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1. Introduction 

The aim of  this note is to give some estimates for the number of  zeros of 
analytic functions of  several variables. In particular we will study functions bounded 
in tube domains and entire functions of  finite order. Special attention will be directed 
to real zeros or zeros that lie close to the reals. A general reference for the corre- 
sponding questions in one variable is Boas [1]. 

In one variable a basic and trivial fact is that the number of  real zeros does 
not  exceed the total number of  zeros. In section 2 we give a corresponding state- 
ment for p-dimensional analytic varieties in C n, i.e. we compare the p-dimensional 
measure of  the variety intersected with R n with the 2p-dimensional measure of  the 
whole variety. This comparison results from the following theorem which is in- 
spired by a result by Lelong [4]. 

Theorem. Let K be a compact and convex subset of  { z=x+iyEC";  y=0} .  
Let V be an analytic variety of  pure dimension p defined in a neighbourhood of  K 
in C n. Let 

= I v n  {z; d(z;  K) < t}l, 

where d(z; K) is the distance from z to K and l" I means 2p-dimensional measure. 
Then p ( t ) / f  is nondecreasing where it is defined. 

In section 3 the above results are used to prove a density result for the number 
of  zeros of  analytic functions bounded in a radial tube, and in section 4 correspond- 
ing questions for entire functions are studied. In section 5 we indicate how these 
estimates can be applied to discrete sets of  uniqueness, and the result is compared 
to earlier work by Korevaar and Hellerstein [3], and Ronkin [7, 8, 9]. 

We will now fix some notation which will be used throughout the note. 

*) Partially supported by the Swedish Natural Research Council Contract No F 2989-----005 
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C n always denotes complex n-dimensional space and is given the orientation 
determined by the complex structure. The coordinates z = ( z  1 . . . .  , z,) are some- 
times written z = x +  iy where z j=xj  + iy;. The euclidean norm is defined by 
lzl2=Z]zjl 2 and B(z; r) denotes the open ball with center z and radius r. The 
exterior differentiation operator is decomposed d=O+O and the K~ihler form 
of  C" (i/2)O0[zl 2, is denoted /~. The expression /~/x .../~ (p times) is abbreviated/?P 
and correspondingly for other forms. The volume element of C", dV=B"/n!, will 
frequently be used to identify forms of degree 0 and 2n. I.e. we will write (abusively) 
~odV=q) for functions ~0. 
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2. A local estimate 

Let V be an analytic variety of pure (complex) dimension p (see [2]), defined 
in a domain in C". It was proved by Lelong that V defines a natural current of in- 
tegration, Or, which moreover is closed and positive (see [4]). This current is of  
bidegree (n-p;  n - p )  and its trace measure, zv=Ov ^ ~P/p!, is equal to surface 
measure on the manifold of regular points of V. 

Now let K be a compact and convex subset of  R" which we identify with 
{x+iycC";y=O}. Put f2( t)={zEC";d(z;K)<t} where d(z;K) is the distance 
from z to K. Assume 0 is a closed positive current of bidegree ( n - p ;  n - p ) ,  defined 
in a neighbourhood of K, and put 

(t) = f o,,, 0 ̂  It 

We will prove. 

Theorem 2.1. It(t)t -p is a nondeereasing funetion where it is defined. 

Remark. In particular, when 0=0 v is the current of  integration on an analytic 
variety, V, we get estimates for the area of  V. It was proved by Lelong that if K 
is a point, It ( t ) t  -2p is increasing (see [4] which is also a general reference for positive 
currents). However, in general the exponent in Theorem 2.1 can not be increased. 
Note also that the assumption KC=R" is essential. 

We will need two lemmas. 

Lemma 2.2. Let 0 be an open subset of  R N, defined by f2= {x; 0(x)<0},  where 
0 is a pieeewise Cl-funetion with nonvanishing gradient on 0 E2. Let 0 f2 be given the 
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standard orientation of  Stokes theorem, and co be its suface element. Then, if  ~ is 
the current of  integration on 012 we have ~=d01V01-1co 

Proof. We only need to check that if 

q~ = ~dx lA  ... dX~A ... dx• = ~d2~ with ~ C o  ~, then 

(i) f o~ ~o = f o~ (do ^ q~)[VQt-lco 

(where we have identified 0-forms and N-forms). But 

00 dx~ A ~0 IVOI-lco = (--1)~-~0 ~ IV01-~CO. (do A cp)tV0[-lco = Z ~ 

Hence (i) says that 

where n~ is the i : th  component of  the unit outer normal vector field of 012. 
This is a n  elementary formula which can be found e.g. in [13]. 

Lemma 2.3. Let 0 be a positive form of  bidegree (n -p ;  n -p) ,  and O a Cl-function. 
Then the measure 

m = OA(lVol~flP-2ipOo A00 Aft p-x) 
is positive. 

Proof. Cauchys inequality shows that 7=IV0I~fl -2i  0QA00 is a positive 
form. Since (00 A 00) 2 -  0 and forms of  even degree commute the binomial theorem 
gives 

V" = IVo[~'/~'- IVoI~'-~2ip 00 A00 A ]~p-1. 

Hence m=0A~PlVoI 2-~p (where Vor and since the product of a positive 
form and a politive (1, 1)-form is positive, the lemma follows. 

Proof of Theorem 2.1. First assume 0 is smooth and K a polygon. Put k (x )=  
d(x; K) 2 for xCR ~ and O(z)=d(z; K)~=k(x) + lYl ~ for z~C' .  Since K is convex 
k is a convex, piecewise C ~ function. Put ~ =  {z; O(z)<t~}. Stokes formula and 
Lemma 2.2 give 

(i) f OAaOOAf lp - I=L  OAOeAIP-I=fa~(OAOoAOqAflP-~)IVeI-ICO. 

Since k is convex i~Ok is a positive current. Hence i~Oe>-i~OlYl*=i/2~Olzl*=~. 
Thus (i) together with Lemma 2.3 gives 

(ii) f ~ o ̂ ~  ~_ foe (2P)-~ IV~176 A/~'co. 
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Let "r=OAflP(p!) -1. Obviously I V d ( . ; K ) [ ~ l ,  hence 
implies 

(iii) f.  z ~_ t/pfozo~. 

[Vffl~_2t on Of 2, so (ii) 

Now the right hand side of (iii) is precisely It(t) and it is readily seen that 

i,i 

-Io~ wJ < "(t) = I t  

So (iii) gives the differential inequality #(t)<-t /p#'( t )  which says that #( t ) t  -p 
is nondecreasing. This is proved under the assumption that 0 is smooth and K 
a polygon, but approximation gives the general statement. 

Next I will study the limit of It(t)t  -p as t tends to 0. I will assume that 0=0v 
is the current of integration on a variety, so that the trace measure is the 2p-dimen- 
sional area of the variety. 

Theorem 2.4. Let K be a compact and convex subset of  R" and V an analytic 
variety of  pure dimension p, defined in a neighbourhood of K. Define It as in Theorem 
2.1. Then 

l!m It(t)t -~ >= cHp(V ~ K) 

where c is a positive constant and Hp is p-dimensional Hausdorff-measure. 

Proof. Take e>0,  and select a maximal family of disjoint balls B(xj ,  e), 
j = I , . . . , N ~ ,  with radii ~ and centers x i ~ V n K .  By maximality, Vc~KC= 
wB(x j ,  2~). By a result of Lelong ([4]), the area of Vc~B(x~; ~)~a2pa 2p, where 
~r2p is the volume of the 2p-dimensional unit ball. Hence #(~)_->N, a2pC p. Letting 
~-~0 we get by the definition of Hausdorff-measure 

Hence 

lim inf % N,(2a) p => Hp(K n V). 

lim It (~)e-~ -> ~r2/r~ -12-PHp(K n V), 

which proves the theorem. 
Theorems 2.1 and 2.4 imply the 

Corollary 2.5. Let K and V be as above. Then there is a constant c such that 
for all e >0, 

H~(~:n V) <= cH~({z; d(z; K) < ~}n V)~-'. 
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3. Zeros of bounded functions 

Throughout  this section K will denote an open cone in R" with vertex at the 
origin. Then the tube with base K is defined by T(K)={zEC";xEK}.  We are 
primarily interested in estimating zero sets of bounded analytic functions in T(K). 
However, the discussion is more naturally carried out in the setting of  plurisub- 
harmonic functions and there is no extra difficulty in assuming only a weaker growth 
condition. 

Definition 3.1. P(K) is the class of  functions u which are plurisubharmonic in 
T(K) and satisfy 

(i) u(z) <= AIzI+B for some constants A, B and 

(ii) lim sup u (x + iy) <= 0 for all y E R". 
X ~ 0  

We recall briefly the situation in one variable. Then T(K) is a halfplane, say 
the right hand one. P(K) consists of  subharmonic functions which by the Phrag- 
mf n - - L inde l f f  principle satisfy the condition u(x+iy)<-Ax. Let # be the Riesz 
measure (i.e. the Laplacian) of  u. Then # satisfies 

(iii) f x I~1~-1 [z[ ~ d#(z) < co and consequently 

(iv) lim r - l  dlz(z) = O. 
l<lzl<r 

lyl<x 

Condition (iv) is of  course strictly weaker than (iii). Its analogue in higher 
dimensions would be 

(v) ! im a ( r ) r  -(~"-1) = 0 

where ~(r)=p({z ;xEK,  l<[xl<r, [yl<[x[}), for /~ the Riesz-measure of a func- 
tion in P(K). Condition (v) is however not true in general as can be seen from 

Example 3.2. Let K--{xER2; x i > 0  j =  1, 2} so that T(K) is a product of two 
halfplanes. Consider either of  the functions ul(zx; z~)= IXl-X~l or u~(zl; z~)= 
log [e-Zl-e-~2[. The Riesz measure Pl of  u 1 is a constant times Lebesgue measure 
on the hyperplane xl=x~, while the Riesz measure of  us behaves like/~1 at infinity. 
Thus in both cases a ( r ) ~ r  -~, so (v) fails. 

In order to get an analogue to (iv) in higher dimensions we will restrict our 
attention to zeros which lie close to the reals. We will prove 

Theorem 3.3. Let t(r) be a function from R+ to R+ such that t is increasing 
and t ( r ) r - ~ O  as r~oo. Let uEP(K) and let K" be another cone such that 
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K ' c  c K  (i.e. K" is compactly included in K) .  Put 

a(K" ; r) = It({x +iy;  xE K', 1 -< Ix I -< r, lyl < t([xl)}) ,  

where It is the Riesz measure of u. Then 

lira a(K';  r)r-"t(r)  -("-1) = O. 
r ~  

For  instance t = 1 will do in Theorem 3.3. As a limiting case when t gets smaller 
we have 

Theorem 3.4. Let K, K" be as above, and suppose f is analytic in T(K) and that 
log [fICP(K). Put 

s(K'; r) = H,- I ({xE K ' ;  1 < Ixl < r and f ( x )  = 0}) 

where 11,-1 is (n-1)-dimensional Hausdorff-measure. Then 

lira s(K" ; r)r-"  = O. 

The proofs of  Theorems 3.3 and 3.4 are based upon the following lemma. 

Lemma 3.5. Let B be a ball, B c c K .  Then there is a constant c, not depending 
on ~ such that for all sufficiently small c~>0 

lim sup It({z; d(z; rB) < r~})r -(2"-1) <-- ca" 

(here rB={x;  xr-XEB}). 

Proof of  Theorem 3.3 from the lemma: First we make some reductions. There 
is no loss of  generality in assuming that K '  is a sufficiently small circular cone. It  
then suffices to prove 

(vi) !irn #({z; d(z; rB) < t(r)})r-"t(r)  -("-1) = 0 

for every ball B c  c K .  This is so because 

a(K" ; r) <= ~.,k=oS'N(') #({Z; d(z; rakB) < t(rak)}) 

for a suitable ball B and some a <  1, where N(r)  is choosen large enough depending 
on r. Hence 

o-(K'; r)r-"t(r)  -("-1) 

Z It({z; d(z; rakB) < t(rak)})(rak)-"t(rak)-("-l)a k" ---- Z It(k; r)akL 

(the last equality is a definition). By (vi) It(k; r) tends boundedly to zero as r ~ o  
and the theorem follows since Zak"< oo. To prove (vi) we will use Theorem 2.1 
with p = n - 1  and O=i/200u. Then 0 is a positive current since u is plurisubhar- 
monic, and its trace is 4 -1 times the Riesz measure of  u. Now take r 0 so large that 
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r>ro implies t(r)<er (which is possible by assumption), and 

/~({z; d(z; rB) < er}) <_- 2c~"r ~"-1 

(which is possible by Lemma 3.5.). By Theorem 2.1 

p({z; d(z; rB) < t(r)}) =< 2cet(r)"-lr" 

for r>r  o. This proves the theorem. 

Proof of  Theorem 3.4: This follows from Theorem 3.3. with t - l ,  because 
of Corollary 2.5 (the Riesz measure of u = log IfI is proportional to surface measure 
on f :  s zerovariety, with multiplicity). 

What remains is the proof of Lemma 3.5. This is based upon a comparison 
between the Riesz measure of u, and that of its indicator function, which we now 
define. 

Defini t ion 3.6. Let uE P(K). Put 

L(u; x) = limsup u (rx) r -1 

for xEK. The indicator function L* of  u is defined by 

L*(u; x) = lim sup L(u" x') 
Xt X 

for xEK. 

The function L*(u; x) is convex and homogenous of order 1 (cf. [7]). Moreover, 
it was proved by Ronkin that u(x+iy)<-L*(u; x) for all yER n (cf, [10]). For the 
proof of Lemma 3.5. we fix u and extend the domain of definition of L* to T(K) 
by L*(z)=L*(x+iy)=L*(u;  x). Thus L* is convex and therefore plurisubhar- 
monic. 

Proof of  Lemma 3.5: Let ~/ be the Riesz measure of L*. Put ur(z)=u(rz)r-1, 
Pr = the Riesz measure of u r and 

~ , (x ;  ~) = m ( { z ;  Ix-z[ < ~}) 
Similarily 

O(x; ~) --- ~({z;  [x-zl < ~}). 

Let xoEB be such that u(2x0)~ - oo in the complex hairline Re 2>0.  For ~ small 
enough Jensens formula gives 

f~"  P~(Xo; T)~ -(2"-1) dz = --u,(Xo) + ftz-x0,=4, UrdS, an 

where dS is normalized surface measure and an only depends on the dimension. 
Hence 

/~ (Xo; 3~) a n 4 -  (2n-- 1) ~ - -  (2n-- 3) ~ __ Ur (X0) "~-f[*' z-- x o] = 4~ ur dS. 
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By the Ahlfors--Heins theorem we can choose a sequence r k ~ O  such that 
rk+~r[~-*l and limu,~(xo)=L(xo). Moreover, by the above result by Ronkin 
we have u, (z) <= L* (z). Hence we get 

l imsup/#(x0;  2~)~ -(2"-z) ~_c [-L(xo)+ f tz_,o,=4 L* dS] 

(here and in the sequel c denotes a constant, not depending on e, not necessarily 
hw same at each occurrence). Assume L(xo)=L*(x0). Then by another appli- 
cation of Jensens formula we get 

(vii) f•" z)z -(2"-1) dr. limsupfi,(xo; 2e)e - ~ - 2 )  = c ~/(xo; 

By a theorem by Lelong ([5]) L(xo)=L*(xo) for almost all xo~K. Thus we may 
integrate (vii) with respect to Lebesgue measure, d2, over B, and since obviously 
fi,(x0; 2c0 is bounded from above uniformly in xoCB and r, Fatou's lemma yields 

(viii) limsupL~,(x;2~)d2(x)~-(2"-2)<= c L d2(x) f2"O(x;~)~-(2"-l) dr. 

To estimate the left hand side, note that 

f~ r 2~),t,~(x) = f . d~(x) f ~z-~,<2, dpr(Z) 

= L :>c f (z;B)<2~ EB, [z-xl<2~t d f z ; B ) < o t  

Estimating the right hand side of (viii) in a similar manner we get 

fB d~ (x) f~'n(x; T)T -(2n-l) dT ~ C "/0f4~ "C--(n--1) dT ~'fd(z; B) <'t dq (z). 

But since L*, and hence q*, is independent of y clearly 

f d clq(z) <= C~". 
(z;B)<~ 

Collecting we get 

l imsup f dp,(z) = < co~-"~2"-2 f4~r dz <= co~". 
r ~  ~ d ( z ; B ) < a t  "10  

This completes the proof  of  the lemma. 
It seems that Theorem 3.3 is the best possible density result for P(K). How- 

ever, it is a natural conjecture that further restrictions on t(r) (e.g. t - 1  or even 
f~ t(r)r-Zdr< co) would give an analogue to the stronger condition (iii). I have 
not  been able to prove any results in this direction. 
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4. Zeros of  entire functions 

Let V be a variety in C n of pure dimension p. Let a(r) denote the surface 
measure of  VerB(0;  r) and s(r) the p-dimensional Hausdorff-measure of  the real 
analytic set V• B(0; r) c~ R n. Then Corollary 2.5 implies 

Theorem 4.1. For every k >  1 there is a constant ek such that 

s(r) ~_ c~cr(kr)r-p. 

This result can be compared to sections 7 and 8 of  [6]. 
Next we will study a class of  entire functions which is connected with trigono- 

metric approximation. 

Definition 4.2. For a = ( a  I . . . . .  an), 0<_--ay<~, B(a) denotes the class of  entire 
functions f which satisfy 

(i) log I f (x+  iy)[ <-_ Z aj ]yj]. 

We will use two different norms on C". As usual, 1. [ denotes the euclidean 
norm while [[x[l=max([xj[) for real vectors and [Iz[l=max([[x[I; [[Y[I). For  
xoER n, ~ > 0  and r > 0  let 

T(r; x0; ~) = {z; I I x - r x o l l  < r~ and [lyll < 1}. 

For an entire function f with zero-variety 1"1 we put 

af(r; Xo; c0 = IVy c~ T(r; Xo; c01, 

where I" l means surface measure with multiplicity. 

Theorem 4.3. Suppose fEB(a). Then 

(ii) l imsup (2ctr)-nay (r; x0; ~) ~- n -12 , -1  ~ ay. 

Remark. For  n-- 1 Theorem 4.3 was proved by Levinson (cf. [1]). For  arbitrary 
n, the estimate (ii) with fight hand side en-12" - lZa j  was proved by Ronkin 
(cf [8, 9]). That  there is some constant bounding the left hand side of  (ii) even for 
general functions of exponential type, follows easily from Theorem 2.1. However, 
to get the constant in (ii) (which is best possible), we will use a direct method, quite 
similar to Ronkin's. 

Proof For z =  (zl . . . . .  z,) let z '=@2 . . . . .  z,). Also 

T'(r; x0; e) = {z'ECn-1; I[x'-rx61l < rc~ and [lY'][ < 1}. 

We will use the fundamental fact: the area of  f :  s zerovariety V s with multiplicity 
is equal to the sum of  the areas of V:s projection on the (n-1)-dimensional coordi- 
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nate planes, also counted with multiplicities. So to estimate a I (which in the sequel 
is denoted a since we keep f fixed), we start by estimating the measure of Vf:s pro- 
jection on T'(r; x0; ~). 

Let v(z; t )=number  of zeros of the function f (~ ;  z') in {r I~-zzl<t}. By 
Jensens formula and (i) 

(iii) f 
~ r  

o v(z; t ) t - ld t  <= 2n-Zerai+~aj-- log If(z)] 

for e >0. The idea is now to integrate (iii) with respect to Lebesgue measure d2, 
over T(r; xo; ~). An elementary computation with Fubini's theorem, similar to 
the proof of Lemma 3.5. gives 

az(=) f 'v(z; ,)t-lat ~= 4(f~" 
where tr" is the measure of the projection on T'(r; x0; ~)- Hence (iii) yields 

(iv) (4~r)-"4 fs I/t2--4t -1 dta'(r; x0; a--e) 

f log I/I d2. <= 2n-Z~raz +,~ aj--(4ar)-" r(,;x0;,) 

Estimating the other projections in the same way, dividing by er and summing 
up we get 

(v) (4c~r)-n(~r)-14 f~" ?l/~Z-4--4t-Xdta(r; x0; s - z )  

<= 2n-1 Z aj+n(er) -1 ~ aj--(4e) -"e-lnr-("+l) fr(,; x0;,) log If[ d2. 

As r ~  o~ the last term on the right hand side tends to zero. Accepting this for 
the moment and letting first r-~oo and then c o 0  we get 

l imsup (2~r)-"~r(r; Xo; ~) ~- 2n-17~ -1 Z ai, 

which proves the theorem. All that remains is thus to prove that 

r-("- l)  f r  log I f [ d 2 ~ O  as r -~  
( r ;  x o; ~) 

for fEB(a). This is Lemma 1 of [9], but for completeness I will indicate a proof. 
When n =  1 it follows since log Ifl is integrable on the real line with the weight 
(1 +x2) -1. For general n it can be proved by writing the integral in polar coordi- 
nates and applying the one-dimensional result. 



Zeros of analytic functions of several variables 261 

5. Discrete sets of uniqueness 

In this section we sketch some applications of the above estimates to discrete 
sets of  uniqueness. The link is provided by the following theorem, due to Rutis- 
hauser ([12]), for n=2 ,  and to Lelong [4] in general. 

Theorem 5.1. Let B be the unit ball in C n and let V be a variety in B o f  pure 
dimension n - 1 .  Assume OqV. Then the area o f  V is larger than rc"-l /(n-1)!  
(i.e. the volume o f  the (2n-2)-dimensional unit ball). 
Thus Theorem 3.3 can be used to prove 

Theorem 5.2. Let K and T(K) be as in section 3. Let E be a discrete subset o f  
K such that X1, x~EE=~ [xl-x~l >=h >0 for some constant h. Let  n(r) = # E n  B(0; r). 
Assume f is analytic and bounded in T(K), and that f vanishes on E. Then i f  

lim sup n(r )r -"  > 0 

f is identically zero. 

Theorem 5.2. was proved by Korevaar and Hellerstein [3], for n = 2  and E 
consisting of points with integer coordinates, and by Ronkin [7] in general. We 
note that Theorem 3.3 implies corresponding results for E c  T(K)  not necessarily 
consisting of reals, and for sets E not uniformly spearated. We omit the detailed 
formulations. 

Theorem 4.3. also implies (via Theorem 5.1.) a result on discrete sets of uni- 
queness for the class B(a) of entire functions. However, in this case the precise 
values of the constants involved are more important, and to get a precise result 
one has to replace Theorem 5.2 with a corresponding result for cubes instead of 
the unit ball. We refer to [11], for a discussion of this problem. We only note that 
Theorem 4.3 together with the result in [11], gives a best possible result for n=2 ,  
while the case of general n remains open. 

Finally we mention that results on discrete sets of uniqueness can be translated 
(via the Hahn--Banach theorem) to approximation theorems. Thus Theorem 5.2. 
in connected with approximation with lacunary polynomials, and the consequences 
of Theorem 4.3. with trigonometric approximation. For this see [3, 7, 8, 9]. 

References 

I. BOAS, R. P., Entire Functions, Academic Press (1954). 
2. GUNNING, R. C., ROSSI, H., Analytic Functions of Several Complex Variables, Prentice Hall 

(1965). 
3. Koga~V~R, J., HELLERSTEIN, S., Discrete sets of uniqueness for bounded holomorphic func- 

tions, Proceedings of Symposia in Pure Mathematics Volume XI, A. M. S. (1968). 



262 Bo Berndtsson: Zeros of analytic functions of several variables 

4. LELONG, P., Fonctions Plurisousharmoniques et Formes Diff~rentielles Positives, Gordon and 
Breach (1968). 

5. LELONG, P., Fonctionelles Analytiques et Fonctions Entidres (n Variables), Les Presses de 
l'Universit6 de Montr6al (1968). 

6. LELONG, P., Real and semireal zeros of entire functions in C,,  Proceedings o f  Symposia in Pure 
Mathematics, Volume XXX, A. M. S. (1977). 

7. RONKIN, L. [., Some questions of completeness and uniqueness for functions of several variables, 
Functional Anal  Appl, 7 (1973) 3 7 4 5 .  

8. RONrdN, L, I., Discrete sets of uniqueness for entire functions of several variables of exponential 
type, Soviet Math. Dokl. 15 (1974), 1415--1419. 

9. RONKIN, L. I., Discrete sets of uniqueness for entire functions of exponential type, bounded 
for real values of the variables (in Russian), Math. Fiz. i Functionalini] Analiz 
(Kharkov) 5 (1974). 

I0. RONKIN, L. I., Remarks on a theorem of Phragm6n--LindelSf type for analytic functions of 
several variables (in Russian), Teor. Funkci[ Functional Anal. i PriloSen. (Kharkov) 
15 (1972). 

I I. RONKIN, L. I., KATZNELSON, V. E., On a lower bound for the area of an analytic set (in Russian) 
Sibirsk. Mat. 2,. 15 (1974), 516--528. 

12. RUTISHAUSER, H., Ober Folgen und Scharen von analytischen und meromorphen Funktionen 
mehrerer Variablen, sowie von analytischen Abbildungen, Acta Math. 83 (1950), 
249--325. 

13. SCaWARTZ, L., Cours d'Analyse II, Hermann 1967. 

Received December 28, 1977 Bo Berndtsson 
Department of Mathematics 
University of G6teborg 
S--402 20 G6teborg 
Sweden 


