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Introduction 

The purpose of  this paper is to give non-periodic analogues of  some results 
of  Duren and Shields [2]. In the process, it is hoped that some of  the arguments 
become clearer, and the key role played by the homogeneous Besov spaces will 
be highlighted. We describe the convoluteurs of  H p and /),~j, spaces into spaces 
of  the same type as well as into FL p spaces. The results were announced in [6]. 

Notation. We will define the Fourier transform by 

f ( r  = f exp (-- i(x, ~))f(x) dx, 
where 

(x, 4) = x1~1+... +x ,~ , ,  

and when we wish to indicate its action on a space, we denote 

FX = { f i f e  X}. 

The space R "+1 is considered as the Cartesian product R"XR, so that each 
zER n+l can be written z=(x,  t), xCR", tER. For  a function u defined on R "+1 
we write 

Ou 
0-7 = D,+lu. 

For  functions f defined on R", we denote 

I]SlS, = ( L - I S ( x ) l "  dx) m', 0-< p <=,  

= esssuplf(x)[  p = ~ ,  

and in general, when (fl~(z)lPdz) 11p is written, it is to be interpreted as 
ess sup I~(x)l for p = ~ .  For  a function u defined on R~_+a= {(x, t ) lxER",  t>0},  
we set 

gp(u; t) = !In( ' ,  t)llp, 
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and then we can define /}~q, the homogeneous Besov space, considered by Herz 
1 [5]. I f  k is the smallest non-negative integer greater than -~ cr and u is the temperature 

with initial value f ,  we have BL={fcs'l(fo [t*-('~M.(~+~; t)l~t-1 at)~.< o~}, 
with the obvious seminorm, which is denoted /}~q(f). 

The Gauss--Weierstrass kernel is denoted by W, where 

W(x, t) : (47[t) -(n/2) exp (--Ixl2/4t), xE R", t > O, 

and the temperature u above is defined for any fE S" by 

u (x, t) = ( L  W ( x - . ,  0) .  

The spaces K~q are defined in [5], but we shall mainly use the alternate charac- 
terization given in [4]. 

The H p spaces are defined for all p > 0  in [3], and we use mainly the charac- 
terization on page 183. 

In connection with the K~q spaces, we denote v(~)=b,l~[", where CER" and 
b. is the volume of the ball of radius 1 in R". Throughout A, B, C will denote con- 
stants whose value may change from line to line. 

Finally, we write 

Cv(X, Y) = {kl if fE X, k * f C  Y and llk*fllr ~- BHf[Ix}, 

and write also 
M(X, Y) = {/}[k~ Cv(X, r)}. 

1. Convoluteurs between H p spaces and F L  p spaces 

The following lemma provides us with a generous supply of test functions 
in the H p spaces. 

Lemma 1. f(x)=D~.+l W(x, s)EHP(R ") iff p>(n/n+Zk) and 

IID.~+IW(o,  s ) l l ~ ,  = Bs -~-("/2p') = Bs -~-"/2 +("/2p). 

Proof. We note that D~,+IW(x , t )= t -kW(x ,  t)P(Ix[~/4t), where P is a pol- 
ynomial of  degree k. To apply Theorem 11 of [3], we must solve the heat equation 
in R~_ +1 with initial value f (x) .  By uniqueness the solution is 

-- D,+ IW(x, t + s), u ( x , t ) -  
which gives, 

u +(x) = s u p  ]a~+ a W(x, t + s)I = s u p  I(t + s ) -kW(x,  t + s)P(Ix?/4( t  + s))[. 
t > O  t~-O 
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One checks easily 

u + ( x )  = t lxl Ixl >-_ As, 

= Bs-k-"/~le([x[2/4s)l exp (--Ixle/4s), Ix[ ~ =< As. 

A trivial computation of the L p norm then gives the result. The integral of  u + con- 
verges at infinity iff p > (n/n + 2k). 

The next lemma now allows us to characterize convoluteurs from H p into FL q. 

Lemma 2. I f  O < p < l ,  ~[Pc]~n(1-1/P) 

This is proved on page 176 of  [3]. 
For  the convenience of  the reader we recall the convolution theorem for Besov 

spaces. 

,.t.p ~ A ~ + B  Lemma 3. B~nq * l~,s~= JJ,, , where 

l / t =  l i p + l / r - i ,  1/u = 1/s+l/q. 

Our first theorem is an easy consequence of  these results. 

Theorem 1. If 0<p<l<=q<_-~,  

Cv (H', FL ~) = {k [k E K;(~ 1/" - 1)}. 

Proof. If  k E Cv (H p, FLq), then for any fE  H p, 

[Ik*fllrL, = [Ikfl[~ --> Bllfl[n,. 

Choose m so that p>n/n+2m,  and take f (x)=D2+lW(X,S) .  The inequality 
becomes 

Ilfc(~) exp (--S[~12)[~l~mllq <= ns . . . .  /~+,/2p, 

which says precisely that 

ess sup s l/~(2m+n-"/p) llk(Ol~l exp (-sl l )llq --< B, 

and, except for  the choice of  constants, this is uq~2 "/p-" (k) in the notation of  Flett [4]. 
For  2m>n(I/p--1) ,  which we have assumed, it gives an equivalent norm on 

Conversely suppose k E K ~  Ip-1). It follows from Lemma 2 that if f E H  p 
fEKn(~ -1/p) and by the multiplication theorem f o r  K" spaces due to Flett, 

~fEK~176 q . 

Corollary 1.1. Any of  the following equivalent conditions is necessary and 
sufficient in order that a function m be a multiplier from HP-+FL q, where 0 < p ~  
l ~ q ~ .  

(a) (fn~_t~t~_2R ]m(x)lq dx)l/q ~ CRn'x-1/P)' for all R > O. 
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(L~ 
(d) 

for all R>O. 

(b) For any f l>n(1/p--1) and any R > 0 ,  

( f  ,~,~_R (]xf  lm(x)l)q dx) ~/q~= C, R '-"a/ '-~, .  

(c) For any f l>n (1 /p -1 )  and any R>O, 

[Ixl a exp ( -  4n ~ [xlZR)Im (x)l] ~ dx) ~/" <- G R  -x/ ' ta-n(~/p-m 

( f  ,~t.. [[m(x)[[xln(1/'-l/'-l)]g dx)Uq N CR-n' 

Remarks 1) The same argument proves that 

Cv(f32(, 1-alp), FL9 = {klk~ gg~/P-x)}, 
l <=s<-q. 

2) The theorems are more naturally stated for multipliers, and if we note 
that FL 1 is usually denoted A (R"), and EL ~ is the space of  pseudomeasures denoted 
PM, we can restate the most important cases above in the form 

M ( H  v, A) = K~t.o l/v-l) 

M ( H  v, L 2) = K~l/v -1) 

M ( H  v, PM)  = K~(~/v-l), 
if 0 < p < l .  
When p = l ,  Lemma 2 is not valid which causes a weakening of the theorem. 

Theorem 2. I f  2~q<- 0% then 

Cv(H 1, FL9 = {klk~ K~ 

Proof. Repeat the proof of Theorem 1 using now the fact that HX=C/)~ 2. For 
fc~K~ f ~ H  x, the multiplication theorem gives only ~fEK~ which causes the 
restriction 2 ~ q <= oo. 

Corollary 2.1. Any of  the following equivalent conditions is necessary and sufficient 
in order that a function m be a multiplier from HI-~FL q, where 2<-q <- ~o. 

(a) {fR~_Ixl_~2R m(x) qdx) 1/q <- C, for all R > O. 

(b) For any f l>0  and any R > 0 ,  

( f  ,.~_R [Ixlalm(x)tp dx) 1/~ <= CaRa" 

(c) For any fl:~O and any R > 0 ,  

(JR~ [Ixl" exp (--4n ~ Ix[ 2 R)[m (x)[] q dx} x/q ~_ C a R -('/2). 
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(d) For any R>O 

( f  ,x,~_R [m(x)rqJxI-" dx) ''~ ~- CR-", 

Remarks 1) Again we can prove that 

Cv(B~ FLq) = {k]~EK~ 1 ~ s <- q, 2 <_- q ~oo. 

2) The case q = 2  is interesting. It says that 

M(H1, L 2) ---- K2. = {re[sup L~/,,k~_lr Im(e)[2dr ~ B}. 

Theorem 3. For l ~ q ~ 2  

Kq, 5 M ( H  1, FLq) ~ K2~, 
where 1/r=l/q-1/2.  

The proof is immediate. Note that as q~2 ,  r-~ + co. Once again H 1 can be 
replaced by /~~ s, l<=s~q. It follows from this result that the conditions given in 
Corollary 2.1 are necessary for multipliers; the sufficient conditions are given in 
the next corollary. 

Corollary 3.1. Any of the following equivalent conditions are sufficient for a func- 
tion m to be a multiplier from H ~ into FL q for l~q<_-2, 1/r=l/q-1/2.  
(a) For any f l>0,  

fo  (t-.(a-" f,.,~j (Ixlp ]m (x)I)' ax) "/q t -*  dt < + ~. 

(b) For any f l>0,  

f o ( t-'al2 L ,  ([x[a exp(-4•2[x[2t)[m(x)[)qdx) "/' t-~ dt < +oo. 

(c) f ~ ( r  fjx,~,lm(x)lqlx]-",'-"dx)'/'t-~dt<+oo. 

(d) If  bj = Im(x)l q dx) l/q, then {bj}E F. 

The inclusion relation up~ , (1 -~ /p )  O < p < l ,  allows us to say something 
about the growth of  the Fourier transform of an H p function. We state this, and 
then note that this result is best possible in a certain sense. This follows as in Duren 
and Shields [2]. 

Theorem 4. (1) I f  f E H  p, 0 < p <  1, then the least decreasing radial majorant of 
I~[-"lPf is integrable. 

(2) I f  fE H 1, the least decreasing radial majorant of ]{[-,/2f/s square integrable. 

Proof. For f E H  p, fE[~l(~ ~-~lg) and by the Fourier transform theorem of [2], 
fEK~(~ -up). By definition of the K ~  spaces this means that v(~)~-I/P-lfE~L~C= 
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1LI=L 1. Since ~L 1 is precisely the set of functions whose least decreasing radial 
majorant is in L 1, the result follows. 

For f C H  1, we know that f~B~ so that the Fourier transform theorem implies 
that f6K~ which gives the second result. 

Remarks 1) A result of Fefferman ( generalized by Bj6rk, see [10] shows that 
i f f C H  ~, then I~l-"fEz 1. He also shows that the least decreasing radial majorant 
of flr need not be integrable, and that Theorem 3 (ii) gives the best result about 
the least decreasing radial majorant. On the other hand, we should note that for 

' 0  fCB u ,  then the least decreasing radial majorant of I~l- ' f  is integrable. 

2) Since the first draft of this paper appeared, this theorem has been partially 
generalized by Peetre [10]. He has shown that for f E H  p, v(~)l-2/Pf6L p for 0<p<=2. 
However, our result is best possible for integrability and the result of Petree says 
nothing about the radial majorant. Incidentally in our terms the result of Peetre 
is proved by first showing that i f f c H  p, then f~KL]  -~/p). This is a simple conse- 
quence of our result that in fact f~KL] -~l~) (an alternate proof may be given by 
noting that e~X~CB~ for any a real with /3~(ei<~'~))=/3[~[ ~, and that (HP)*= 
/~1/p-1). The general result then follows by interpolation. 

Corollary 4.1. Suppose f E H  p, 0 < p < l .  Then for any ]o~l<-k, with k an in- 
teger, k<-n( l /p-1) ,  

( f ,  = o. 

Proof. This follows because x~=O in (HP) *. 
Next we indicate the sense in which Theorem 4 is best possible. 

Theorem 5. I f  g is a function such that for every f C H  p, f (~)g(~) is integrable, 
then there is a constant B (depending only on g) such that 

i~l"/~lg(~)l d~ ~ B. 

Proof. Our assumption implies that gEM(H p, FL ~) by the closed graph the- 
orem, but by Theorem 2, this space is K~"2/p-~), and hence, g(O I~I"/P~L=, which 
gives the result. 

It is perhaps worth while to note that our Theorem 1 is not as strong as the 
corresponding result in Duren and Shields because of our restriction 1 <=q. These 
results can be extended to cover these spaces using the spaces /3~q for 0 < q < l  
(also 0 < p < l )  developed by Peetre [11]; see also Triebel [13]. 

Another application of our method is a new version of Paley's theorem which 
makes use of sets lacunary in the sense of Herz. Recall that Herz says that a set 
EC=R, is lacunary if ZE, the characteristic function of E, is in K~ 
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Corollary 5.1. l f  E is a lacunary subset o f  R,  and fEHP(R~), 0 < p < l ,  then 
for any l<=q<-~, 

t( )l q A llfi l , .  

For p = l ,  this is true with 2<=q<=oo. 

Proof  Since xeEK~ for any q ([4], p. 549), it follows that v(~)-(vP-a)ZEE 
Kq~IP-a)=M(HP, FL q) by Theorem 1 and the result follows. For p =  1, we must 
apply Theorem 2. 

Paley's theorem is the special case p =  1, q=2.  We can also give results for 
nonlacunary sets with appropriate weights. The next result, if true for p =  1, would 
have applications to the study of radial multipliers from H ~ ~ F L  ~, as was pointed 
out to the author by D. Oberlin. Our methods do not give the result for p =  1 

Corollary 5.2. I f  fE  H p, 0 <p < l, then 

27 li( )i 2 m-" lO -<_ A [ I f i l . , ' .  

Proof  This follows because if E k = {~ [2 k ~ 1r <- 2 k + 1 }, 

and Lemma 2 implies that if f E H  p, ZEKn( l l - i /P )  , and the multiplication theorem 
for K~q spaces gives 

~2-k(n- l )  ZEk f ~ K~(11- l l  p ) , 

which is precisely the theorem. 

2. Convoluteurs between H p spaces and Besov spaces 

We have noted that the containing Banach space considered by Duren and 
Shields is the homogeneous Besov space /7~(1 l-1/~). The techniques previously used 
will now be applied to the characterization of  convoluteurs between H p spaces 
and several Besov spaces, including the containing Banach space. 

Theorem 6. If p<-q, then "~ "~ - " ~ - ~  C v  ( B l p ,  n aq) - -  B a ~  �9 

Proof. The convolution theorem for /7~p spaces implies that 

since p ~  q. 
Letp ,  q be arbitrary (we do not need p<:q here) and suppose kECv(B~,  B~aq)" 

For any f E / ~ ,  we have the inequality 

B~(k~ f) ~_ CB~(f). 
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Let r be anonnegative integer such that r >  + }  [ct I. For  this r, f (x)=D'.+ 1 W(x, s) 
is in /)~p and 

[3~p(f) =- Bs -(~/2)-'. 
- -  r For this f ,  k . f - D . + l u ( x  , s), where u is the temperature with initial value k- 

=>1 To compute its /).~q norm, let L be a nonnegative integer such that L -~ fl and 
then the B norm will be given by an integral involving the Lth time derivative of 
the solution of  the heat equation with initial value k . f .  By uniqueness, this solu- 
tion is D'.+lU(X, t+s), and it follows that 

B.P,(k.T) = ( f o  ,o,+L.,  ; .  t+s)jqt- dt),/q. 
This can be estimated since ,+L . o~Mo(D.+au,  Q) is a decreasing function of ~, and 
thus 

(S/2)L- a/2 M. (D~ +L u ; 2s) (ln 2) 1/q 
1 11,. Ma(D.+xu t+s)]qt-ldt  

2 

<= JB~q(k*f) -<= CBs -'12-', 

and collecting terms, we see that 

s r+L_ l /g (~_a)  ,at [ r ~ r + L u .  S) "~ B'C. IV1 a ~.l'Jn + 1 , = 

Since r+L>l/2([ l - -e) ,k~B~.2 ~ and 

BLz~(k)  < B '  Ilkl[ 

where Ilkll is the norm of k as a convoluteur from / )~ .~B~ .  

Theorem 7. I f  0 < p < l < = q ~  or i f  p = l ,  2-<q---~, then 

Cv( I-Ip, JB~a.) = J~a: n(1-1[p)" 

Proof. If  0 < p < l ,  KIPcI~n(1-1[P) and thus 11 : U l l  

Baflo~ nc l -1 /p )  = C u ( B ~ I  l - l I p ) ,  JB~) ~ C v (  H p ,  JBflaq)" 

The converse follows by considering the test functions f(x)=D'~+aW(x, s), where 
r is chosen so that p>n/n+2r,  and noting that the norm of f in H p is of  the 
same order of  magnitude as its norm in k.(1-~/p) ~11 

Corollary7.1. I f  l ~ a < ~ ,  l<q<_-~,  l ~ p < ~ ,  then 
�9 ~ ,~ "~_~ 

Cv (Bay, B ~ )  = B.,, ~. 

Proof. The convolution theorem for the Besov spaces gives one direction. 
The other direction follows by duality. If  kECv(B~.p, B~q), then 

[3~,,(k . f )  ~_ C[3~p(f). 
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Now B~q=(B~)* ,  so it follows from functional analysis that 

[(k . f ,  g)] - - - /3~q(k . f ) /~ ,a  (g) 

~_ CB~,(f)[3~P (g). 

The left hand side also equals ( f ,  k . g )  and this gives 

l(f, k . g)[ <= CB~p(f)B~,P (g), 
~ i.e., k * g  defines a continuous linear functional on Bop. This gives 

or alternately, k~ Cv (B~qP, , "-~ BdV ) and we use the proof  of Theorem 5 (recall that 
this direction had no requirement on the second index) to conclude that 

k~B~,= ~ 

The fundamental inclusion between H p spaces for 0 < p < l  and the homo- 
geneous Besov spaces given by Lemma 2, combined with the fact that our test 
functions behave in the same manner in both spaces, leads to the next result. The 
case p = 1 was proved already in [8]. 

Theorem8. / f  0 < p < l ~ _ q < ~ ,  or if p = l ,  2<_-q<_-~ 

Cv(Hp, L~) = ~/~-1~. 

Proof I f  kECv(H p, Lq), then 

IIk*fllq <- Cllfllp, 
n 

for eachf~HP(R'); apply this with f(x)=D~+ 1 W(x, s), where p >  n+2m" Since 

k . f=D~+lU( . , s ) ,  it follows that 

IID~+lU(., s)ll~ <-- nllfllp = ns -m-"/*+"/*p, 

"nfllp--1) which is precisely the requirement that k6Bq~ . 
Conversely, if "~(~/P -~) kEBq~ , f E H  p, then Lemrna 2 and the convolution theorem 

for Besov spaces shows that k.fEJ~~ q. For  p = l ,  fE/3~ so that the con- 
volution theorem gives k.f~[3~ q for 2<-q <- oo. 

This is an example of  a theorem which is certainly capable of  extension for 
p<-q<l. The above result shows that 

s m + ' / ~ - " / ~ p  [IO~'+lu(., s)ll~ =< B 

and the announcement of  Peetre indicates that this is an equivalent norm on 

q ~  
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3. Application of the above results 

We give two applications of the above results. The first is a straightforward 
application of a general result relating topological tensor products and the space 
of translation invariant maps. The second answers a question raised by Jan-Erik 
Bj6rk at the Nordic Summer School at Grebbestad. 

Our first result shows that the Besov spaces can be built up from the H p spaces 
by the operations of  duality, topological tensor products and interpolation. Given 
two quasinormed spaces X and Y, we define 

X .  Y = { 2 7 = 1  f / *  gi[fiE X, giE Y, ,~  Ilfillx II gill r < co} 

and equip this linear space with the norm 

[[[hl] ! = inf {,~ I[f, II II giillh = ~ f , *  g,}. 

Theorem 9. The identity map from 

H p . L q' f~n(1-1/V) ~q '  1 

is bicontinuous for  0 < p < l < = q < ~ ,  or p - - l ,  2 ~ q < o o .  

Proof. The map is well-defined by Lemma 2, the fact that Lqc=B~ for any 
q and the convolution theorem for the Besov spaces. We also get the estimate 

/~'(11-- l/P) ( f /  * gi) "n(1--1/p) "0 ~= CBn (f,) Bq, ~ (gi) 

<-- CIIfillu.llgillLq', 
and thus if h = ~ f ~ . g  i, 

/ ~ ! l l - I /P ) (h )  ~ CIIIhlll .  

I f  p = l ,  then HIC=/~~ and since l<_-q'<=2, Lq'~[3 ~ and we get the corre- ~- q2 ' 
sponding result. 

Conversely, if h E H P . L  r there is an F ( : ( H P . L r  such that F(h)=[[lh[[ 1, 
[]F[] =1.  This is because H V . L  q" is a normed space even though H p is only quasi- 
normed. Now we apply the next proposition. The next result is well-known in 
greater generality but we include its proof  for completeness. 

Proposition. Cv(H p, L~ . Lr *, l < q <  ~o. 

Proof. Suppose k E C v ( H  p, Lq). We want to define a continuous linear func- 
tional on H P . L  r and of course it suffices to do this for f E H  p, gEL r Then 
k . f E L  q, and it makes sense to define 

F ( f *  g) = f k * f ( -  x) g (x) dx, = k * f *  g (0), 
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and extend linearly. The definition of the norm assures us that there is no problem 
with convergence, and the fact that this is k . f . g ( O )  assures that it is well-defined. 
If  h ~ H P . L  q', 

tF(h)r = Z,  f k.f,(-x)g~(x) dx 

<: Z ,  IIk * fellq)lg,llq, <= ]lkl] Z l]fell pllg, llr <= Ilk[I IIhl[. 

Conversely, if F is a bounded linear functional on H p , L  q', fix f E H  p and con- 
sider the map T: g - ~ F ( f . g ) .  It is a linear map such that 

IT(g)]-<_ [IF[I Ilf* gl[ -<-NFI] [If[lpl[gl[ q'. 

By the characterization of the dual of L q, 3 ! T f ( x )  in Lq(R ") such that 

F ( f .  g) = f Tf(-x)g(x) dx. 

Uniqueness implies that T is linear and 

f T ( z h f ) ( - - x ) g ( x  ) dx  = F('chf* g) = F ( f *  Zh g) 

= f rf(-x)g(x-h) dx = f T .  rf(-x)g(x) dx, 
and since this holds for all g E L  r 

T(zh f )  = % ( T f ) ,  

so T defines a translation invariant operator from H v ~ L  q'. To conclude the proof 
of Theorem 9, we note that 

IIIhlll = F(h)  = k *  h(O) = f k ( - x ) h ( x )  dx  

and k E C v ( H P ,  - q  rSn(l/p-- 1) L ) = o q =  , by Theorem 7, while hE/3~a -lIp), which gives 

~= of2n(1/p-1)t'k'~ h ..(i 1/p [[[hill = ~ . q =  , ,  Bq11- , 

At the Nordic Summer School in Grebbestad, Jan-Erik Bj6rk asked whether 
Theorem 1.1 of his paper [1] could be extended to allow 

in place of [O(OI<_-C(1 + ]~[~)-,/4. Our Theorem 2 gives this immediately. 

Theorem 10. Suppose vE E ' ( R  n) satisfies 

f [O(r ~ A s, _ ~  < j <oo. 

Then there is a constant Av such that 

I{v*fI[BMO <= Avll f l l~,  for every fE Co ~. 
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Note. As remarked in Lemma 1.I of  [I] this implies that on H l  n Co(R" ), 
I Iv*f l l~-A~ IlfllH~, and by further remarks in that paper (see also [8]), 

[Iv*flip <= A~llfllp, 1 < p < ~ .  

Proof We normalize and assume A = I ,  s u p p v ~ { I x [ ~ l  }. Lemma 1.3 of [1] 
implies that for large cubes 

1 f Iv*f(x)l dx < 3"/~llfll~. IQ[ o 

It remains to consider small cubes Q, centered at the origin, of volume Ia[---rio. 
We set, with Bj6rk, f ~ = f  for ly,{<2, v = l  . . . . .  n, and f / = 0  otherwise, and 
note that 

v . f ( x ) = v . f x ( x ) ,  for xEQ. 

Our assumption on v implies, by Theorem 2, that 

v : H 1 --~ L 2, 

and hence v: L~-~BMO. We estimate 

llV*AIIBMo <= C[Ifxll2 

and then, in particular for our Q, 

1 
f ^  I v . A ( x ) - ~ l  dx <= cIIAIl~ <- C4"/Zllf[l~ 

IQI 

~Qi f o lv* f (x ) - ) . l  dx < C4"/~[]f[l~ 

4. The case p <: 2 <= q 

The appearance of the Lipschitz spaces as sufficient ([7], [12]) or necessary 
[8] conditions for  convoluteurs will now be shown to be closely related to Sobolev 
type theorems. We need the following lemmas. 

Lemma 3. Cv([3~s, [3~r):Cv(B~+r, --q'f~a+r~" for any ~, fl, r real, l <:p, q, r, s<= ~.  

Proof This is an immediate consequence of the fact that R': Bps-~Bp, "~ ",+r for 
any ~. 

Lemma4.  I f  XI~:Y1, X2~ Y~, where both inclusions are topological, then 

Cl)(rl, Y2) ~_ Cv(Xx, X2). 
This is trivial. 
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Lemma5.  I f  l ~s<: , Cv(Z v, a c "~ "~ L )=Cv(Bw,  Bq~), for  a real, l~_p<-_q~_~. 

Proof  By Lemma 3, we may assume that ~<0.  Let kECv(L  v, L ~) and con- 
sider an arbitrary element o f /3~ .  Its norm is computed by forming the temperature 
u with initial value f ,  and computing 

B;.<:) = (:o [ , - ' , " r e < u ;  or.-',.)". 
in the case 1 <=s< co. The/3v~ norm of k . f i s  computed by forming the temperature 
w with initial value k . f ,  and note that w = k . u .  Hence, 

B Xk*f) = (fo [ ' - ' : " M .  (u' t)]qt-ldt}'/a' 
and since w( . ,  t ) = k . u ( . ,  t) with kECv(L  v, Lq), 

Mq(w; t) ~_ []kllMp(u; t), 
and thus 

B~ ( k . f )  < Bllkl[/~ ( f )  

The converse of this theorem is not true. Indeed we've seen in Theorem 6 that 
in some cases the right hand side is a homogeneous Besov space, and as we have 
investigated in [9] homogeneous Besov spaces are not  invariant under multiplica- 
tion by e ~<~' h> while Cv (L p, L q) is invariant. Using the results of  [9] we can prove 
that 

Co(L p, Lq ) : {k[ei(x,h)kE Cv(BO,  BO)  for all hE R", 

with ]]et<"h) k]] ~= C[]k][}, 

for l <p~=q ~-oo. 
These results allow us to give a quick and enlightening proof  of  some cases 

of  Theorem 3 of  [5]. 

Theorem 11. Suppose f l ~ ,  1 / a - a / n = l / b - f l / n  and p~=q. Then B, czf3# a p  = bq 

Proof If  fl--a, there is nothing to prove. Note that since 0<=~-< 1 with a 
corresponding inequality for 1/b, we see that 

o:--fl = n O ~ a - l / b )  ~ n. 

First, we suppose that a - f l < n .  The method of  our proof  requires us to assume 

1 0 c - f l  1 
that 1 <a ,  b <  oo. Rewriting the equality above, we see that --- a n -if, and 

hence by Sobolev's inequality 
R ~-p:  L" ~ L b 
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s o  R'-~ECv(B~s, "~ Bbs) for any s real. In particular 

B.', = c= 

I f  a - - f l = n ,  we have a = l  and this method cannot apply. 
We can also recover many of the results of [7, 8, 12] by combining Lemma 5 

with the convolution theorem for homogeneous Besov spaces. 

Theorem 12. For l<p<=2=<q<~o, 

Cv (L p, Lq) = Cv ( [3~ Bq~)." o 

Proof. Lemma  5 gives the inclusion of  the left hand side in the right hand side; 

the reverse inclusions follow from LPC=B~ and np ~ r ~  ~q~=~ and an application of 

L e m m a  4. 

Theorem 12 of [7] follows immediately from the above result and the con- 
volution theorem for Besov spaces, while Theorem 11 requires the inclusion rel- 

ations between Besov spaces and L p spaces, which are versions of  Sobolev's 

theorems. 
The above results combined with results from [3], and [5] show that Calderon--  

Zygmund operators preserve the Besov spaces. Indeed as remarked on page t50 
of[3], both operators satisfying the Mikhlin--H6rmander  condition and Calderon--  

Zygmund operators map H 1 ~ H  1. Thus by the remark after Theorem 8, they belong 
�9 0 "~ "" for any to BI~. By the convolution theorem for Besov spaces they map Bpq-,.Bpq 

real. For a > 0 ,  since they also map LP-~L p, l < p < ~ ,  we see that they map 

B ; q ~ B ; q ,  l < p < ~ , ,  but by duality the same result follows for ~<0.  Interpola- 
tion gives the result at a = 0. Note that they preserve the homogeneous Besov spaces 
even for p = l  but for the inhomogeneous Besov spaces we must have l < p <  co. 
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