Mean oscillation and commutators of singular integral operators

Svante Janson

0. Introduction

Let T be a Caldéron-Zygmund transform

$$
T g(x)=\text { P.V. } \int_{R^{d}} K(x-y) g(y) d y
$$

where the kernel K is homogeneous of degree $-d$, i.e. $K(x)=|x|^{-d} K(x /|x|), \int_{S^{d-1}} K=0$ and K satisfies some smoothness condition. $K \in C^{\infty}\left(S^{d-1}\right)$ will always be sufficient. For the theory of these transforms, see e.g. Stein [7]. We need the result that T is bounded on $L^{p}, 1<p<\infty$. K and T will be fixed throughout the paper and not identically zero.

Let f be a function on R^{d}, and let it also denote the operation of pointwise multiplication with f. We will study the commutator $[f, T]$ denoted by C_{f}.

Formally

$$
\begin{aligned}
C_{f} g(x) & =f T g(x)-T f g(x) \\
& =f(x) \int K(x-y) g(y) d y-\int K(x-y) f(y) g(y) d y \\
& =\int(f(x)-f(y)) K(x-y) g(y) d y .
\end{aligned}
$$

For these formulas to make sense, f has to be locally integrable. $C_{f} g$ is then defined a.e. as a principal value for g bounded and with compact support. C_{f} may be extended to all of L^{p} when we have proved it to be continuous. $C_{f} g$ is clearly bilinear.

Let Q be any cube in R^{d}. We define f_{Q}, the mean value of f on Q, as

$$
|Q|^{-1} \int_{Q} f(x) d x
$$

and $\Omega(f, Q)$, the mean oscillation of f on Q, as

$$
|Q|^{-1} \int_{Q}\left|f-f_{Q}\right| d x .
$$

$|Q|$ is the Lebesgue measure. $B M O$ is the space of all functions of bounded mean oscillation, i.e. $f \in B M O$ if and only if $\Omega(f, Q) \leqq C$ for every Q ([4]). More generally, let φ be a non-decreasing positive function and define $B M O_{\varphi}$ as the space of all functions f, with $\Omega(f, Q) \leqq C \varphi(r)$ whenever Q is a cube with edge-length r ([6], [3]). The norms are defined as the least possible constants C in the inequalities and the spaces are Banach spaces.

Coifman, Rochberg and Weiss [1] have proved that if $f \in B M O, C_{f}$ is a bounded operator from L^{p} to itself, $1<p<\infty$. They also proved a partial converse, viz. if [f, R_{j}] is bounded on L^{p} for every Riesz transform R_{j}, then f belongs to BMO. The purpose of this paper is to show that it suffices to assume the boundedness of one of these commutators, or of any commutator C_{f}. More generally $f \in B M O_{\varphi}$ if and only if C_{f} is a bounded operator from L^{p} to a suitable Orlicz space.

1. Notation and basic lemmas

C denotes different positive constants. $Q\left(x_{0}, r\right)$ denotes the cube with center x_{0} and edge-length r. $n Q$ denotes the cube with the same center as Q, but enlarged n times, i.e. $n Q\left(x_{0}, r\right)=Q\left(x_{0}, n r\right)$.

We state some lemmas without proofs. Cf. [3], [4], [6].
Lemma 1. $\Omega(f, Q) \leqq 2|Q|^{-1} \int_{Q}|f(x)-a| d x$ for every a.
Lemma 2. If $f \in B M O$, then $\left|f_{Q}-f_{n Q}\right| \leqq C\|f\|_{B M O} \log n$.
Lemma 3. If $f \in B M O$ and $p<\infty$, then $|Q|^{-1} \int_{Q}\left|f(x)-f_{Q}\right|^{p} d x \leqq C\|f\|_{B M O}^{P}$.
Let $\Lambda_{\alpha}, 0<\alpha \leqq 1$, be the space of Lipschitz continuous functions, possibly unbounded, $\Lambda_{\alpha}=\left\{f ;|f(x)-f(y)| \leqq C|x-y|^{\alpha}\right\}$.

Lemma 4. $B M O_{t^{\alpha}}=\Lambda_{\alpha}$.
Let η be an infinitely differentiable function with compact support such that $\int \eta=1$. Define $f_{r}(x)$ as $\int f(x-r y) \eta(y) d y$.

Lemma 5. If $\|f\|_{B M O_{\varphi}} \leqq 1$, then $\left\|f-f_{r}\right\|_{B M O} \leqq C \varphi(r)$.
Lemma 6. If $\|f\|_{B M O_{\varphi}} \leqq 1$, then $\left|f_{r}(x)-f_{r}(y)\right| \leqq C \frac{\varphi(r)}{r}|x-y|$ and

$$
\left|f_{r}(x)-f_{r}(y)\right| \leqq C \int_{r}^{r+|x-y|} \frac{\varphi(t)}{t} d t
$$

This gives the following estimate of the Lipschitz norm.

Lemma 7. If $0<\alpha<1$ and $t^{-\alpha} \varphi(t)$ is decreasing, or if $\alpha=1$, then $\left\|f_{r}\right\|_{\Lambda_{\alpha}} \leqq$ $C r^{-\alpha} \varphi(r)\|f\|_{B M O_{\varphi}}$.

Let ψ be a non-decreasing convex function on R^{+}with $\psi(0)=0 . \psi^{-1}$ denotes the inverse function. The Orlicz space L_{ψ} is defined as the set of functions f such that $\int \psi(\lambda|f|)<\infty$ for some $\lambda>0$. ([5], [8]). The norm is given by $\|f\|_{L_{\psi}}=$ $\inf \frac{1}{\lambda}\left(1+\int \psi(\lambda|f|)\right)$.

Lemma 8. If $f \in L_{\psi}$ and E is a set of finite measure, then $\left|\int_{E} f(x) d x\right| \leqq$ $\|f\|_{L_{\psi}}|E| \psi^{-1}\left(|E|^{-1}\right)$.

We also need a result for maximal functions.
For $q \geqq 1$ define

$$
M_{q} g(x)=\sup _{x \in Q}\left(|Q|^{-1} \int_{Q}|g|^{q} d x\right)^{1 / q}
$$

$M_{q} g \geqq M_{r} g$ if $q \geqq r . M_{1}$ is bounded on $L^{p}, 1<p<\infty$, see Stein [7]. Since $M_{q}=$ $\left(M_{1}|g|^{q}\right)^{1 / q}$, this gives

Lemma 9. M_{q} is bounded on $L^{p}, q<p<\infty$.
m_{f} denotes the distribution function. $m_{f}(t)=|\{x ;|f(x)|>t\}|$.
We have the following Marcinkiewicz-type interpolation theorem.
Lemma 10. Suppose $1 \leqq p_{2}<p<p_{1}<\infty$, ϱ is a non-increasing function, A is a linear operator such that $m_{A g}\left(t^{1 / p_{1}} \cdot \varrho(t)\right) \leqq \frac{c}{t}$, if $\|g\|_{p_{1}} \leqq 1$, and $m_{A g}\left(t^{1 / p_{2}} \cdot \varrho(t)\right) \leqq \frac{C}{t}$, if $\|g\|_{p_{2}} \leqq 1$. Then $\int_{0}^{\infty} m_{A g}\left(2 t^{1 / p} \varrho(t)\right) \leqq C$, if $\|g\|_{p} \leqq\left(p / p_{1}\right)^{1 / p}$.

Proof. Fix t for the moment. Set $u=t^{1 / p}$. Set $g_{1}(x)=\min (|g(x)|, u) \cdot \operatorname{sgn} g(x)$ and $g_{2}=g-g_{1}$. Let $m(s)$ denote $m_{g}(s)$. Then

$$
m_{g_{1}}(s)=\left\{\begin{array}{ll}
m(s), & s<u \\
0, & s \geqq u
\end{array} \text { and } \quad m_{g_{2}}(s)=m(s+u) .\right.
$$

Thus

$$
\left\|g_{1}\right\|_{p_{1}}^{p_{1}}=p_{1} \int_{0}^{u} s^{p_{1}-1} m(s) d s
$$

and

$$
\left\|g_{2}\right\|_{p_{2}}^{p_{2}}=p_{2} \int_{0}^{\infty} s^{p_{2}-1} m(s+u) d s \leqq p_{2} \int_{u}^{\infty} s^{p_{2}-1} m(s) d s
$$

We have

$$
p_{1} \int_{0}^{u} u^{p-p_{1}} s^{p_{1}-1} m(s) d s \leqq p_{1} \int_{0}^{u} s^{p-1} m(s) d s \leqq \frac{p_{1}}{p}\|g\|_{p}^{p} \leqq 1 .
$$

Thus

$$
u^{p} \leqq u^{p_{1}}\left\|g_{1}\right\|_{p}^{-p_{1}} \quad \text { and } \quad \varrho\left(u^{p}\right) \geqq \varrho\left(u^{p_{1}}\left\|g_{1}\right\|_{p}^{-p_{1}}\right)
$$

We apply the assumptions to $\frac{g_{1}}{\left\|g_{1}\right\|_{p_{1}}}$ and obtain

$$
\begin{gathered}
m_{A g_{1}}\left(u \varrho\left(u^{p}\right)\right) \leqq m_{A g_{1}}\left(u \varrho\left(u^{p_{1}}\left\|g_{1}\right\|_{p}^{-p_{1}}\right)\right) \\
=m_{A \frac{g_{1}}{\left\|g_{1}\right\|}}\left(u\left\|g_{1}\right\|_{p_{1}}^{-1} \varrho\left(u^{p_{1}}\left\|g_{1}\right\|_{p_{1}}^{-p_{1}}\right)\right) \leqq C u^{-p_{1}}\left\|g_{1}\right\|_{p_{1}}^{p_{1}}=C u^{-p_{1}} \int_{0}^{u} s^{p_{1}-1} m(s) d s .
\end{gathered}
$$

Similarly

$$
m_{A g_{2}}\left(u \varrho\left(u^{p}\right)\right) \leqq C u^{-p_{2}} \int_{u}^{\infty} s^{p_{2}-1} m(s) d s
$$

Thus we have

$$
\begin{aligned}
& \int_{0}^{\infty} m_{A g}\left(2 t^{1 / p} \varrho(t)\right) d t=p \int_{0}^{\infty} u^{p-1} m_{A g}\left(2 u \varrho\left(u^{p}\right)\right) d u \\
& \leqq C \int_{0}^{\infty} \int_{0}^{u} u^{p-1-p_{1}} s^{p_{1}-1} m(s) d s d u+C \int_{0}^{\infty} \int_{u}^{\infty} u^{p-1-p_{2}} s^{p_{2}-1} m(s) d s d u \\
&=C \int_{0}^{\infty} \int_{s}^{\infty} u^{p-1-p_{1}} d u s^{p_{1}-1} m(s) d s+C \int_{0}^{\infty} \int_{0}^{s} u^{p-1-p_{2}} d u s^{p_{2}-1} m(s) d s \\
&=C \int_{0}^{\infty} s^{p-1} m(s) d s \leqq C .
\end{aligned}
$$

2. The main result

Theorem. Let $1<p<\infty$, and let φ and ψ be two non-decreasing positive functions on R^{+}connected by the relation $\varphi(r)=r^{d / q} \psi^{-1}\left(r^{-d}\right)$, or equivalently $\psi^{-1}(t)=$ $t^{1 / p} \varphi\left(t^{-1 / d}\right)$. We assume that ψ is convex, $\psi(0)=0$ and $\psi(2 t) \leqq C \psi(t)$. Then f belongs to $B M O_{\varphi}$ if and only if C_{f} maps L^{p} boundedly into L_{ψ}.

Remark. By duality, f belongs to $B M O_{\varphi}$ if and only if C_{f} maps $L_{\psi^{*}}$ into $L^{p^{\prime}}$. Also, the proof may be generalized to show that f belongs to $B M O_{\varphi}$ if and only if C_{f} maps $L_{\psi_{1}}$ into $L_{\psi_{2}}$ with

$$
\varphi(r)=\frac{\psi_{2}^{-1}\left(r^{-d}\right)}{\psi_{1}^{-1}\left(r^{-d}\right)},
$$

under suitable conditions on ψ_{1} and ψ_{2}.
Proof. We first prove that the condition is sufficient. Assume that C_{f} maps L^{p} into L_{ψ}.
$\frac{1}{K(z)}$ is many times infinitely differentiable in an open set. Consequently, we may choose $z_{0} \neq 0$ and $\delta>0$ such that $\frac{1}{K(z)}$ can be expressed in the neighborhood $\left|z-z_{0}\right|<$ $\sqrt{d} \delta$ as an absolutely convergent Fourier series, $\frac{1}{K(z)}=\Sigma a_{n} e^{i v_{n} \cdot z}$. (The exact form of the vectors v_{n} is irrelevant.)

Set $z_{1}=\delta^{-1} z_{0}$. If $\left|z-z_{1}\right|<\sqrt{d}$, we have the expansion

$$
\frac{1}{K(z)}=\frac{\delta^{-d}}{K(\delta z)}=\delta^{-d} \sum a_{n} e^{i \nu_{n} \cdot \delta z}
$$

Choose now any cube $Q=Q\left(x_{0}, r\right)$. Set $y_{0}=x_{0}-r z_{1}$ and $Q^{\prime}=Q\left(y_{0}, r\right)$ Thus, if $x \in Q$ and $y \in Q^{\prime}$,

$$
\left|\frac{x-y}{r}-z_{1}\right| \leqq\left|\frac{x-x_{0}}{r}\right|+\left|\frac{y-y_{0}}{r}\right| \leqq \sqrt{d} .
$$

Denote $\operatorname{sgn}\left(f(x)-f_{Q^{\prime}}\right)$ by $s(x)$. This gives us

$$
\begin{aligned}
& \int_{Q}\left|f(x)-f_{Q^{\prime}}\right| d x=\int_{Q}\left(f(x)-f_{Q^{\prime}}\right) s(x) d x=\left|Q^{\prime}\right|^{-1} \int_{Q} \int_{Q^{\prime}}(f(x)-f(y)) s(x) d y d x \\
&=r^{-d} \int_{R^{d}} \int_{R^{d}}(f(x)-f(y)) \frac{r^{d} K(x-y)}{K\left(\frac{x-y}{r}\right)} s(x) \chi_{Q}(x) \chi_{Q^{\prime}}(y) d y d x \\
&=C \iint(f(x)-f(y)) K(x-y) \sum a_{n} e^{i v_{n} \cdot \delta \frac{x-y}{r}} s(x) \chi_{Q}(x) \chi_{Q^{\prime}}(y) d y d x \\
&=C \sum a_{n} \iint(f(x)-f(y)) K(x-y) e^{i \frac{\delta}{r} v_{n} \cdot x} s(x) \chi_{Q}(x) e^{-i \frac{\delta}{r} v_{n} \cdot y} \chi_{Q^{\prime}}(y) d y d x
\end{aligned}
$$

If we introduce
and

$$
g_{n}(y)=e^{-i \frac{\delta}{r} v_{n} \cdot y} \chi_{Q^{\prime}}(y)
$$

$$
h_{n}(x)=e^{i \frac{\delta}{r} v_{n} \cdot x} s(x) \chi_{Q}(x)
$$

we have obtained

$$
\begin{aligned}
\int_{Q} \mid f(x) & -f_{Q^{\prime}} \mid d x=C \sum a_{n} \iint(f(x)-f(y)) K(x-y) g_{n}(y) h_{n}(x) d y d x \\
& =C \sum a_{n} \int C_{f} g_{n}(x) h_{n}(x) d x \leqq C \sum\left|a_{n}\right| \int\left|C_{f} g_{n}\right|\left|h_{n}\right| d x \\
& =C \sum\left|a_{n}\right| \int_{Q}\left|C_{f} g_{n}\right| d x
\end{aligned}
$$

However, g_{n} belongs to L^{p}, and its norm is $|Q|^{1 / p}=r^{d / p}$. Consequently, $\left\|C_{f} g_{n}\right\|_{L^{\psi}} \leqq C r^{d / p}$ and, by Lemma 8 ,

$$
\int_{Q}\left|C_{f} g_{n}\right| \leqq C r^{d / p}|Q| \psi^{-1}\left(|Q|^{-1}\right)
$$

Thus we have obtained

$$
\int_{Q}\left|f(x)-f_{Q^{\prime}}\right| d x \leqq C \sum\left|a_{n}\right| r^{d / p}|Q| \psi^{-1}\left(|Q|^{-1}\right)=C|Q| r^{d / p} \psi^{-1}\left(r^{-d}\right)=C|Q| \varphi(r)
$$

and $\Omega(f, Q) \leqq C \varphi(r)$ by Lemma 1 .

We prove the converse in several steps and begin with two special cases.
Lemma 11. If $\|f\|_{B M O} \leqq 1$ and $\|g\|_{p} \leqq 1,1<p<\infty$, then $\left\|C_{f} g\right\|_{p} \leqq C$.
This is proved in [1]. The following simpler proof was suggested to the author by Jan-Olov Strömberg.

Proof. We will estimate $\left(C_{f} g\right)^{\#}(x)=\sup _{x \in Q} \Omega\left(C_{f} g, Q\right)$. Choose q and r greater than 1 such that $p>q r$. Let x and $Q=Q\left(x_{0}, s\right)$ be fixed with $x \in Q$. Set $g_{1}=g \cdot \chi_{2 Q}$ and $g_{2}=g-g_{1}$. This gives

$$
\mathcal{C}_{f} g=\mathcal{C}_{f-f_{Q}} g=\left(f-f_{Q}\right) T g-T\left(f-f_{Q}\right) g_{1}-T\left(f-f_{Q}\right) g_{2}
$$

We estimate the mean oscillation on Q of each of these functions separately. Hölder's inequality and Lemma 3 give

$$
|Q|^{-1} \int_{\mathbf{Q}}\left|f-f_{Q}\right||T g| \leqq\left(|Q|^{-1} \int_{Q}\left|f-f_{Q}\right| q^{\prime}\right)^{1 / q^{\prime}}\left(|Q|^{-1} \int_{Q}|T g|^{q}\right)^{1 / q} \leqq C M_{q} T g(x)
$$

We also have

$$
\begin{gathered}
|Q|^{-1} \int_{R^{d}}\left|f-f_{Q}\right|^{r}\left|g_{1}\right|^{r}=|Q|^{-1} \int_{2 Q}\left|f-f_{Q}\right|^{r}|g|^{r} \\
\leqq\left(|Q|^{-1} \int_{2 Q}\left|f-f_{Q}\right|^{r q^{\prime}}\right)^{1 / q^{\prime}}\left(|Q|^{-1} \int_{2 Q}|g|^{r q}\right)^{1 / q} \leqq C\left(M_{r q} g(x)\right)^{r}
\end{gathered}
$$

Thus

$$
\left\|\left(f-f_{Q}\right) g_{1}\right\|_{r} \leqq C|Q|^{1 / r} M_{r q}(g)(x)
$$

and consequently

$$
|Q|^{-1} \int_{Q}\left|T\left(f-f_{Q}\right) g_{1}\right| \leqq|Q|^{-1 / r}\left\|T\left(f-f_{Q}\right) g_{1}\right\|_{r} \leqq C|Q|^{-1 / r}\left\|\left(f-f_{Q}\right) g_{1}\right\|_{r} \leqq C M_{r q} g(x)
$$

For the last term we have for any $y \in Q$

$$
\begin{aligned}
& \left|T\left(f-f_{Q}\right) g_{2}(y)-T\left(f-f_{Q}\right) g_{2}\left(x_{0}\right)\right|=\left|\int\left(K(y-z)-K\left(x_{0}-z\right)\right)\left(f(z)-f_{Q}\right) g_{2}(z) d z\right| \\
& \leqq \int_{C_{2} Q}\left|K(y-z)-K\left(x_{0}-z\right)\right|\left|f(z)-f_{Q}\right||g(z)| d z \\
& \leqq C \int_{C_{2} Q} \frac{\left|y-x_{0}\right|}{\left|x_{0}-z\right|^{d+1}}\left|f(z)-f_{Q}\right||g(z)| d z \\
& \leqq C \sum_{n=2}^{\infty} \int_{2^{n} Q 2^{n-1} Q} 2^{-n}\left|2^{n} Q\right|^{-1}\left(\left|f(z)-f_{2^{n} Q}\right|+\left|f_{2^{n} Q}-f_{Q}\right|\right)|g(z)| d z \\
& \leqq C \sum 2^{-n}\left|2^{n} Q\right|^{-1} \int_{2^{n} Q}\left|f(z)-f_{2^{n} Q}\right||g(z)| d z+C \sum 2^{n^{n} n\left|2^{n} Q\right|^{-1} \int_{2^{n} Q}|g(z)| d z} \\
& \leqq C \sum 2^{-n}\left(\left|2^{n} Q\right|^{-1} \int_{2^{n} Q} \mid f(z)-f_{2^{n}} Q^{\mid q^{\prime}} d z\right)^{1 / q^{\prime}}\left(\left|2^{n} Q\right|^{-1} \int_{2^{n} Q}|g(z)|^{q} d z\right)^{1 / q}+C M g(x) \\
& \leqq C M_{q} g(x)+C M g(x)
\end{aligned}
$$

These estimates give

$$
\begin{gathered}
\Omega\left(C_{f} g, Q\right) \leqq 2|Q|^{-1} \int_{Q}\left|C_{f} g(z)-T\left(f-f_{Q}\right) g_{2}\left(x_{0}\right)\right| d z \\
\leqq C M_{q} T g(x)+C M_{r q} g(x)+C M_{q} g(x)+C M_{1} g(x) \leqq C\left(M_{q} T g(x)+M_{r q} g(x)\right)
\end{gathered}
$$

This holds for every Q containing x, and thus

$$
\left(C_{f} g\right)^{\#} \leqq C\left(M_{q} T g+M_{r q} g\right) \in L^{p}
$$

This, however, implies

$$
\left\|C_{f} g\right\|_{p} \leqq C\left\|\left(C_{f} g\right)^{\#}\right\|_{p} \leqq C\left\|M_{q} T g\right\|_{p}+C\left\|M_{r q} g\right\|_{p} \leqq C\|g\|_{p}
$$

see [2].
Lemma 12. If $f \in A_{\alpha}$ and $g \in L^{p}, 1<p<\frac{d}{\alpha}$, then $\left\|C_{f} g\right\|_{q} \leqq C\|f\|_{\Lambda_{\alpha}}\|g\|_{p}$, where $\frac{1}{q}=\frac{1}{p}-\frac{\alpha}{d}$.

Proof.

$$
\begin{gathered}
\left|C_{f} g(x)\right| \leqq \int|f(x)-f(y)||K(x-y) \||g(y)| d y \\
\leqq C\|f\|_{\Lambda_{\alpha}} \int|x-y|^{\alpha}|x-y|^{-n}|g(y)| d y=C\|f\|_{\Lambda_{\alpha}} I_{\alpha}(|g|)(x)
\end{gathered}
$$

The theorem of fractional integration [7, p. 119] shows that this Riesz potentiat exists a.e. and belongs to L^{q} with the right norm.

To complete the proof of the theorem, let us assume that $\|f\|_{B M O_{\varphi}} \leqq 1$. We note that there exists a $q<\infty$ such that $(2 t)^{-q} \psi(2 t)<t^{-q} \psi(t)$. Thus, replacing ψ by an equivalent Orlicz function if necessary, $t^{-q} \psi(t)$ is decreasing. Consequently $t^{-1 / q} \psi^{-1}(t)$ is increasing and $r^{d(1 / q-1 / p)} \varphi(r)$ is decreasing.

Let α be the minimum of $d\left(\frac{1}{p}-\frac{1}{q}\right)$ and 1 . Assume that $1<p_{i}<\frac{d}{\alpha}$, and thal $\|g\|_{p_{i}} \leqq 1$. Lemma 7 shows that $\left\|f_{r}\right\|_{A_{\alpha}} \leqq C r^{-\alpha} \varphi(r)$, and Lemma 12 gives

$$
\left\|C_{f_{r}} g\right\|_{q_{i}} \leqq C r^{-\alpha} \varphi(r), \quad \text { where } \quad \frac{1}{q_{i}}=\frac{1}{p_{i}}-\frac{\alpha}{d} .
$$

Lemmas 5 and 11 give

$$
\left\|C_{f-f_{r}} g\right\|_{p_{i}} \leqq C \varphi(r)
$$

We set in these formulas $r=t^{-1 / d}$ and obtain a weak estimate.

$$
m_{C_{f} g}\left(t^{1 / p_{i}} \varphi\left(t^{-1 / d}\right)\right) \leqq\left(\frac{2 C \varphi(r)}{t^{1 / p_{i}} \varphi(r)}\right)^{p_{i}}+\left(\frac{2 C r^{-\alpha} \varphi(r)}{t^{1 / p_{i}} \varphi(r)}\right)^{q_{i}}=\frac{C}{t}+\frac{C}{t^{\left(\frac{1}{p_{i}}-\frac{\alpha}{d}\right) q_{i}}}=\frac{C}{t}
$$

Choose $1<p_{2}<p<p_{1}<\frac{d}{\alpha}$. Let $\varrho(t)$ be $\varphi\left(t^{-1 / d}\right)$ and let A be C_{f}. We have just proved that the conditions in Lemma 10 are fulfilled. Thus, if $\|g\|_{p} \leqq\left(p / p_{1}\right)^{1 / p}$,

$$
\int \psi\left(\frac{1}{2}\left|C_{f} g\right|\right)=\int_{0}^{\infty} m_{C_{f} g}\left(2 \psi^{-1}(t)\right) d t \leqq C .
$$

That is, $\left\|C_{f} g\right\|_{L_{\psi}} \leqq C$.

3. Examples

1. $\varphi \equiv 1$. We may take any $1<p<\infty$ and $\psi(t)=t^{p}$. Thus C_{f} maps L^{p} into L^{p} if and only if $f \in B M O$, as asserted in the introduction.
2. $\psi(t)=t^{q}, 1<p<q<\infty$. $\varphi(r)=r^{d / p} r^{-d / q}$. Thus, by Lemma 4, C_{f} maps L^{p} into L^{q} if and only if $f \in \Lambda_{d\left(\frac{1}{p}-\frac{1}{q}\right)}$. This holds even if $d\left(\frac{1}{p}-\frac{1}{q}\right)>1$, then f has to
be a constant.
3. $\psi(t)=t^{p}\left(1+\log ^{+} t\right)^{a}, \quad 1<p<\infty, \quad a>0 . \quad \psi^{-1}(t) \sim t^{1 / p}\left(1+\log ^{+} t\right)^{-a / p} \quad$ i.e. $\varphi(r) \sim\left(1+\log ^{+} \frac{1}{r}\right)^{-a / p}$. Thus $f \in B M O_{\left(1+\log ^{+1 / r)^{-a / p}}\right.}$ if and only if C_{f} maps L^{p} into " $L^{p}\left(1+\log ^{+} L\right)^{a}$ ".

Added im proof. There is an overlap between the results of this paper and those of A. Uchiyama, Compactness of operators of Hankel Type. Tôhoku Math. J. 30 (1978), 163-171.

References

1. Coifman, R. R., Rochberg, R., and Weiss, G., Factorization theorems for Hardy spaces in several variables. Ann. Math. 103 (1976), 611-635.
2. Fefferman, C., and Stein, E. M., H^{p}-spaces of several variables. Acta Math. 129 (1972), 137193.
3. Janson, S., On functions with conditions on the mean oscillation. Ark. Mat. 14 (1976), 189190.
4. John, F., and Nirenberg, L., On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961), 415-426.
5. Krasnosel'skĭ̀, M. A., and Rutickŭ, Ya. B., Convex functions and Orlicz spaces. (Translated from Russian) Groningen, (1961).
6. Spanne, S., Some function spaces defined using the mean oscillation over cubes. Ann. Scuola Nom. Sup. Pisa 19 (1965), 593-608.
7. Stein, E. M., Singular integrals and differentiability properties of functions. Princeton 1970. . Strömberg, J.-O., Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Institut Mittag-Leffler, Report 4, (1975).
