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The aim of  this paper is to prove the following 

Theorem 1. Each eigenfunction ~(x),  0 < x <  1, of 't Hooft's eigenvalue problem 
(HEP) is H6lder continuous on the closed interval 0<=x<=l, and 

�9 ( 0 ) = 0 ,  , ~ ( 1 ) = 0 .  

Moreover, ~(x)  disappears at the singular end points x = 0  and x = l  at least like 
a positive power of  x and l - x ,  respectively. That is, there are positive numbers 
tip, ill, Co, q such that 

I~(x)l <- Co. X p~ for 0--<_x<=l 
and 

I~(x)t <-- c l - ( 1 - x )  al for 0 <= x <_- 1. 

This result is an immediate consequence of Theorem 2 which is stated and 
proved at the end of our paper. 

I t  is a great pleasure for me to thank Prof. H. Lewy for valuable suggestions. 
Also, I have to thank Prof. J. C. C. Nitsche, Mr. V. Vignjid, and Prof. K.-O. 
Widman for several discussions. 

The physical significance of H E P  has been explained by ' t  Hoof t  in [4]. Further 
details and references have been stated in part  1 of  our investigations (cf. [2]), to 
which we in the following shall briefly refer as I. 

For  the convenience of the reader, we shall repeat the definition of  HEP,  and 
state once more some of  the results of  I. 

* This work has been supported by the Sonderforschungsbereich 72 at the University of Bonn. 
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Definition of HEP. Determine real numbers 2, and real valued functions �9 (x) 
on 0 < x < l  with 

f 2  l~(x)l~dx = 1, f2 f2  [~(x)--g)(Y)I~ dxdy <0% 
l x - y i  ~ 

and with a H61der continuous first derivative on 0 < x < l  such that 

2~(x)=/~--L+,~-~-z l ~ ( x ) - - ~ f  1 45(~) de, 0 < x ~  1, 
( ~ - x )  ~ t x  l - - x /  ~,0 

(1) 

a n d  t h a t  

(2) a~(o) = o, ~(1) = o (i. g. s.). 

Here, al and a2 denote real parameters > -  1, i.g.s, stands for "in the generalized 
sense", that is, " 1 ~ �9 ~ 1 h m , ~ + o T f o  I~(x)le dx=O, l l m ~ + o - Z f l _ ,  [~(x)12 dx =0, and 
~ f ~  ... denotes the "regular cut-off" defined as 

�9 1 1 �9 2 
~n~[~ 0 fo 7 +(e-x+ e(e) de. 

In the following, let o~={(x,y)~R2: y>0}  be the upper half plane, and denote 

by ~ the closure 9if----{(x, y): y_>0} of J f  minus the two end points x = 0  and 
x = l  of the interval 0 < x < l  on the x-axis. 

The main role in tackling HEP has been played by the eigenvalue problem BEP. 

Definition of BEP. Determine real numbers 2 and real valued functions v (x, y) 
with H61der continuous first derivatives on ~ which are harmonic in 9ff and satisfy 

f2lv(x,O)I~dx= 1 ffjelVv[~dxdy <o% 
as well as the boundary conditions 

(3) v(x, 0 ) = 0  for xr 

(4) v(x,O) = 0  (i .g.s.)  for x =  0 and x =  1, 

(5) -rw,(x, 0 ) + { - ~ + 1  ~_--~x}V(x, 0 ) =  2v(x, 0) for 0 <  x <  1. 

We have proved in I, 2.3, that HEP and BEP are equivalent problems in the follow- 
ing sense: 

If  v(x, y) is an eigenfunction of BEP to the eigenvalue 2, then ,~(x)=v(x, 0), 
0 < x <  1, is an eigenfunction of HEP corresponding to the eigenvalue 2. Conversely, 
if ~(x) is an eigenfunction of HEP, then 

v(x, y) = Imlf2 ~(~)(r162 (x, y)E gff, 

is eigenfunction of BEP, where �9 and v belong to the same eigenvalue. 
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Moreover, we have verified in I, 4.1--5 and 5.2, that there exists a sequence {2,} 
of real numbers 2, such that 

0 2 2 < 2  < < 2  < 2  < l im2 = + 0 %  < 1 < 2 = 3 = " ' =  n = n + l  = ' " ,  
n ~  

and a sequence of eigenfunctions e~(x,y), e~(x,y), ea(x,y) . . . . .  which are real 

analytic and harmonic in ~ .  Every e. (x, y) is an eigenfunction of  BEP to the eigen- 
value ).., while cP.(x)=e.(x, 0), 0 < x < l ,  is an eigenfunction of H EP  to ).., and 
{#.}.=x.~ .... forms a complete orthonormal system in L2([0, 1]) whence the spectrum 
is purely discrete and consists only of  denumerably many eigenvalues of finite 
multiplicity. 

Each eigenfunction e.(x, y) is element of the Hilbert space H consisting of  
all functions ~/(x, y) which are of the Sobolev class W: (~r and satisfy 2,1oc 

~(x, 0 ) = 0  for x~[0,1]  
and 

f f . IV~12 dx dy <co. 

Moreover, each function ~k E H satisfies 

fo lr  1 1 / . 1 :~ :~ fg,(x, o ) - r  o)t ~ 
{~ + ~ _--~} I~,(x, o)1~ a x + g j  o j ~ Ix-y: dxdy  

(6) 
<- = f f .  {1~,~1=+ Ig,,f ~} ax ay. 

For the sake of brevity, let us fix the following notation: 
Let ~(x)  be an eigenfunction of  HEP  to the eigenvalue 2, and set 

I f~ ~(~) F(z) = --ha o ~ d ~  = u(x, y)+iv(x, y), z = x - i y ,  
(7) 

u (x, y) = Re F(z), v (x, y) = Im F(z). 
Then, 

(8) ~ ( x )  = v ( x , O ) ,  O < x <  1, 

and v(x, y) is an eigenfunction of BEP of  the class H and satisfies 

�9 J o I . X  0~2 ~ f f w .  v, axay +fl ~ 0~1 .[_ 1___~} V(X, 0)((X, O)dx 
(9) 

= 2 f o r ( x ,  O)((x, O)dx for all (~H,  

cf. I, (4.28). 
Now we are going to prove Theorem 1. 
Firstly, we note that there is a number 

be achieved: 
k > l  such that the following can 
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For each R>0,  and for each Zo=Xo+iyoEC, there is a real-valued function 
q (x, y) of the class C~ (B2R (Zo)) such that 

(10) q(x ,y) - -  1 on BR(Zo), 0 ~_ q(x,y) <= 1 otherwise, 
and 
(11) lVq(x,y)l <= k/R on C. 

Here, Br(zo) denotes the open disc in R2= C of center Zo, and of radius r. 
Furthermore, by a well known reasoning (cf. [6], pp. 81--86) we can prove 

the following "Poincar6 inequalities": 
There exist numbers K* and K**>0 such that, for all x0CR, and all R>0,  

the following holds: 

(12) f f  Ip2 dx dy ~ K*R 2 f f  ~.(xO IvoI dx dy 

for all ~EW~(T2R(Xo)) satisfying ~O(x, 0)=0 on 

x o - - 2 R < x < x o - - R ,  or on x o + R < x < x o + 2 R ,  
and, 

(13) f~o+2R i~,(x,O)12dx {or ~0 f o-,R [0(x, o)12dx) <= g * * R f f  IV@l~dxdy 
, ,  Xo , i  ,J 8~R(Xo ) 

for all IPEW~(S2R(Xo)) satisfying ~(x, 0)=0 on 

x o - - 2 R < x < x o  (or on x o < x < x o + 2 R ,  resp.). 

Here, we have set 

S.(xo) = B~(xo)r~  , T~R(Xo) = S~R(Xo)--S.(Xo). 

Now we define the following numbers: 

(14) ~; = min {~, 0}, ~; = min {a2, 0},  ~ = min {~, a2, 0},  

that is, - 1 < % , ~ 1 , ~ = 0 .  
Furthermore, we set 

(i5) 

R o = min {41--, (1 +ct~)~ }, min {+, (1 +cr 
2(2-2~)K**J R1 =- 2(2--2cr 

Note that Ro, R1, go, 0"1 are positive, and that 

(16) l i m  0-o(~1) = 0,  l i m  0 - t ( ~ )  = 0. 

log 1 + [ 2--~-K~j] ~/ 2 
t r j=  2. log2 , M j = R f ' a  j=O,  1. (1+ ~)' 
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Lemma 1. We obtain the following estimates: 

(17) f f s  [Vvl2dxdy <= M~176 for 0 < R <= Ro, 
a(o) 

and 

(18) f f s  [Vvl2dxdy <= MIR2~l for 0 < R <_- R 1. a(1) 

Proof. Fix some R with 0<R<= 1/4, and let q(x, y) be a cut-off function belong- 
ing to R and z0=0, and satisfying (10) and (11). Set SR=SR(0), TR=TR(0 ). 
Clearly, the function C = ~ v  is in H, hence it is an admissible test function for 
(9). Thus, 

= Ira" Vv-V (r/2 v)dx d y + f l  {-~'4- 1 ~__~ax } lq (x, 0)[ 2 Iv(x, 0)I 2 dx 

~f~ I,(x. o)[=l~(x, o)l'dx. 

Obviously, w=qv is also in H, and 

Vv. (n=v) = lVwl=-v 2 I v c .  

= f f =  tWl'd~: d,+~,, f l  ~" Iw(x. o)I'd~ 

<- ~k2R -~ v2dxdy+(2~-2e [w(x, O)[2dx. 
r2~ 

Therefore, 

In virtue of (6), 

(19) 

Thus we infer that 

(l+~;)~ f f  s ]Vwl2dxdy <- ~k=R-2 f f  
2R T2R 

Next, we apply (12) to ~k=v, and (13) to 

f~  1 ]w(x, 0)12 dx ~= zc. f f .  lVwl = dx dy. 

�9 @ 2 R  

v 2 d x d y + ( 2 - 2 ~ ) J  R Iw(x, 0)12dx. 

=w, and obtain that 

~(l+=;)~-(~-2~;)x**Rj ff= )Vwl=dxdy ~ ~k~K* ff~. IVvl2axdy. 
2R 2R 

Note that v(x ,y)=w(x,y)  on S R. Then, for O<R<=Ro, we obtain that 

(20) ffs. [Vv[2dxdy ~= K~ "ffT,.__ [Vvl2 dx dy 

where we have set 
2k2K* 

K0--  l+c( ~ " 

Now we are ready to apply Widman's hole filling technique (cf. [8]): Firstly, (20) 
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yields that 

(21) ffs Nv?dxdy<=O~ ]Vvl2dxdy 
R 2 R  

where 0o = Ko/(1 + Ko) < 1. 
By an iteration of (21), we derive that 

f f ~. IVvt~ dx dy <= [~J " f f s~.o twl~ & aY 
(22) 

log 0 o 
for 0 < R <- Ro, and ao = 2 . l o g 2 "  

On account of (9), and of 

.]'ol Iv(x, 0)12 dx 1, 

we have that 

z~ f f ~r lVvlZ dx dy + f ~ {-~ + l ~2x } lV(x, O)]2 dx = 2 

whence 

2 
(23) ff ]Vvl 2 dx dy <= n(1 +a)  " 

Combining (22) and (23), we verify (17), and (18) is analogously proved. 

Lemma 2. Set Nj=21+2%. M~. (1 +kZK*), j = 0 ,  1. Then 

R1 
(24) f �9 qv(x, O)[2dx ~ N~R 2~o for 0 < R < Ro/2, o x  = 
and 

1 1 
(25) f~ ~ .  Iv(x, 0)[2dx <-- N~R ~1 for 0 < R <- R1/2. 

- n  1 - x  

Proof. On account of (19), 

f o x  ~ I I~(x, o)1 ~ I~(x, o)I~dx ~ ff~=. tvOzoI ~ dxdy 

whence, by (12) and (17), 

R1 
f~ x'IV(x,O)[ 2 d x ~  2 f f s2  NVl2dxdy+2k2R-2 f f ~  v2dxdy 

<= 2(l+k2K*) f f  s lVv]2dx dy 
2 R  

<_- 2t+~OMo~(1 +k~K*)R 2~o for 0 < R <= Ro/2, 

and the lemma is proved. 
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Lemma 3. There are numbers H o and Ha depending only on aa, ~ ,  2, and # such 
that 

lu(x, 0)-u(x ' ,  0)1 <= nolx-xq~ for  0 <-- x, x" < Ro and for  each = -~--, 

(26) 
# < min{ao, 1 } ,  

and 

lu(x, O)-u(x', O)[ <= nxlx-x ' l  ~ for  1 - R a - <  x ' =  T = x, < 1, and for  each 

(27) 
~t < min{a~, 1 } .  

Proof  We infer from (24) that 

JV(x, O)]~dx <= N~oR ~+~'~ < R <-Ro/2. for 0 

Then, for each v with 0 < Z < a o ,  

whence 

fo" 1 lv(x ' 0)[~dx <_ 2 a+==0. Ng R2(~,_ 0 (28) ~ 22(~0-~ 1 

for each z satisfying 0<Z<ao .  
On {0<x < 1, y =0}, we know that 

Therefore, 

fRx_~_~,Lv(x" O)t~dx = ~ f~-R x-~-*'lv(x, O)[2dx 
0 7=o J 2-J-1R 

<= ~ 2(J+~)~176 f 2-~R Iv(x, 0)]2dx 
j = O  ,J 0 

<-- ~ 2(J + I ) ( I + 2~) R -  I -  2" N~ 2-  J(I + 2~~ RI + ~~ 
./=0 

for 0 < R - <  Ro 
2 

where 
kl = 2a~rc -~, k2 = (~-22)22-1rc -2. 

Then we get for each v with 0 < z < a o  that 

foX~-='lu~(x,O)l~dx 
R ~ 1 O)l~dx+k~f: <= kl f~ Iv(x, Iv(x, 0)[2dx 

{ka+R~+2~k2}.f: 1 Iv(x, 0)[~dx - 

u~(x, O) = vy(x, O) = --.rcl [--~-+ l ~_2x-A] v(x, O). 

1 
[u~(x,O)[2<=[klX-2+k2llv(x,O)[ 2 for 0 < x < = ~  - 
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whence, by (28), 

f~ 21+~,o N~ R~'~ x ~-~' [uAx, 0)t'dx <= {kl+k~} 2,oo_~,_1 
(29) 

for 0 < R <  = Ro -~--, and 0 < v < a o .  

Next, we choose ~ such that 0 < z < m i n  {no, 1}, and p with l < p < 2  and 
p <  1 / ( l -z ) ,  i.e., 

P ( 2 r - l )  > - 1 .  
2 - p  

Then, in virtue of H61der's inequality, for O<R'<:R<Ro/2 
p ( ~  - -  1) 2 - -  p p 

f : ,  lug(x, O)l'dx <= { f ; x  ~-. dx}-T.[ f~x~-~ ' l , ,~(x ,O)l~dx]Y 
P 

2 - p  

where c(p, z )=[ (2 -p ) / ( 2 ( l - p+pz ) ) ]  -'f-. By (29), the right hand side is bounded 
independently of R. Letting R'  tend to zero, we arrive at 

f n  Ro (30) o /u* (x, 0) l" dx ~ "'o ~o--~Pt"'l-e~176 for 0 < R  <- ~ 2  

where 

Co(ga, ot,., *, p) = [--~- �9 c(p, z).N0, t2~r II " 

In particular, 
. ,.Ro/2 d x } l l p  -< (31) U0  lux(x, 0)1. = CoNo. 

Hence, for all x, x" satisfying 0 < x ,  x'<=Ro/2, and all 

f 'F lu(x, 0)--u(x' ,  0)l <= u~(~, 0)l d~ 

Z<ao, we obtain that 

< = NoColX-X'l" 

where i z= l -1 /p<min{z ,  1/2}. Then we can extend u(x, 0) continuously to 
O<=x<=Ro/2, and u(x, 0) will satisfy (26). Similarly, one proceeds at the singular 
point x = 1. Thus, the lemma is proved. 

Now we shall state the main result of the present paper which has Theorem 1 
as an immediate consequence. 

Theorem 2, Every eigenfunction v(x, y) of  BEP to the eigenvalue 2 is H61der 
continuous on the closed upper half plane yt ~. The H61der exponent on Yt~ BR (0), 

0 < R < I .  can be each positive flo less than rain {go/2, 1/4}, and on Y,~c~BR(1), 
0 < R <  1, the H61der exponent can be each fll >0  less than rain {al/2, 1/4}. 
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Moreover, 

(32) v(0, 0) -- 0, and v(1, 0) = 0, 

and there are numbers Co and Cl depending on ~1, ~2, and 2 such that 

(33) [v(x,y)[<-cor p~ for 0<_-r<_-l, r = l / x 2 + y  2, 

and all flo<min{ao/2, 1/4}, and 

(34) Iv(x, Y)l --- Cl rpl for 0 <= r <_- 1, r = ] / (1--x)2+y 2, 

and all i l l<rain {~1/2, 1/4}. 

Remark. By (15), ao=ao(~l) depends on cq but not  on ~2 and 2, while 
~1=a1(~2) depends on ~2 but  not on cq and A, and al ,  ~ tend to zero as ~1, c% 
tend to - 1, cf. (16). This is, probably, not due to some weakness of our technique 
but inherent to the problem as the numerical computations by Vi~nji6 seem to 
confirm (cf. [3], Fig. 3--5). 

Proof of  Theorem 2. Let us consider the function 

F(z) = u ( x , y )+ iv ( x , y ) ,  z = x + i y ,  

which is holomorphic on ~r and has a vanishing imaginary part on R--J0, 1]. 
Thus, we can extend F(z) to a holomorphic function on the slit domain J =  C--[0, 1], 
by setting 

u ( x , y ) = u ( x , - y ) ,  v ( x , y ) = - v ( x , - y )  for y < 0 .  

Let us denote by E + and E -  the upper and the lower "edges" of the slit [0, 1]. The 
real part u(x, y ) o f  F(z) passes continuously through the slit, that is, 

Re F(z) = Re F(z +) 

on opposite points z = r  and z+=re 2"i, 0~_r-<_l, of the slit. Let B={~EC:  ]~[<1}, 
C=OB, and C+=Cc~{Im~=>0}, C-=Cn{Im~-<_0}.  Consider a conformal 
mapping z=z(~)  of B onto ,,~ mapping C + onto E +, and C -  onto E - ,  and, in 
particular, z ( - 1 ) = 0 ,  z ( 1 ) = l .  Such a map can explicitly written down (cf. [5], 
pp. 357--359). Set 

G(~) = F[z(~)], ~ B .  

Then Re G(~) is continuous on B, and there is a positive number ~ such that Re G(~) 
is H61der continuous for every exponent # less than min {a0, 1/2} or min {o-1, 1/2} 
on the arc Cc~B~(-1)  or Cc~BQ(1), respectively. 

(Note that ~(~) behaves close to each of  the branch points ~ = - 1  or 1 similar 
as the mapping z=~ a behaves at ~=0,  and ~---z-l(z) behaves similar at z = 0  

or 1 as ~=Vz. )  
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By an easily proved "local version" of  the Korn--Pr iwalow-theorem (cf. [1], 
pp. 380, 401--403), also G(~) is H61der continuous on B n B o ( -  1), or on B c~ Bo (1), 
for every exponent # < r a i n  {a0, 1/2}, respectively. 

Reversing the transformation z=T(~), we see that F(z) is H61der continuous 
on { J w E + u E - } n B R ( O )  with 'each exponent less than min {a0/2, 1/4}, and on 
{ J  u E + u E - }  c~ Bg (1) with each exponent less than min {al/2, 1/4}, for each R <  1, 
if we take into account that F(z) is analytic on the interior parts of  the edges E + 
and E - .  Then we can infer (32) f rom (4), and the estimates (33) and (34) follow 
directly f rom the H61der estimates. Thus, Theorem 2 is proved. 

Added in proof. H. Lewy has proved that F ( z ) - = u ( x , y ) + i v ( x , y )  can be 
expanded in a convergent series of  fractional powers of  a certain holomorphic 
fuoction of  z = x + i y  provided that v is a bounded solution of  BEP. Combining his 
results with those of  our paper, one obtains the complete description of  the beha- 
vior o f  v at the two singular points. (Cf. Hans Lewy, manuscripta mathematica 26 
(1979), 411 421.) 
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