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O. Introduction 

Let T be a Cald6ron--Zygmund transform 

rg(x) = P.V. f Rd K(x--y) g(y) dy 

where the kernel K is homogeneous of  degree - d, i.e. K(x) = [xl-nK(x/]x [), fs,-~ K= 0 
and K satisfies some smoothness condition. K6 C = (S a-l)  will always be sufficient. 
For  the theory of  these transforms, see e.g. Stein [7]. We need the result that T 
is bounded on L p, 1 < p <  co. K and T will be fixed throughout the paper and not 
identically zero. 

Let f be a function on R a, and let it also denote the operation of pointwise 
multiplication with f We will study the commutator If ,  7"] denoted by C I .  

Formally 

Cy g(x) = fTg(x ) -  Tfg(x) 

= f(x) f K(x-y~ g (y) dy - f  K(x- y)f(y) g (y) dy 

= f (f(x) - f(y))  K(x-- y) g (y) dy. 

For  these formulas to make sense, f has to be locally integrable. Csg is then 
defined a.e. as a principal value for g bounded and with compact support. C s may 
be extended to all of  L p when we have proved it to be continuous. Csg is clearly 
bilinear. 

Let Q be any cube in R a. We define f o ,  the mean value of  f on Q, as 

[al-1 fo f(x) dx 

and f2(f,  Q), the mean oscillation of  f on Q, as 

iQ,-~ r , .la[f--fQ[dx. 



264 Svante Janson 

[Q[ is the Lebesgue measure. BMO is the space of all functions of bounded mean 
oscillation, i.e. fCBMO if and only if g2 (f ,  Q)<-C for every Q ([4]). More generally, 
let q~ be a non-decreasing positive function and define BMO~ as the space of all 
functions f ,  with f2(f, Q)<=Ccp(r) whenever Q is a cube with edge-length r 
([6], [3]). The norms are defined as the least possible constants C in the inequalities 
and the spaces are Banach spaces. 

Coifman, Rochberg and Weiss [1] have proved that if f~BMO, C: is a bounded 
operator from L p to itself, 1 < p <  oo. They also proved a partial converse, viz. if 
[ f ,  R j] is bounded on L p for every Riesz transform R j, then f belongs to BMO. 
The purpose of this paper is to show that it suffices to assume the boundedness 
of one of these commutators, or of any commutator C:. More generally f~BMO~, 
if and only if  C: is a bounded operator from L p to a suitable Orlicz space. 

1. Notation and basic lemmas 

C denotes different positive constants. Q(xo, r) denotes the cube with center 
Xo and edge-length r. nQ denotes the cube with the same center as Q, but enlarged 
n times, i.e. na(xo, r)=Q(xo, nr). 

We state some lemmas without proofs. Cf. [3], [4], [6]. 

Lemma 1. f2(f, Q)~2IQ1-1 fQ l f (x ) -a ldx  for every a. 

Lemma 2. l f  fEBMO, then ITQ--T.QI~CliflIBMo logn. 

Lemma 3. I f  fEBMO and p<~o, then IQ1-1 fo If(x)-fQ[Pdx<=Cllfll$Mo" 

Let A,,  0<e<=l ,  be the space of Lipschitz continuous functions, possibly 
unbounded, A , =  {f; [ f (x ) - f (y ) l  <= C [x-yl~}. 

Lemma 4. BMOt, = A, .  
Let t/ be an infinitely differentiable function with compact support such that 

f r /= l .  Define f ,(x)  as ff(x-ry)n(y)dy. 

Lemma 5. I f  IlfllB~o,~ 1, then 

Lemma 6. I f  IlfllBmo ~ l ,  then 

I] f --f,l[BMO <= Cop (r). 

if,(x)_f,(y)[<= C cp(r) [x_y I and 
r 

lf~(x)_f,(y)t ~ Cff+lx-yl ~o(t)dt. 
~ r  t 

This gives the following estimate of the Lipschitz norm. 
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Lemma7.  I f  0 < g < l  and t-~q~(t) is decreasing, or if g = l ,  then IIf~IIA ~ 
Cr-~o (r)IIflIBMo . 

Let ~k be a non-decreasing convex function on R + with ~k(0)=0. ~k -1 denotes 
the inverse function. The Orlicz space L0 is defined as the set of  functions f such 
that f ~ ( , ~ l f l ) < ~ o  for some 2>0 .  ([5], [8]). The norm is given by IlfllL,= 
inf I (1 + f  0(2 I f  I)). 

Lemma8.  I f  fCLe and E is a set of finite measure, then 
IITIIL, [EI~-I  (IE l-~). 

We also need a result for maximal functions. 
For q->l define 

Mag(x ) = sup(lal-l f o  Iglqdx)I/q. 
x(t2 

Mqg>--M,g if q>-r. M1 is bounded on L p, l < p < o o ,  see Stein [7]. Since M~= 
(M~ [g[q)~/q, this gives 

Lemma 9. Mq is bounded on L p, q<p< co. 

my denotes the distribution function, my( t )=  ]{x; [f(x)l>t}l. 
We have the following Marcinkiewicz-type interpolation theorem. 

Lemma 10. Suppose I<-p2<P<Pl<~~ 0 is a non-increasing function, A is 
a linear operator such that m,4g(t llp~. Q(t))<= c, if IIgllp~ <- 1, and mag(t I/p~. Q(t)) <-c, 
/ f  Ilgllp2<_-l. Then fomag(2tlivQ(t))--<-C, if llgllp<=(p/pl) 1/1'. 

Proof. Fix t for the moment. Set u=t lip. Set gl(x)--min (Ig(x)l, u)-sgn g(x) 
and g2=g-gl .  Let re(s) denote mg(s). Then 

Thus 

and 

We have 

Thus 

~m(s), s < u  
mg~(s) = /O, s ~ u  and mg2(s ) = m(s+u). 

II gll[ f,l = Pl f o spl- 1 m (s) ds 

I[gzll~ = p2 f o  :~-Xm(s+u)ds ~ P2 f ~  sp~-lm(s) dS. 

PI u P - m s m - l m ( s )  ds ~ Pl sP- lm(s )  ds ~ Pl I lgllg < 1 p 

u p ~ uP~llgxll~ -pl and O(u p) ~ O(uP~llg~[I;Vl). 
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We apply the assumptions to g~ and obtain 
flglltp, 

mAo~(UO (uP)) <-- mAoI(UO (Um II gxll ffpl)) 

= m A gx (u I[ gill 2 0  (u,x II gill LPg) <: Cu -,~ II gl [I gl = Cu-p~ f2 ~pl-1171 (S) ds. 

Similarly 

mao~(ue (u')) <= Cu-" f~  s'~-I m (s) ds. 
Thus we have 

f [  mao(2tl/P 0 (t)) d t=  p f o  uP-lmAo(2UO (up)) du 

~_ c f [  foUp-I-'~s'~-lm(s)dsdu+ C fo  f;u'-l-P2sp2-Xm(s)dsdu 

= C f ?  f?up-X-pxdusP~- lm(s )ds+Cf :  f :up-I-p2dusP'- lm(s)ds 

= C f :  sp-lm(s)ds < C 

2. The main result 

Theorem. Let l < p <  ~o, and let cp and t) be two non-decreasing positive func- 
tions on R + connected by the relation cp(r)=rd/q~x-l(r-a), or equivalently ~ - l ( t ) =  
tl/P~o(t-1/d). We assume that ~ is convex, ~b(0)=0 and ~/(2t)<-C~/(t). Then f 
belongs to BMO~ if  and only if Cf maps L p boundedly into Lo. 

Remark. By duality, f belongs to BMO~, if and only if Cf maps Lr into L p'. 
Also, the proof may be generalized to show that f belongs to BMO~, if and only 
if  Cf maps L0x into Lr 2 with 

~ I ( r - d )  
ep(r)-- t~;l(r_n), 

under suitable conditions on ~01 and ~02. 

Proof We first prove that the condition is sufficient. Assume that Cr maps L p 
into L~. 

1 
- -  is many times infinitely differentiable in an open set. Consequently, we may 
K(z) 1 

choose z o ~ 0 and c5 > 0 such that ~ can be expressed in the neighborhood [z-Zo] < 
1 

]/~'6 as an absolutely convergent Fourier series, - Z a ,  e iv.'z. (The exact 
K(z) 

form of the vectors v. is irrelevant.) 
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Set zl=5-1Zo. If  I z - z l l< l / d ,  we have the expansion 

l 5 - d  
. . . .  5-d ~ aneiV .6z. 
K(z) K(,~z) 

Choose now any cube Q=Q(xo,  r ). Set yo=xo-r z l  and Q'=Q(yo,  r) Thus, 
if  x 6 Q  and y6Q' ,  

x - y  - z x  < = + <_ . 
l" 

Denote s g n ( f ( x ) - f ~ )  by s(x). This gives us 

f~ If(x)-f~,l .x = f ~ (f(x)-fQ.)s(x) dx = IQ'I-xSQ f ~, (f(x)-f(y))s(x) dy dx 

= r-d S.~ L a  ( f (x ) - - f (y ) )  rdK(x-- y) K, ay 

f f ( f  iPn. ~ x--y = C ( x ) - - f ( y ) ) K ( x - y )  ,~ a.e " s(x)xQ(x)~Q, (y) dy dx 

= c Z .. f f  ( f ( x ) - - f ( y ) ) K ( x - -  , -  ,,,,.x -,-v,,.j, y) e " s (x) XQ (x) e " XO." (Y) dy dx. 

I f  we introduce 

gn(Y) = e-'gv"'YXa" (Y) 
and 

we have obtained 

"-- On, X 
h.(x) = e'" s(x)xe(x) 

fQ If(x)-fa. [ dx = C Z a, f f i f(x)-f(y))  K(x-- y) gn(Y) h, (x) dy dx 

= C ~ a ,  fCsg,(x)h,(x)dx <= C Z  la, l f  Iffg, llh, ldx 

= Cz~ [a,[ fQ [Cfgn[ dx. 

However, g, belongs to L p, and its norm is IQll/p=r dip. 
[ICfgnllL~,<=Cr dip and, by Lemma 8, 

fa Ic:g,! ~ Cra/Pla[~k-l([Ql-1). 

Thus we have obtained 

Consequently, 

f o [ f ( x ) - fa ,  I dx ~ c Z [a,[rd/,lQ[ ~-l(lQ[-1) = C[Qlr~/P~-l(r -a) = CIQl~o(r), 

and f2(f, Q)<=Ccp(r) by Lemma 1. 
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We prove the converse in several steps and begin with two special cases. 

Lemmal l .  I f  lifllBMo~_l and [[g[lp~l, l<p<~o ,  then [ICfg[Ip<:C. 

This is proved in [I]. The following simpler proof was suggested to the author 
by Jan-Olov Str6mberg. 

Proof. We will estimate (C:g)*(x)=supxcl 2 f2(C:g, Q). Choose q and r 
greater than 1 such that p>qr. Let x and Q=Q(xo, s) be fixed with x~ Q. Set 
gl=g.z2Q and g~=g-gl. This gives 

Cf g = Cf_:o g = (f--fQ) Tg-- T(f--fo.) gl"- T(f--fQ) g2. 

We estimate the mean oscillation on Q of each of these functions separately. 
H61der's inequality and Lemma 3 give 

rQf-~ f Q lf -f~[ [Tgf ~ ([QI -~ SQ lf -f~lr 'u (IQI-~S~ ITgL~) v~ ~ CM~Tg(x), 

We also have 

IOl-~ f R. If-fQ:lgx: = IOl-xf2Q If-f121" Igl' 

<= ( IQI-~L12 IS-S121"O ':r (IQI-1LQ Igl'q ~,"~ O(M,~g(x))'. 
Thus 

II(f-f12)g~ll, <= C [aP:" M,q(g)(x) 
and consequently 

[Ql-~ fo. IT(f-fo)g~l <-[Ol-~l'llT(f-f12)g~l[, <= ClOl-~i'll(f-f12)g~ll, <= CM, qg(x). 

For the last term we have for any yEQ 

I r(f-S12)g~(y)- r(f-f12)g~(xo)l = f (K(y -- z) -- K(xo -- z)) (f(z)--fQ) g2 (z) dz 

~- f ~2a I K ( y - z ) -  K(xo-z)[ [f(z)-f1211 g(z)l dz 

ly--xol f c If (z)-f1211g(z)l <= C 2Q Ixo-zl d+l dz 

f..Q\.. ,Q  2 - n  i 2 " Q l - a ( l f (  ,, - _<- C ~ ' = ~  _ z ) - f2  d + l f ~  12-f121)lg(z)ldz 

<_- C~2-"12"Ql-X/"  If(z)-A.12[lg(z)ldz+C~Z-"nlZ"Ql-a f2 [g(z)[dz 
�9 s 2"12 "12 

c Z 2-" (12"QI-' f , .  o iS(z)-/: 121"' d.)'"' (i2" Ql-'f,.<~ igf:)l.dz)"~+CMg(x) 
<--: CM~ g(x) + CMg(x). 
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These estimates give 

O(Cfg, Q) <= 2 Ial-l f o IC.t.g(z)--T(f--fQ)g2(xo)[ dz 

<= CMqTg(x)+ CM, qg(x)+ CMqg(x)+ CMx g(x)<=C(MqTg(x)+ M, qg(x)). 

This holds for every Q containing x, and thus 

( C : g )  ~" ~ C(MqTg+M, qg)< L p. 
This, however, implies 

[I C f gll p <:- C l[ ( C f g)'* ll p <- C ll g~ Tgl[ ~ + C ll g,~ gll p <= C[Igllp, 
see [2]. 

t e m m a l 2 .  I f  f 6 A ,  and g~L p, l < p < ~ ,  then IlC:gl[q<=Cllf[Ia[lgllp, where 

q P "j" 

Proof. 
IC:g(x)l~ f [ f (x) - f (y) l  Ig(x-y)[ Ig(Y)[ dy 

Cllflla~ f Ix-yl  ~ Ix-y[-" Ig(y)[ dy = Cl[f[la, I~(Igl) (x). 

The theorem of fractional integration [7, p. 119] shows that this Riesz potentiat 
exists a.e. and belongs to L q with the right norm. 

To complete the proof  of  the theorem, let us assume that ]lf[IBuo ~ I .  We 
note that there exists a q < ~  such that (2t)-aO(2t)<t-q~k(t). Thus, replacing 
~b by an equivalent Orlicz function if necessary, t-q~l (t) is decreasing. Consequently 
t - l l q  ~ / - l ( t )  is increasing and rdOIq-llp)~p (r) is decreasing. 

Let ~ be the minimum of d ( } - } )  and 1. Assume that l < p , < ~ ,  and thai 
[]g[lp_<-l. Lemma 7 shows that ILf~[l&<=Cr-~p(r), and Lemma 12 gives 

1 1 IlC: gllq, =< Cr-~cP(r), where . . . . .  . 
" q~ Pi d 

Lemmas 5 and 11 give 
[IC:-:~gllp, <- C~o(r). 

We set in these formulas r=t -lla and obtain a weak estimate. 

rnc, g(tl/p'cp(t-I/a)) <= I . ~  ) I. 
C C 

t T -  a ~, t 

Choose l<p2<p<pl<~. Let Q(t) be q~(t -11~) and let A be Cy. We have 
just proved that the conditions in Lemma 10 are fulfilled. Thus, if []gllp=(P/Pl)<", ,tip, 

[IC: ~c. That is, g[lL, 
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3. Examples  

1. q~---1. We may  take any l < p < ~  and ~k(t)=t p. Thus C f maps  L p into 

L p if and only if  fCBMO,  as asserted in the introduction.  
2. ~ ( t ) : t  q, l < p < q < ~ ,  q~(r)=ra/Pr -dlq. Thus, by L e m m a  4, Cf  maps  L p 

into L q if  and only if  fE  A ,1 1 This holds even if  d ( Z - •  1, then f has to 
be a constant,  a(7-~)" "P q" 

3. O ( t ) = t P ( l + l o g + t )  ", l < p < ~ ,  a > 0 .  O-l ( t )~ ta lp ( l+log+t ) -" lP  i.e. 

~ o ( r ) ~ ( l + l o g + ~ )  -"/p. Thus f~BMOa+log+tt,~_,/, if and only if  C s maps  L p 
into "LP(1 + l o g  + L)"" .  

Added im proof. There is an overlap between the results o f  this paper  and 
those o f  A.  UCmYAMA, Compactness  o f  operators  o f  Hankel  Type.  T6hoku Math. 
J.  30 (1978), 163--171.  
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