 
to B~(D) for all 0 < p < ~ .  

The question of polynomial density in B~(D) has been considered by various 
authors (see [5] and [7] for more details). In 1934 Farrell and Marku~evi6 proved 
independently that the polynomials are dense in B~(D)=HP(1 :D) whenever D 
is a Carath6odory domain (see for example [7]). Recall that, a domain D in the 
complex plane is called a Carath6odory domain if it is simply connected, bounded, 
and its boundary coincides with the boundary of the infinite component of the 
complement of D. Recently [5], we showed that for a Carath6dory domain D, the 
polynomials are dense in BPq(D) for qEI(to) and all 0 < p < ~ , .  We proved this 
by perturbing the Farrell--Marku~evi6 theorem to q=>2 and to q<2,  qEl(to), 
by using a weak invertibility argument. The argument of the above proof, in effect 
conceals the possibility of further sharpening the results of [5]. In fact, the require- 
ment on D to be a Carath6dory domain can be replaced by a weaker assumption, 
namely that D has the Farrell--Marku~evi~ property. We now make this notion 
precise. 

Definition. Let pE(0, ~) be fixed. D is said to have the p-Farrell Marku~evi~ 
property or DEFM(p) if the polynomials are dense in B~(D). 

Clearly, DEEM(p) for all pE(O, ~) whenever D is a Carath6odory domain. 
However, not only the Carath6odory domains have this property as the examples 
of [7, pp. 116, 158] and [1] show. We show (Proposition 2) that if DEFM(po) for 
some fixed P0E(0, ~,) then DEFM(p) for all pE(0,p0]. Using this and some facts 
similar to those exhibited in our previous work [5] we arrive at our main results 
(Propositions 3 and 4). The above mentioned three propositions when orchestrated 
yield the principal theorem of this paper (Theorem 1); namely, if DEFM(p) for 
all p =>P0, where P0 is some fixed number in (0, ~), then the polynomials are dense 
in B~(D) for qEl(ta) and all pE(0, ~o). This, of course, extends our earlier work [5]. 
Proposition 1 of this paper is rather surprising and it is due to Brennan [3]. 
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2. Auxiliary Facts 

Lemma 1. Let D be a bounded simply connected domain. Then 

f f  I~o'(z)l" dx dy < co 

whenever 0<_-p<3. 

Proof  We may obviously assume that p > 2 .  Since ~k is a bounded schlicht 
function, it follows that I~'(w)[~M(1 - Iwl  ~) for all w ~ U  and some positive con- 
stant M. Therefore, 

f f I~~ (z)? dx dy = f f v I~" (w)l~-p du dv ~_ M~-,  f f ~ o - [wl~)'-" du dr. 

The last integral is finite if  2 - p > - 1  or if p < 3 .  
The assertions of this temma are more than sufficient for our purposes. How- 

ever, it is interesting to note that Brennan [3] has recently obtained a further ex- 
tension of this lemma in the form: 

Proposition 1. (Brennan). Let D be a bounded simply connected domain. Then 

f f [e'l" dx dy < ,~ 

whenever 0<-p-< 3 + z. Here z is some positive constant which does not depend on D. 
The proof of this proposition is based on certain estimates for harmonic measures 

and on the following lemma which is fairly classical. The proof of this lemma 
appeared in Hedberg [6]. Because the proof in [6] is quite difficult we here provide 
a simpler proof which is similar to that of Lemma 1. 

Lemma 2. Let D be a bounded simply connected domain. Then there exists a 
positive constant K such that 

1 - k o ( z ) l  = <_- gaV~(z) 
for  every z in D. 

Proof  As in Lemma 1, 
(1.1), we have 

[~9'(w)]_->M(1 - lwl  ~) for all wE U. Therefore, using 

1 - k o ( z ) l  2 = ~ l ( z ) r e ' ( ~ ) l  = 2 ~ 1 ( z )  [4 / (w)[  -1  

-_< 46D(z)kU(w)1-1 ~ 4M-16D(Z)(1 --Iwl2)-L 

Thus 1 -  I~o(z)t2<-2M-~t26~(z) which concludes the proof. 

Lemma 3. The polynomials are dense in B~(U) for  q > l  and all pE(O, oo). 

Proof  This is trivial, for the polynomials are dense HP(a: U) with a(z)= 
a(fzl) (cf. [7]). In our case a(z)=(1--]z[2) q-2, q > l .  
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Our main results are in part based on the following elementary fact (cf. [2, 5, 6] 
and [7, p. 136]) which, contrary to its parallel in [5], does not make use of the 
Carath6odory property. 

Lemma 4. Let D be a bounded simply connected domain and let qEI(tD) and 
pC(O, co) be fixed. Then the polynomials are dense in B~(D) i f  and only if 
q~, (q),)qlp is in the B~ (D)-closure o f  the polynomials for each n = O, 1 . . . . .  

Proof. The necessity is obvious since ~0"(q~') q/p is in B~(D) for n=0 ,  1, ... 
and for all q > 1. Indeed, 

II~o"(#)q/Ollg.p = f f D l , l .p  l#lq 2~-q dx dy 

~- ff~ [~o'[q2g-qdxdy = f f u ( 1 - l w l ~ ) ~ - ~ a u a v  - ,~ q ~  1 " 

For the sufficiency let fCB~(D) and 5>0. Then Tf=fo~k(O')P/qEB~(U). Accord- 
ing to Lemma 3 there is a polynomial Q(w) with 

[IZf-Qllg.p,v < #2. 

By assumption, since Q is a polynomial, there is a polynomial P(z) such that 

(2.1) I]O(~o)(q)')q/p-PIl~, p < #2. 
But 

Ilzf -allg, p, v = f f u [ f (~)(~ ' )q /p-af (1  -[wI~) q-2 du dv 

= ffo [f(q)')-q/r_Q(q))f i~o,1~-~ d x  dy  

= ffo I f -  Q (~o) (~o') q/p f 22o - q dx dy = [ I f -  Q (q~) (qg')~/pll~,p. 

Thus 

(2.2) Ilf-a(q~)(~o')q/pll~,p < ~/2. 

Hence, assuming 0<p~_ 1 (the case l < p <  co is of course similar), we have, by 
(2.1) and (2.2), [If-Pll~,p<e. This concludes the proof of the lemma. 

3. Main Results 

We note first the elementary fact that B~o(D)cB~ (D) for O<p<=p0 < co and 
1 1 

(3.1) lifil~,p <= A(p, Po)llfil2,po, A(p, Po) = p~(D)P po. 

Now, Lemmas 3, 4 and (3.1) lead to the following interesting proposition: 

Proposition 2. I f  DC FM(po) for some fixed poC(O, co) then DE FM(p)  for all 
p ~ (0, Po]. 



Polynomial approximation in Bers spaces of non-Carath6odory domains 233 

Proof. It is sufficient to show that DEFM(p) for 4/5po<--p~po . In this case 
r for all n=0 ,  1 , - - .  Indeed, 

2 PO g PO 

I1~o"(#)~/'11~,% -- f f  o I<0l"" ko'l P-dxdy ~ f f  I#1 7dxdy 

where, according to Lemma 1, the last integral is finite because 0 < 2  po <__ 5/2 < 3. 
P 

Since DEFM(po), given e > 0  there is a polynomial P with 

llq~"(q~3~/,-ell~,p0 < ~/A(p, P0), n --  0, 1, . . . .  

Consequently, using (3.1), 

II~p~(~p')~/P-ell2,~ < ~, n = 0, 1 . . . . .  

Therefore, according to Lemma 4, DEFM(p) for 4/5po<=p<=po . 

Corollary. If, for some p0E(0, r DE FM(p) for all P>=Po then DE FM(p) 
for all p E ( 0 ,  oo). 

We are now in a position to use arguments along the same lines exhibited 
in [5]. Exactly as in Proposition 2 of  [5] we can prove, using the present Lemma 4 
and Proposition 2, the following more general proposition: 

Proposition 3. Let DEFM(po), 0 < p o <  oo. Then the polynomials are dense 
in Bff(D) for q~_2 and all pE(0,p0 ]. 

The case l < q < 2  is of course more complicated. However, a careful examin- 
ation of the proof of Theorem 1 of  [5] for the case l< - to<2  coupled with the 
present Lemma 4 and Proposition 2 yields the following sharper result: 

Proposition 4. Let DEFM(po+~) for any ~>0, and assume that 1-<_to<2. 
Then the polynomials are dense in Bff(D) for qEI(to) and all pE(0,p0]. 

The combination of the last three propositions leads to our principal result: 

Theorem 1. Let DEFM(p) for all P>=Po, where Po is some fixed number in 
(0, oo). Then the polynomials are dense in B~ (D) for qE I(tD) and all pE(O, co). 

This theorem is applicable to many non-Carath6odory domains such as those 
described in [7, p. 116] and [1, p. 182]. A classical instance of  these domains is the 
"crescent domain" i.e., a domain which is topologically equivalent to the domain 
bounded by two internally tangent circles (see also [1] for the extension of this 
definition). For example, if  D is a crescent domain which is sufficiently thin at the 
multiple boundary point then DEFM(p) for all p->l  and hence for all pE(0, ~o). 
Thus the polynomials are dense in Bff(D), for such domains D. for qEI(to) and 
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all pE(0,  o~). Especially, if  OD is rectifiable then t D = l  (or 2~-qCLI(D) for  all 

q > l ) ,  and we recover a theorem of  Metzger  (cf. [4, 5, 8]) for  these domains.  
A more  bizarre situation occurs when OD consists almost  entirely o f  cuts. There 

are examples o f  such domains  D for  which D C F M ( p )  for  all p ~ l  (of. [2, p. 138]). 

In  this case tD----2, and hence the polynomials  are dense in B~(D) for  q=>2 and 
all pC(O, oo). 
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