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1. Introduction 

Let E be a compact subset of the complex plane and let f2 be the complement 
of E with respect to the extended plane. For  0<c~ -<_ 1, we denote by Lip, ~ (f2) the 
set of bounded analytic functions defined on f2 and satisfying a Lipschitz condition 
of order c~, i.e., if fELip~ (f2), then [ f ( z ) - f ( w ) l < = C s [ z - w l  ~ for any z and w 
in 12. We denote the union of  all Lip~" (f2) by Lip~. We say that E is removable for 
Lip~" if the associated Lip~ (O) consists only of the constants. 

The problem of characterizing the removable sets of Lip, ~ has been investigated 
in several papers, for example [1], [2], [4] and [6]. For 0 < ~ < 1 ,  Dol~enko has 
obtained the following result (see [2]). In order that E be removable for Lip~ 
it is necessary and sufficient that the (l+c0-dimensional Hausdorff measure 
AI+~(E)----0. 

The limiting case c~ = 1 is particularly interesting and is treated in this paper. 
The main techniques we use here involve extremal problems and singular integrals. 
We obtain the following characterization for removable sets of Lip~. A compact 
set E is removable for Lip~ if and only if the 2-dimensional Lebesgue measure 
re(E)=0.  This is the main result of the present paper. It should be mentioned 
that the implication m(E)=O=~E removable for Lip~ is well known (see e.g. 
Garnett [4], Chapter III, Section w 2.) 

Finally, by using the techniques introduced in Section 3, we obtain an addi- 
tional result concerning singular integrals. This result is included ill Section 5. 
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2. Definitions and notations 

Let  {~(~}~>0 be an approx ima te  identity, where Z~(z)=x(z/e)/e 2 and  X is in 
the set ~ ( R  2) o f  infinitely differentiable functions with compac t  supports .  Fur ther-  
more ,  we will assume tha t  Z satisfies the following properties.  

(i) ;t =>0, s u p p x c D ( 0 ,  1) = {z: Iz] <_- 1}. 

(ii) X is radial, i.e., x(re ~~ = ~(r)  for  all real 0. 

(iii) f f  z(z) din(z) = 1. 

I f  l ~ p  <-~o and  if  f~LP(R2) ,  we define 

f~(z) = Z~ * f(z) = f f  z (z- {)f(~) dm (~). 

Similarly, for  any finite Borel measure  #, we set 

(z) = # (z) = f f  z. ( z -  dlt (~). 

N o w  we recall the following s tandard  notat ions.  
Co(R 2) = the set o f  all cont inuous  funct ions defined on R 2 which vanish at  oo. 
M ( R a ) =  the set o f  finite Borel measures  defined on R 2. 

I f  E is an arb i t ra ry  compac t  set we define 
C(E) = the set o f  all cont inuous functions defined on E. 
M ( E ) =  the set o f  all finite Borel measures  suppor ted  on E. 

Consider  the direct sums C(E)•Co(R 2) and M(E)@M(R2). The norms  in these 
spaces are defined respectively as follows. 

II(~P, ~)ll = max{lltPll=, !1~11=}, (q~, O)EC(E)@CoOR~) �9 

I1(~, v)ll = Iltzll +llvll, (~, v)EM(E)OM(RZ). 

Then  C(E)| 2) is a Banach  space and  its dual  is M(E)@M(R2). The terms 
on the right hand  side of  the second equali ty denote  the total  var iat ions of  # and  v. 

We  shall also be involved in a par t icular  type o f  singular integrals defined 
as follows. I f  l<=p<oo and if f~LP(R2) ,  then we put  

f / .  f (~)  d Bf(z) = P.V. j j - - ~ - ~  rn(~). 

Similarly, for  any measure  # C M ( R  2) we define 

B,~(z) = P.V. f f 
d#(~) 

( ~ -  z)~ " 

I t  is well known tha t  these singular integrals exist a lmos t  everywhere and,  fur ther-  
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more, there are absolute constants Ap>0,  

(2.1) IlBfilp <-- Apltfllp, fE  LP(R 2) 
and 

Aali~II (2.2) m({z: IB#(z)] > 2}) ~ 2 

1 <__p< oo, such that 

(1 < p < oo) 

- - ,  #E M(R~). 

For  proofs of  this and further results see [5], [7]. Note that property (2.2) has only 
been proved for L 1 (R2)-functi0ns. The above extension for measures follows easily 
by using a standard technique of  truncation and convolution. 

Finally, we need the following result which is obtained from Green's theorem 

f f ~z dm(O (2.3) B~p(z) = (~) (----------~, ~oE ~(R2). 

3. Extremal problems 

Suppose E is an arbitrary compact set with m(E)>O and fEL~o c (R~). We 
denote by F(E) the set of  all functions hEL~(E) such that [ ] h [ ] ~ l  and [[Bh[]oo~=l 
and set 

(3.1) cg:(E) = sup ffh(z)f(z) am(z) . 
h E F(E) 

If  the set E has a boundary consisting of a finite number of analytic Jordan curves, 
we denote by ~ ( E )  the set of  those functions in N (R  2) with support contained 
in E, and define 

(3.2) ~7 (e) --- f f  ~ (z)f(z) dm (z) . 
F(E) 

Now we recall the following simple but useful corollary of  the Hahn-Banach 
theorem. If  X is a Banach space and M is a subspace of  X, then for any LEX* 
we have 

sup [L(x)[ = inf IIL+Y'[I, 
xEM, Ilxll ~_1 LPEM • 

and furthermore, there is always an element of M • for which the infimum is 
attained. For  a proof  see e.g. Duren [3], Chapter 7. If  we apply this result to 
X=C(E)OCo(R~), M={(q~,B~o): ~oE~(E)} and L=(fedm, O), where fE is the 
restriction o f f  on E, we obtain 

(3.3) c~f(E) = min {llfg dm+p[I + Ilvll}, 

where the minimum is taken over all elements (p, v)EM(E)@M(R 2) satisfying 



22 Nguyen Xuan Uy 

the relation 

f q~(z) dit(z)+ f Bq~(z) dv(z) = O, ~o~ ~(E). (3.4) 

We shall call any such element which minimizes (3.3) an extremal element. 

Lemma 3.5. I f  the boundary BE is a finite union o f  analytic Jordan curves, then 
there exists a function hEF(E) such that 

~? (E) = f f  h (z)f(z) am (z). 

Proof. Let {qg,} be a sequence contained in ~ ( E ) n  F(E) with 

f f  ~0n(z)f(z) am (z) 

converging to cdT(E ). Since I[q~,l[~<=l ( n = l ,  2, ...), we may assume (by passing 
to a subsequence if necessary) that there exists a function hELM(E) such that 
I]h][~-<_l and ~o,~h in the weak-star topology of L~(R2). Now let us consider 
the convex hull co ({~p,}) and let {~b,} be a sequence of functions in co ({q~,}) con- 
verging to h in L2(R2). By property (2.1), BO, converges to Bh in L2(R2). Since 
IlBOnl[~<=l ( n = l , 2  . . . .  ), this implies that IIBhl]~<=l and hE/:(E). Hence the 
lemma is proved. 

Lemma 3.6. Let It be a finite Borel measure. Then we have the following pro- 
perties. 

dit 
(a) It~(z) converges to --di-(z) almost everywhere. 

(b) Bit~(z) converges to Bit(z) almost everywhere. 

Proof. (a) is well known. Since (b) follows from (2.2) if It is absolutely con- 
tinuous, we can suppose It is singular. We consider a point z where Bit(z) exists 
and such that 

litl(D(z, r))/r ~ -~ 0 as r ~ 0. 

In the following, for convenience, we shall delete the symbol P, V. before singular 
integrals. 

With the aid of Fubini's theorem we obtain 

Bit~(z) = f f ( f  z~(~-t)dit(t)) dm(~) _ f(ff xo(~-t)  dm(~)} dp(t). 
(~-  z)~ (~ - z)~ 

We divide this integral into two parts, over {t: [ t - z l>e}  and {t: It-z[<=e}, and 
denote the corresponding integrals by Ii(z ) and I2(z). We obtain 

l , ( z ) =  f t , _ . , > . { f f  Z . ( : - - t ) d m ( O ) d i t ( t ) = f , , _ . , > =  tilt(t) 
( t_ z )=  , ( ; -  z) ~ 
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because 1 / (~-z )  ~ (as a function of 0 is analytic in a neighborhood of  D (t, e). Hence 
la(z)~B#(z) as e~0 .  

we obtain 

Now, since 

- ( ~ -  z)~ 

" -OZ~(~ t) dm(O] 
= f , , - : : _ : [ f f - ~ 7 -  - (~-z)) ale(t) 

112(z)l <= 2nM f 2riM e----~dlt_,l~_dll~I(t) = ~ [/xl(D(z , e)), 

where M=NOZ/OzlI~. Hence 12(z)-~O as e~O and the lemma follows. 

Theorem 3.7. Suppose that OE is a finite union of analytic Jordan curves. I f  
(/~, v)EM(E)@M(R 2) satisfies relation (3.4), then we have 

~ t ( z )  =--By(z) a.e. on E. 

Proof. Let E~={zEE: dist(z, g2)>~} and consider an arbitrary q~E~(E~). 
Then qhE~(E) ,  and by (3.4) we have 

f ~o(z) d.  (z) + f  a ~ ( z )  av (z) : o. 

Now, with the aid of Fubini's theorem, 

f ~.(z) a.(z) = f f  ~(zl..(z) am(z) 
and 

f a~(z) av (z) = f f  a~ (~) v~(z) am (z) = f f  ~ (z) a~(z) am (z). 
So 

f f  ~(z)~,~(z) am(z)+ f f  ~(z) ave(z) d m  (z)  = 0 

for all q~E~(Eg. This implies #~(z)= -Bv~(z) on E,. Letting ~ tend to 0, by Lemma 
3.6, we obtain dp/dt(z)=--By(z) a.e. on E. 

4. Removable sets of Lip~. 

In this section we prove the result mentioned earlier in the Section 1 concerning 
removable sets of Lip~. 

Theorem 4.1. Let E be an arbitrary compact set of the complex plane. Then 
E is removable for Lip~ if  and only if re (E)=0 .  
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Lemma 4.2. Suppose m ( E ) > 0 .  I f  {E,} ( n = l ,  2, ...) is a decreasing sequence 
of compact sets such that each OE, is a finite union of analytic Jordan curves and 
E= n E,, then 

~ (E) = lirn ~ (En). 

Proof Let hEF(E) and let n be fixed. Then there exists Eo>0 such that 
h~EF(E,)n~(E,) for all e<eo. Thus 

Iff h(z)f(z)am(z) I = !ira ~ ]ff hs(z)f( )din(z) <- (~;(E.) 

for all n. Hence cg I (E) <= l im ,~ ,  cd~ (E,). 
Now, by Lemma 3.5, for each n there exists hnEF(E,) such that 

(E.) = f f  h. (z)f(z) dm (z). 

We see, as in the proof  of Lemma 3.5, that hn converges to a function hEF(E) in 
the weak-star topology. Therefore 

lim cg~ (E) = lim f f  h, (z)f(z) dm (z) = f f  h (z)f(z) dm (z) <= (d r (E) 

and the lemma follows. 

Lemma 4.3. Let E be an arbitrary compact set of positive Lebesgue measure 
and let fE~loc(R~). I f  f ~ O  on E, then c~i(E)>0. 

Proof Let {E.} be a sequence of  compact sets having the properties mentioned 
in Lemma 4.2. For  each n, let (IZn, v.)EM(E,)|  ~) be an extremal element of  
(3.3), so that 

cg~ (E,) = IIfE.+mll +[Iv, ll. 

By Lemma 4.2, we obtain 

cgf(E) = lina {llA.+m[I + [Iv,[I}. 

Let us assume f i r (E )=0 .  Then the above equation implies 

(iv) f f e . l f ( z ) + ~ ( z ) d m ( z ) - - O  as n ~  

(v) II~gll-~o as n-~0, where /~n ~ is the singular part  of  p, 

(vi) llv, l[-~0 as n~o~.  

By (iv) Bv,~(z) converges to f (z)  a.e. on E for some subsequence {nk}, because 
dltn/dt (z) = -- Bv, (z) a.e. on E, .  Furthermore, because of (vi) and (2.2), Bv,~ con- 
verges to 0 in the mean. This implies that f =  0 on E. Hence c~y (E) must be positive 
if f ~ 0  on E. 
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Proof of  Theorem 4.1. As we have mentioned earlier, the implication m ( E ) =  
0 =~E removable for LiP1 is well known: However, for the convenience of reference 
we include a proof  of  this result. 

Suppose then r e ( E ) = 0  and let FELip~ (f2). Let zE f2 and choose a sufficiently 
small 8>0. We cover E by a finite number of  squares Rj with center zj and side 
rj such that zr wRy, R~176 i f  j # l  and ~ r ~ < e .  By Cauchy's integral 
formula we have 

1 f F ( 0  dff+ 
F(z) = -- .~ ~ j ORj ~ F(~), 

where ORg denotes the boundary of  Rj taken in the positive sense. But, if I3(z) 
denotes the first term on the right hand side of  this equation, then 

1 F(O-- F(zg) d~. 
z 

So 

I f  IF(O-f(zj)l april ~ Y cFrff < CF~ --0 as e ~ 0, 
lI3(z)l ~ Z 27c aRj ] ( - z l  ~'~ d = d -  

where d=d i s t  (z, Uj  Rj). Hence F is constant. 
Now let us assume that re (E)>0 .  According to Lemma 4.3, there exists 

h~F(E) satisfying the property 

Let 
f f  h (z) dm (z) > O. 

[ f  h(O F(z) = 3 ,I ~ dm (0. 

We observe that F is nonconstant, because 

F'(oo) = lim zF(z) = - f f  h(O dm(O < O. 

Furthermore, since 

we have 

& (z) = f f  h,(O ~-- z dm(O' 

OFJOz=Bh,=(Bh), and OFJO~=-nh,. It follows that 

OF, < OF~ < 

Thus, IF,(z)-F,(w)l~4(l+n)lz-w I for all z ,w and e>0.  Letting e tend to 
0 we obtain the Lipschitz condition IF(z)--F(w)l<=4(l+n)lz--w], hence the 
theorem is proved. 
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5. Estimation of  cKI(E ). 

The quantity cgs(E ) is particularly interesting when f - 1 .  We obtain in 
this case the following estimate. 

Theorem 5.1. There exists an absolute constant Ka>0 such that 

(5.2) ~I(E) ~= Klm(E)  

for any compact set E with positive Lebesgue measure. 

Lemma 5.3. Let c be a complex number and let r>O. Then we have the follow- 
ing properties 

(a) (~I(E-~c) = ~I(E) 

Proof (a) is obvious. To prove (b) we associate to each function hEL~(E) 
a function kCL~(E/r), where k(z)=h(rz).  Then it is easily seen that Bk(z)= 
Bh(rz). Thus the mapping h-,-k is an 1--1 correspondance between F(E) and 
F(E/r). Furthermore, by changing variable we have 

f f  E/ k(z)dm(z) = l  f f  Eh(z)dm(z). 

Therefore, c~l(E)=C~l(E/r)/rZ and (b) is proved. 

Proof of Theorem 5.1. Since the two set functions ffl and m are both homogen- 
eous of degree 2, it is clearly enough to prove (5.2) for an arbitrary compact E 
with m ( E ) = l .  Furthermore, according to Lemma 4.2, it suffices to show that 
~(E)>=Ka for any compact set E with m ( E ) = l ,  and with a boundary con- 
sisting of a finite number of analytic Jordan curves. Now, if (#, v) is an extremal 
element of (3.3), then 

~ ( E )  = [IZe+#l] +[Iv]l ~ ffE l l -Bv(z ) l  dm(z)+Hv][. 

Let F={z~E:lOv(z)[>-}}. By (2.2) m(r)<=2Aallvll. Hence 

ffE I1-ev(z)j rim(z) > ff~\~ = t l -Bv(z ) )  din(z) 

1 (1 --2A1 ]lvl]). >= m(E\r) >= -s 

Therefore we obtain 

> [" 1 | 1 
~*(E) = max/-~--AI[IVH, IlVll~ ~ 2(1-~ A1)" 
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