Mean oscillation and commutators of singular integral operators

Svante Janson

0. Introduction

Let T be a Caldéron—Zygmund transform

$$Tg(x) = P.V. \int_{R^d} K(x-y) g(y) dy$$

where the kernel K is homogeneous of degree -d, i.e. $K(x) = |x|^{-d}K(x/|x|), \int_{S^{d-1}}K=0$ and K satisfies some smoothness condition. $K \in C^{\infty}(S^{d-1})$ will always be sufficient. For the theory of these transforms, see e.g. Stein [7]. We need the result that T is bounded on L^p , 1 . K and T will be fixed throughout the paper and notidentically zero.

Let f be a function on \mathbb{R}^d , and let it also denote the operation of pointwise multiplication with f. We will study the commutator [f, T] denoted by C_f .

Formally

$$C_f g(x) = fTg(x) - Tfg(x)$$

= $f(x) \int K(x-y)g(y) dy - \int K(x-y)f(y)g(y) dy$
= $\int (f(x)-f(y))K(x-y)g(y) dy.$

For these formulas to make sense, f has to be locally integrable. $C_f g$ is then defined a.e. as a principal value for g bounded and with compact support. C_f may be extended to all of L^p when we have proved it to be continuous. $C_f g$ is clearly bilinear.

Let Q be any cube in \mathbb{R}^d . We define f_Q , the mean value of f on Q, as

$$|Q|^{-1} \int_Q f(x) \, dx$$

and $\Omega(f, Q)$, the mean oscillation of f on Q, as

$$|Q|^{-1}\int_{Q}|f-f_{Q}|\,dx.$$

|Q| is the Lebesgue measure. *BMO* is the space of all functions of bounded mean oscillation, i.e. $f \in BMO$ if and only if $\Omega(f, Q) \leq C$ for every Q([4]). More generally, let φ be a non-decreasing positive function and define BMO_{φ} as the space of all functions f, with $\Omega(f, Q) \leq C\varphi(r)$ whenever Q is a cube with edge-length r([6], [3]). The norms are defined as the least possible constants C in the inequalities and the spaces are Banach spaces.

Coifman, Rochberg and Weiss [1] have proved that if $f \in BMO$, C_f is a bounded operator from L^p to itself, 1 . They also proved a partial converse, viz. if $<math>[f, R_j]$ is bounded on L^p for every Riesz transform R_j , then f belongs to BMO. The purpose of this paper is to show that it suffices to assume the boundedness of one of these commutators, or of any commutator C_f . More generally $f \in BMO_{\varphi}$ if and only if C_f is a bounded operator from L^p to a suitable Orlicz space.

1. Notation and basic lemmas

C denotes different positive constants. $Q(x_0, r)$ denotes the cube with center x_0 and edge-length r. nQ denotes the cube with the same center as Q, but enlarged n times, i.e. $nQ(x_0, r) = Q(x_0, nr)$.

We state some lemmas without proofs. Cf. [3], [4], [6].

Lemma 1.
$$\Omega(f, Q) \leq 2|Q|^{-1} \int_{Q} |f(x) - a| dx$$
 for every *a*.

Lemma 2. If $f \in BMO$, then $|f_Q - f_{nQ}| \leq C ||f||_{BMO} \log n$.

Lemma 3. If $f \in BMO$ and $p < \infty$, then $|Q|^{-1} \int_{Q} |f(x) - f_{Q}|^{p} dx \leq C ||f||_{BMO}^{p}$.

Let Λ_{α} , $0 < \alpha \leq 1$, be the space of Lipschitz continuous functions, possibly unbounded, $\Lambda_{\alpha} = \{f; |f(x) - f(y)| \leq C |x - y|^{\alpha}\}.$

Lemma 4. $BMO_{t^{\alpha}} = A_{\alpha}$.

Let η be an infinitely differentiable function with compact support such that $\int \eta = 1$. Define $f_r(x)$ as $\int f(x-ry)\eta(y)dy$.

Lemma 5. If $||f||_{BMO_{\varphi}} \leq 1$, then $||f-f_{r}||_{BMO} \leq C\varphi(r)$. Lemma 6. If $||f||_{BMO_{\varphi}} \leq 1$, then $|f_{r}(x)-f_{r}(y)| \leq C \frac{\varphi(r)}{r} |x-y|$ and

$$|f_r(x)-f_r(y)| \leq C \int_r^{r+|x-y|} \frac{\varphi(t)}{t} dt.$$

This gives the following estimate of the Lipschitz norm.

Lemma 7. If $0 < \alpha < 1$ and $t^{-\alpha}\varphi(t)$ is decreasing, or if $\alpha = 1$, then $||f_r||_{A_{\alpha}} \leq Cr^{-\alpha}\varphi(r)||f||_{BMO_{\alpha}}$.

Let ψ be a non-decreasing convex function on R^+ with $\psi(0)=0$. ψ^{-1} denotes the inverse function. The Orlicz space L_{ψ} is defined as the set of functions f such that $\int \psi(\lambda |f|) < \infty$ for some $\lambda > 0$. ([5], [8]). The norm is given by $||f||_{L_{\psi}} = \inf \frac{1}{\lambda} (1 + \int \psi(\lambda |f|))$.

Lemma 8. If $f \in L_{\psi}$ and E is a set of finite measure, then $\left|\int_{E} f(x) dx\right| \leq ||f||_{L_{\psi}} |E| \psi^{-1}(|E|^{-1}).$

We also need a result for maximal functions.

For $q \ge 1$ define

$$M_{q}g(x) = \sup_{x \in Q} \left(|Q|^{-1} \int_{Q} |g|^{q} dx \right)^{1/q}.$$

 $M_q g \ge M_r g$ if $q \ge r$. M_1 is bounded on L^p , $1 , see Stein [7]. Since <math>M_q = (M_1 |g|^q)^{1/q}$, this gives

Lemma 9. M_a is bounded on L^p , q .

 m_f denotes the distribution function. $m_f(t) = |\{x; |f(x)| > t\}|$. We have the following Marcinkiewicz-type interpolation theorem.

Lemma 10. Suppose $1 \leq p_2 , <math>\varrho$ is a non-increasing function, A is a linear operator such that $m_{Ag}(t^{1/p_1} \cdot \varrho(t)) \leq \frac{C}{t}$, if $||g||_{p_1} \leq 1$, and $m_{Ag}(t^{1/p_2} \cdot \varrho(t)) \leq \frac{C}{t}$, if $||g||_{p_2} \leq 1$. Then $\int_0^\infty m_{Ag}(2t^{1/p}\varrho(t)) \leq C$, if $||g||_p \leq (p/p_1)^{1/p}$.

Proof. Fix t for the moment. Set $u=t^{1/p}$. Set $g_1(x)=\min(|g(x)|, u) \cdot \operatorname{sgn} g(x)$ and $g_2=g-g_1$. Let m(s) denote $m_q(s)$. Then

$$m_{g_1}(s) = \begin{cases} m(s), & s < u \\ 0, & s \ge u \end{cases}$$
 and $m_{g_2}(s) = m(s+u).$

Thus

$$\|g_1\|_{p_1}^{p_1} = p_1 \int_0^u s^{p_1 - 1} m(s) \, ds$$

and

$$\|g_2\|_{p_2}^{p_2} = p_2 \int_0^\infty s^{p_2 - 1} m(s + u) \, ds \le p_2 \int_u^\infty s^{p_2 - 1} m(s) \, ds.$$

We have

$$p_1 \int_0^u u^{p-p_1} s^{p_1-1} m(s) \, ds \leq p_1 \int_0^u s^{p-1} m(s) \, ds \leq \frac{p_1}{p} \|g\|_p^p \leq 1.$$

Thus

$$u^{p} \leq u^{p_{1}} \|g_{1}\|_{p}^{-p_{1}}$$
 and $\varrho(u^{p}) \geq \varrho(u^{p_{1}} \|g_{1}\|_{p}^{-p_{1}})$

We apply the assumptions to $\frac{g_1}{\|g_1\|_{p_1}}$ and obtain

$$m_{Ag_1}\left(u\varrho\left(u^p\right)\right) \leq m_{Ag_1}\left(u\varrho\left(u^{p_1} \| g_1 \|_p^{-p_1}\right)\right)$$

$$= m_{A_{\frac{g_1}{\|g_1\|}}} \left(u \|g_1\|_{p_1}^{-1} \varrho(u^{p_1}\|g_1\|_{p_1}^{-p_1}) \right) \leq C u^{-p_1} \|g_1\|_{p_1}^{p_1} = C u^{-p_1} \int_0^u s^{p_1 - 1} m(s) \, ds.$$

Similarly

$$m_{Ag_2}(u\varrho(u^p)) \leq Cu^{-p_2} \int_u^\infty s^{p_2-1} m(s) \, ds.$$

Thus we have

$$\int_{0}^{\infty} m_{Ag}(2t^{1/p}\varrho(t)) dt = p \int_{0}^{\infty} u^{p-1} m_{Ag}(2u\varrho(u^{p})) du$$

$$\leq C \int_{0}^{\infty} \int_{0}^{u} u^{p-1-p_{1}} s^{p_{1}-1} m(s) ds du + C \int_{0}^{\infty} \int_{u}^{\infty} u^{p-1-p_{2}} s^{p_{2}-1} m(s) ds du$$

$$= C \int_{0}^{\infty} \int_{s}^{\infty} u^{p-1-p_{1}} du s^{p_{1}-1} m(s) ds + C \int_{0}^{\infty} \int_{0}^{s} u^{p-1-p_{2}} du s^{p_{2}-1} m(s) ds$$

$$= C \int_{0}^{\infty} s^{p-1} m(s) ds \leq C.$$

2. The main result

Theorem. Let $1 , and let <math>\varphi$ and ψ be two non-decreasing positive functions on \mathbb{R}^+ connected by the relation $\varphi(r) = r^{d/q} \psi^{-1}(r^{-d})$, or equivalently $\psi^{-1}(t) = t^{1/p} \varphi(t^{-1/d})$. We assume that ψ is convex, $\psi(0) = 0$ and $\psi(2t) \leq C\psi(t)$. Then f belongs to BMO_{φ} if and only if C_f maps L^p boundedly into L_{ψ} .

Remark. By duality, f belongs to BMO_{φ} if and only if C_f maps L_{ψ^*} into $L^{p'}$. Also, the proof may be generalized to show that f belongs to BMO_{φ} if and only if C_f maps L_{ψ_1} into L_{ψ_2} with

$$\varphi(r) = \frac{\psi_2^{-1}(r^{-d})}{\psi_1^{-1}(r^{-d})},$$

under suitable conditions on ψ_1 and ψ_2 .

Proof. We first prove that the condition is sufficient. Assume that C_f maps L^p into L_{ψ} .

 $\frac{1}{K(z)}$ is many times infinitely differentiable in an open set. Consequently, we may choose $z_0 \neq 0$ and $\delta > 0$ such that $\frac{1}{K(z)}$ can be expressed in the neighborhood $|z-z_0| < \sqrt{d\delta}$ as an absolutely convergent Fourier series, $\frac{1}{K(z)} = \sum a_n e^{iv_n \cdot z}$. (The exact form of the vectors v_n is irrelevant.)

266

Set $z_1 = \delta^{-1} z_0$. If $|z - z_1| < \sqrt{d}$, we have the expansion

$$\frac{1}{K(z)} = \frac{\delta^{-d}}{K(\delta z)} = \delta^{-d} \sum a_n e^{iv_n \cdot \delta z}.$$

Choose now any cube $Q=Q(x_0, r)$. Set $y_0=x_0-rz_1$ and $Q'=Q(y_0, r)$ Thus, if $x \in Q$ and $y \in Q'$,

$$\left|\frac{x-y}{r}-z_{1}\right| \leq \left|\frac{x-x_{0}}{r}\right|+\left|\frac{y-y_{0}}{r}\right| \leq \sqrt{d}.$$

Denote sgn $(f(x)-f_{Q'})$ by s(x). This gives us

$$\int_{Q} |f(x) - f_{Q'}| \, dx = \int_{Q} \left(f(x) - f_{Q'} \right) s(x) \, dx = |Q'|^{-1} \int_{Q} \int_{Q'} \left(f(x) - f(y) \right) s(x) \, dy \, dx$$

$$= r^{-d} \int_{R^{d}} \int_{R^{d}} \left(f(x) - f(y) \right) \frac{r^{d} K(x - y)}{K\left(\frac{x - y}{r}\right)} \, s(x) \chi_{Q}(x) \chi_{Q'}(y) \, dy \, dx$$

$$= C \iint \left(f(x) - f(y) \right) K(x - y) \sum a_{n} e^{iv_{n} \cdot \delta \frac{x - y}{r}} \, s(x) \chi_{Q}(x) \chi_{Q'}(y) \, dy \, dx$$

$$= C \sum a_{n} \iint \left(f(x) - f(y) \right) K(x - y) e^{i \frac{\delta}{r} v_{n} \cdot x} \, s(x) \chi_{Q}(x) e^{-i \frac{\delta}{r} v_{n} \cdot y} \chi_{Q'}(y) \, dy \, dx.$$

If we introduce

$$g_n(y) = e^{-i\frac{\delta}{r}v_n \cdot y} \chi_{Q'}(y)$$

and

$$h_n(x) = e^{i\frac{\delta}{r}v_n \cdot x} s(x)\chi_Q(x)$$

we have obtained

$$\begin{split} \int_{Q} |f(x) - f_{Q'}| \, dx &= C \sum a_n \iint \left(f(x) - f(y) \right) K(x - y) \, g_n(y) \, h_n(x) \, dy \, dx \\ &= C \sum a_n \int C_f \, g_n(x) \, h_n(x) \, dx \leq C \sum |a_n| \int |C_f \, g_n| \, |h_n| \, dx \\ &= C \sum |a_n| \int_{Q} |C_f \, g_n| \, dx. \end{split}$$

However, g_n belongs to L^p , and its norm is $|Q|^{1/p} = r^{d/p}$. Consequently, $\|C_f g_n\|_{L^{\psi}} \leq C r^{d/p}$ and, by Lemma 8,

$$\int_{Q} |C_f g_n| \leq C r^{d/p} |Q| \psi^{-1}(|Q|^{-1}).$$

Thus we have obtained

$$\int_{Q} |f(x) - f_{Q'}| \, dx \leq C \sum |a_n| r^{d/p} |Q| \psi^{-1}(|Q|^{-1}) = C |Q| r^{d/p} \psi^{-1}(r^{-d}) = C |Q| \varphi(r),$$

and $\Omega(f, Q) \leq C \varphi(r)$ by Lemma 1.

Svante Janson

We prove the converse in several steps and begin with two special cases.

Lemma 11. If $||f||_{BMO} \leq 1$ and $||g||_p \leq 1, 1 , then <math>||C_f g||_p \leq C$.

This is proved in [1]. The following simpler proof was suggested to the author by Jan-Olov Strömberg.

Proof. We will estimate $(C_f g)^{\#}(x) = \sup_{x \in Q} \Omega(C_f g, Q)$. Choose q and r greater than 1 such that p > qr. Let x and $Q = Q(x_0, s)$ be fixed with $x \in Q$. Set $g_1 = g \cdot \chi_{2Q}$ and $g_2 = g - g_1$. This gives

$$C_f g = C_{f-f_Q} g = (f - f_Q) T g - T (f - f_Q) g_1 - T (f - f_Q) g_2.$$

We estimate the mean oscillation on Q of each of these functions separately. Hölder's inequality and Lemma 3 give

$$|Q|^{-1} \int_{Q} |f - f_{Q}| |Tg| \leq \left(|Q|^{-1} \int_{Q} |f - f_{Q}|^{q'} \right)^{1/q'} \left(|Q|^{-1} \int_{Q} |Tg|^{q} \right)^{1/q} \leq C M_{q} Tg(x).$$

We also have

$$\begin{aligned} |Q|^{-1} \int_{R^d} |f - f_Q|^r |g_1|^r &= |Q|^{-1} \int_{2Q} |f - f_Q|^r |g|^r \\ &\leq \left(|Q|^{-1} \int_{2Q} |f - f_Q|^{rq'} \right)^{1/q'} \left(|Q|^{-1} \int_{2Q} |g|^{rq} \right)^{1/q} \leq C \left(M_{rq} g(x) \right)^r \end{aligned}$$

Thus

$$\|(f-f_Q)g_1\|_r \leq C |Q|^{1/r} M_{rq}(g)(x)$$

and consequently

$$|Q|^{-1} \int_{Q} |T(f-f_Q)g_1| \leq |Q|^{-1/r} ||T(f-f_Q)g_1||_r \leq C |Q|^{-1/r} ||(f-f_Q)g_1||_r \leq C M_{rq}g(x).$$

For the last term we have for any $y \in Q$

$$\begin{split} |T(f-f_{Q})g_{2}(y)-T(f-f_{Q})g_{2}(x_{0})| &= \left|\int (K(y-z)-K(x_{0}-z))(f(z)-f_{Q})g_{2}(z) dz\right| \\ &\leq \int_{\left[c^{2}Q\right]} |K(y-z)-K(x_{0}-z)| |f(z)-f_{Q}| |g(z)| dz \\ &\leq C \int_{\left[c^{2}Q\right]} \frac{|y-x_{0}|}{|x_{0}-z|^{d+1}} |f(z)-f_{Q}| |g(z)| dz \\ &\leq C \sum_{n=2}^{\infty} \int_{2^{n}Q \setminus 2^{n-1}Q} 2^{-n} |2^{n}Q|^{-1} (|f(z)-f_{2^{n}Q}|+|f_{2^{n}Q}-f_{Q}|) |g(z)| dz \\ &\leq C \sum 2^{-n} |2^{n}Q|^{-1} \int_{2^{n}Q} |f(z)-f_{2^{n}Q}| |g(z)| dz + C \sum 2^{-n} n |2^{n}Q|^{-1} \int_{2^{n}Q} |g(z)| dz \\ &\leq C \sum 2^{-n} (|2^{n}Q|^{-1} \int_{2^{n}Q} |f(z)-f_{2^{n}Q}|^{q'} dz)^{1/q'} (|2^{n}Q|^{-1} \int_{2^{n}Q} |g(z)|^{q} dz)^{1/q} + CMg(x) \\ &\leq CM_{q}g(x) + CMg(x). \end{split}$$

These estimates give

$$\Omega(C_f g, Q) \leq 2|Q|^{-1} \int_Q |C_f g(z) - T(f - f_Q) g_2(x_0)| dz$$

$$\leq CM_q Tg(x) + CM_{rq} g(x) + CM_q g(x) + CM_1 g(x) \leq C (M_q Tg(x) + M_{rq} g(x)).$$

This holds for every Q containing x, and thus

$$(C_f g)^{\#} \leq C(M_q T g + M_{rq} g) \in L^p.$$

This, however, implies

$$\|C_f g\|_p \leq C \|(C_f g)^{\#}\|_p \leq C \|M_q T g\|_p + C \|M_{rq} g\|_p \leq C \|g\|_p,$$

see [2].

Lemma 12. If $f \in \Lambda_{\alpha}$ and $g \in L^p$, $1 , then <math>\|C_f g\|_q \leq C \|f\|_{\Lambda_{\alpha}} \|g\|_p$, where $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{d}$.

Proof.

$$|C_{f}g(x)| \leq \int |f(x) - f(y)| |K(x-y)| |g(y)| dy$$

$$\leq C ||f||_{A_{\alpha}} \int |x-y|^{\alpha} |x-y|^{-n} |g(y)| dy = C ||f||_{A_{\alpha}} I_{\alpha}(|g|)(x).$$

The theorem of fractional integration [7, p. 119] shows that this Riesz potentiat exists a.e. and belongs to L^q with the right norm.

To complete the proof of the theorem, let us assume that $||f||_{BMO_{\varphi}} \leq 1$. We note that there exists a $q < \infty$ such that $(2t)^{-q}\psi(2t) < t^{-q}\psi(t)$. Thus, replacing ψ by an equivalent Orlicz function if necessary, $t^{-q}\psi(t)$ is decreasing. Consequently $t^{-1/q}\psi^{-1}(t)$ is increasing and $r^{d(1/q-1/p)}\varphi(r)$ is decreasing.

Let α be the minimum of $d(\frac{1}{p} - \frac{1}{q})$ and 1. Assume that $1 < p_i < \frac{d}{\alpha}$, and that $||g||_{p_i} \leq 1$. Lemma 7 shows that $||f_r||_{A_\alpha} \leq Cr^{-\alpha}\varphi(r)$, and Lemma 12 gives

$$\|C_{f_r}g\|_{q_i} \leq Cr^{-\alpha}\varphi(r), \quad \text{where} \quad \frac{1}{q_i} = \frac{1}{p_i} - \frac{\alpha}{d}.$$

Lemmas 5 and 11 give

$$\|C_{f-f_r}g\|_{p_i} \leq C\varphi(r).$$

We set in these formulas $r=t^{-1/d}$ and obtain a weak estimate.

$$m_{C_{fg}}(t^{1/p_{i}}\varphi(t^{-1/d})) \leq \left(\frac{2C\varphi(r)}{t^{1/p_{i}}\varphi(r)}\right)^{p_{i}} + \left(\frac{2Cr^{-\alpha}\varphi(r)}{t^{1/p_{i}}\varphi(r)}\right)^{q_{i}} = \frac{C}{t} + \frac{C}{t^{\left(\frac{1}{p_{i}} - \frac{\alpha}{d}\right)q_{i}}} = \frac{C}{t}.$$

Choose $1 < p_2 < p < p_1 < \frac{d}{\alpha}$. Let $\varrho(t)$ be $\varphi(t^{-1/d})$ and let A be C_f . We have just proved that the conditions in Lemma 10 are fulfilled. Thus, if $||g||_p \leq (p/p_1)^{1/p}$,

$$\int \psi\left(\frac{1}{2} |C_f g|\right) = \int_0^\infty m_{c_f \theta}(2\psi^{-1}(t)) dt \leq C.$$

$$\leq C.$$

That is, $\|C_f g\|_{L_w} \leq C$.

270 Svante Janson: Mean oscillation and commutators of singular integral operators

3. Examples

1. $\varphi \equiv 1$. We may take any $1 and <math>\psi(t) = t^p$. Thus C_f maps L^p into L^p if and only if $f \in BMO$, as asserted in the introduction.

2. $\psi(t) = t^q$, $1 . <math>\varphi(r) = r^{d/p} r^{-d/q}$. Thus, by Lemma 4, C_f maps L^p into L^q if and only if $f \in \Lambda_d(\frac{1}{p} - \frac{1}{q})$. This holds even if $d(\frac{1}{p} - \frac{1}{q}) > 1$, then f has to be a constant.

3. $\psi(t) = t^p (1 + \log^+ t)^a$, 1 , <math>a > 0. $\psi^{-1}(t) \sim t^{1/p} (1 + \log^+ t)^{-a/p}$ i.e. $\varphi(r) \sim (1 + \log^+ \frac{1}{r})^{-a/p}$. Thus $f \in BMO_{(1 + \log^+ 1/r)^{-a/p}}$ if and only if C_f maps L^p into " $L^p (1 + \log^+ L)^a$ ".

Added im proof. There is an overlap between the results of this paper and those of A. UCHIYAMA, Compactness of operators of Hankel Type. Tôhoku Math. J. 30 (1978), 163-171.

References

- 1. COIFMAN, R. R., ROCHBERG, R., and WEISS, G., Factorization theorems for Hardy spaces in several variables. Ann. Math. 103 (1976), 611-635.
- FEFFERMAN, C., and STEIN, E. M., H^p-spaces of several variables. Acta Math. 129 (1972), 137– 193.
- 3. JANSON, S., On functions with conditions on the mean oscillation. Ark. Mat. 14 (1976), 189– 190.
- JOHN, F., and NIRENBERG, L., On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961), 415-426.
- 5. KRASNOSEL'SKII, M. A., and RUTICKII, YA. B., Convex functions and Orlicz spaces. (Translated from Russian) Groningen, (1961).
- SPANNE, S., Some function spaces defined using the mean oscillation over cubes. Ann. Scuola Nom. Sup. Pisa 19 (1965), 593-608.
- 8. STEIN, E. M., Singular integrals and differentiability properties of functions. Princeton 1970.
- . STRÖMBERG, J.-O., Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Institut Mittag-Leffler, Report 4, (1975).

Received August 30, 1977

Svante Janson Uppsala University Dept. of Mathematics Sysslomansgatan 8 S—752 23 Uppsala Sweden