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1. Introduction 

Let P=(X, y) denote a point of  R m, m_->3, with X in R m-l, y real and suppose 
that q~(t), t>0 ,  is a positive, convex function for which 

~p(t) 
f o 1 dt <oo. (1.1) t 2 

I f  
E 0 ---- {e  = (X, y): IX[ < 1, ~([Xl) < y < 2} 

and 
/71 = {P = (X, y): IXl < 1, -~0(IXl) < y < 2} 

then Widman has proved the following [9], Theorem 2.2 ana Theorem 2.5. 

Theorem A. O) I f  O'E1 is that part of  OE1 lying in {y>-~o(IX[)} while u(e) 
is the harmonic measure of  O'E1 with respect to El then 

u (P )=<Cons t . y ,  P = ( 0 ,  y), 0 < y < 2 ,  

where the constant depends only on q~(t) and m. 
Oi) Let G(P, M) be the Green function of  Eo. I f  Po is fixed in Eo then 

G(P, Po)>-Const.y, P = ( 0 ,  y), 0 < y < - - l ,  

where the strictly positive constant depends on ~o(t), m and Po. 

The domains E0 and E~ are used by Widman as interior and exterior comparison 
domains for estimating the Green function of  a Liapunov--Dini  domain. In fact, 
Widman also assumes that qY(t)/t is monotonic in the proof  of  (i), but a slight 
modification of his method (see [6], Theorem 4.2) shows that this assumption may 
be omitted: 
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It is our purpose here to prove that the above estimates hold in more general 
comparison domains of  this type. Our methods of  proof  are inspired by ideas in 
Warschawski [8], Lemma 1 and Theorem 3, where a similar situation in R 2 is treated. 
For  technical reasons our domains will be taken to have spherical rather than 
rotational symmetry and for this purpose we put  cos O=y/]P] whenever P=(X,  y). 

I f  e(r), 0 < r < l ,  is continuous and satisfies 

then we define 

and 

7~ 
0 <-- e(r) < - ~ ,  0 < r < l ,  (1.3) 

Do = { e  = (X, y): [P] < 1, 0 ~ 0 < 2--e([e])} ,  

For  i=0 ,  1 
the harmonic measure of  tg"D, at P with respect to D~. 

Theorem. I f  

f ~ e(r) dr <oo 
r 

D 1 = { e  = ( g ,  y)" IPI < 1, 0 <= 0 < 2+~(IPI)} .  

let ~'D, be that  part of  ~)D, lying on {[P[=I} and let og,(P) denote 

0 < y < l ,  
then 

(i) o91(0, y) <_- Const .  y, 

where the constant depends only on e(r) and m. 
I f  in addition there exists c > 0  such that 

(1.4) 

[r~(r)-s~(s)[ ~- c ] r - s  I, r, sC(O, 1), (1.5) 
then 

(ii) co0(0, y) -> Const.  y, 0 < y < 1, 

where the strictly positive constant depends on e(r), m and c. 

Some improvement to part  (i) of the theorem is possible, as will become apparent 
in the course of  the proof. However we should like to mention a result due to 
Eke [1], Theorem 1, which suggests that some additional hypothesis, like (1.5), 
in part  (ii) of our theorem is essential. 

Finally, for the sake of comparison, we shall deduce a 

Corollary. I f  <p(t), t>O, is a positive, increasing, continuous function for which 

f o 1 dt <co,  (1.6) 
q~(t) 

t 2 

and Eo, E1 are given by (1.2), then Theorem .4 holds. 
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2. P r o o f  o f  Part  (i) 

Our proof  uses a convexity property of the 'Carleman mean' of O ) l ( e  ) which 
is given by 

= co 1 ( p ) 2 a a ( p ) }  , 0 < r < I. (2.1) 
r 

Here da( . )  denotes (m-1)-dimensional  measure (or surface area) on 

0 , = { P :  I P l = r } ~ D 1 ,  

and am is the surface area of  a unit ball in R 'n. To describe this convexity property, 
it is necessary to define the so-called characteristic constant, ~z, of an open set 
E lying on {IPI=I}. 

Let ~  be the class of  functions which are Lipschitzian, nonnegative and 
not  identically zero on {]P]=I} and which vanish outside E. Put 

2E = inf flgradfl2da 

where da denotes surface area on { IP l= l  } and grad f is the gradient o f f  on 
{Ie l= l} ,  and then define ~E to be the positive root  of  

a(a+m--2)  = 2. 

More generally, if E is an open subset of  {IPl=r} we pat  

~E ~ 0~E', 
where 

P 

and then define e(r),  0 < r < l ,  to be the characteristic constant of  

7~ 
0 , - -  {P:  IPI = r, 0 ~  0 < 7 + ~ ( r ) } .  

The following fundamental inequality was proved by Huber [5], p. 111 under 
the assumption that ODI\O'DI is smooth: 

d 
r--~r{logA(r)} >-_ 2c~( r )+m-2 ,  0 < r < 1, (2.2) 

where 

A (r) = r -~r  (m (r) 2 r m- 2). (2.3) 

In view of  the possibility of exhausting Dx by a monotone sequence of  domains 
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with the required smoothness we shall assume that (2.2) holds. To exploit this 
inequality we need a good lower estimate for the characteristic constant, cq say, 
of the spherical cap 

{ n }, 0 ~  E~= P = ( X , y ) :  [ P l : l ,  0 ~ 0 < - ~ + ~  e<-~ - .  

Such an estimate has recently been obtained in the papers of Hayman and 
Ortiz [4] and Friedland and Hayman [2], Theorem 3. Amongst other results they 
prove that if 

f S(~) - am-1 ~/2+, (sin o ) m - 2  dO, 0 ~ ~ < --~ , 
a m ,: o 

is the surface area of E, expressed as a proportion of am, then 

7~ ~ => 2(1-s(e)), o<_-~<~. 
We deduce that if 

a ( r ) -  a m - 1  f~/~+~ o) m-~ am /2 (sin dO, O < r < l, 

then 
ct( r )~ 1--2a(r), 0 < r <  1. 

which, with (2.2), implies that 

(2.4) 

_ _  m a ( r )  
d {logA(r)}=>___4 . 0 <  r <  1. (2.5) 
dr r r ' 

Noting that a(r)~am_ 1 e(r)/am, and hence, by (1.4), that 

f ~ a(r) dr < o% 
r 

we obtain on integrating (2.5) that 

A(rl_~) ex p [4f~1 a~) d r ] <  A(r2) exp [4f~ '  a(r) dr], 0 < r l <  r2<  1. (2.6) 
r? r~" r 

Now 

and 

(m(rr))~ 2m(r)m'(r) A (r) _ (m-- 2) 4 (2.7) 
r m r ' 

m (r) m" (r) _ r m---------~l Jot oi--~-0~ 1 d ~  = - -  f D IV(oil 2 dP, 
ffm ~ am r m - 1  1CIB(O'r) 

where dP denotes m-dimensional measure in R m and by B(P 0, r) we mean the open 
ball 

B(Po, r) -- {P: IP-Pol < r}. 
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Since m'(r)=>0, while 0~m(r)-<_l, the set of r in (0, 1) where m ' ( r ) > 3  
1 > 1  can have length at most -~. Thus there exists r0 -~ such that m'(r0)-<_3 and we 

deduce from (2.7) that 

A(r0) 
- -  <_-- 4 ( m +  1). ( 2 . 8 )  

It  follows, by (2.6), that 

A(r)  tr(r) ] 1 
- - < 4 , m + l ,  e x P t 4 =  ( ~ [  dr , 0 < r  < = -  

r"  r 2 ' 

and hence, by (2.7), that 

1 
re(r) <= Const.  r, 0 < r <- -~, (2.9) 

the constant depending only on m and e(r). Strictly speaking (2.9) has only been 
verified for a smooth domain approximating to D1 from within. However the 
dependence of  the above constant upon e ( . )  show that (2.9) holds in D 1 by a 
limiting process. 

Finally, for 0<r-<_~, we put 

so that 

h (e) = do-(O),  I 'J < r, o. IP-QI 

tol(P ) _--< h,(P), P E D l n B ( O , r ) .  

In particular, for 0 < r  <-• - - 2  

( D  1 < z  -.<: 

o 2  m - 2  
- ~-f~ o91 (Q) da (Q) <= 3 . 2  m- 2 m (r), 

r m 1 
Gm r 

by the Schwarz inequality. 
Thus, by (2.9), 

1 
091(0, y) <= Const- y, 0 < y <_- ~ ,  

the constant depending only on m and e(r), which proves part (i). 

Remark 1. For  simplicity we have proved part (i) when D1 has rotational 
symmetry but the proof  can be adapted to more general situations. To do this 
we must be able to estimate, in (2.2), the characteristic constant of  a set which is 
not  necessarily a spherical cap. Here, however, we can use the result of Sperner 
[7] that if E is a set on {]P[-1}  and E* is a spherical cap on { tPI=I}  with 
a ( E ) = a ( E * )  then 
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and hence 

The proof then goes through exactly as above with (1.4) replaced by an integral 
restriction on the surface areas of the sets 0,. 

Remark 2. Inequalities (2.6) and (2.8) imply that 

A (r) 
/~ = lim rm 

r ~ O  

exists finitely, and it is then easy to deduce from (2.3) and (2.7) that 

limm(r),-0 r = l i m m ' ( r ) = ~ m  ~ p ' , - 0  

This suggests that, perhaps under additional hypotheses on e(r), 

lim wa (0, r) 
r ~ O  r 

may exist. If  this were so the correct value for the limit would be ~ as may be 
seen by considering e(r)=__O. When m = 2  a result like this is proved by Wars- 
chawski [8], Theorem 1 using conformal mapping. 

Remark 3. Our method depends upon the inequality (2.4) due to Friedland, 
Hayman and Ortiz ([2] and [4]). Since the proof of this estimate is highly technical 
and relies to some extent on the use of computer techniques, we point out that  
when e is sufficiently small elementary methods give 

1 -  ~ <_- Const.  e, 

which can be used in place of (2.4). In particular, if e(r)--,O as r ~ 0  then part 
0) of our theorem can be proved without the difficult estimate of Friedland, 
Hayman and Ortiz. 

3. Proof  of  Part (ii) 

It will be convenient to have available an elementary 

Lemma. Let 
H o = { P = ( x , y ) :  1PI< e, Y->---O} 

and let ho(P ) denote the harmonic measure at P of  that part o f  3H o lying on 
{IQI-~O} with respect to H e. Then 

0 ho(P ) <= 3. 2 re.my, P = ( X , y ) ,  [ P l < - ~ .  
Q 
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Proof By a reflection in {y--O} we see that 

h~(P)-- O~--,P, l iP_Q[ ' P - Q  ].ira da(Q), P = (X, y)E Hr 

where Q* is the reflection of Q in {y=0}. If  d(Q) denotes the distance from Q 
to {y=0} then, for Q in the range of integration, 

I P - a * l  = -  !P-Q] ~ = 4yd(a), e = (A, y)C H~, 

and we deduce that 

1 

I P - Q I  ~ 

1 2myd(Q) 
tP-Q*I " =  [P-  QI m+~' 

Thus 

he(p ) <= 3.2"+1my 

as required, which proves the lemma. 

To prove part (ii) we first remark that, by (1.4) and (1.5), 

e(r)=o(1),  r-~O. 

In particular, we can choose ro, O<ro<l/8, so that 

e(8r) < 1, 0 <  r_--< ro. 
Now put 

D,=DouB(Pr ,  r), P~=(0 ,  r), 0 < r < r  o, 

P = (X, y)E HQ. 

d(Q) da(Q) <= 3.2 m my 
Q 

(3.1) 

and define cor(P ) in the same way as a)o(P) but with respect to D r. 
I f  K(r)=ogr(Pr)/r then 

ogr(O, y) ~_ K(r)21-my, 0 < y ~ r. (3.2) 

In fact, an application of Harnack's inequality (Hayman and Kennedy [3], p. 35) 
to B(Pr, r) yields 

o~(0, y) >= og~(P,)yrm-2/(2r--y)m-1, 0 < y <-- r, 

K(r)2~-my, 
as required. 

In Do We consider 
v,(P) = ~or(P)--~oo(P), 

so that vr(P) is harmonic and bounded in D 0, takes the same values as o~,(P) on 
ODo\OD ~ and vanishes at interior points of 0D0 n 0D,. We shall show that 

v,(O,y)<=N(m,c)f(r)y It, O<r<_--ro, 0 < y < l ,  (3.3) 
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where K(r) is as above. Here, and subsequently, N(m, c) denotes a constant, 
0<N(m,  c ) < ~ ,  depending only on m and c and possibly varying from one occur- 
rence to the next. 

Part (ii) follows from (3.3) by choosing p>0  so small that 

vo(O, y) <= K(~)2-"y ,  
and observing that 

o9 0 (0, y) ---- (~o (0, y)-- vQ (0, y) 

>= K(Q)2-my, 0 < y ~ Q .  

To prove (3.3) it is first necessary to see that 

~r(P) ~ e)r(0, IP]), PED,, 0 < r <= r o. (3.4) 

This is a consequence of the following geometric property of Dr. Let T e denote 
the hyperplane in R m which passes through the midpoint of the line segment joining 
P to (0, IP I) and which is orthogonal to that segment. Note that Te 'also passes 
through the origin (0, 0). I f  D e denotes that component of D r \ T  e which contains 
P then the reflection, D~, of Dp in T e lies entirely in D,. Moreover any part of 
OD e lying on {[QI = 1} is reflected in this way to a part of 0D~ which also lies on 
{IQI=I}. Thus the reflection, ~o*(.), of ~or(.) across Tp is majorised by o9,(-) 
at all points of OD~, apart from a set of harmonic measure zero. By the generalised 
maximum principle therefore o~*(.) is majorised by o9,(.) in D~ and in particular 

~o,* (o, lel) --< ~or(o, tPI) 
which is precisely (3.4). 

Now, by (3.4) and the maximum principle, 

og,(P)<=eor(O,e)hQ(P), PED, nB(O,e) ,  0<=r<-ro ,  0 - < Q < I ,  

where he(P ) is defined in the lemma. Putting ~ =4r  we deduce from the lemma that 

og,(P) <= N(m)oo,(O, 4r)y/r,  PED, n B(O, 2r), 0 < r ~ ro. 

In view of (3.1) Harnack's principle yields 

e)r(0, 4r) <= N(m) mr(0, r), 0 < r =-< r0, 

and so, since ODo\OD r lies in B(0, 2r), we obtain 

v~(P) <= N(m)K(r)y,  PEODo~OD,.. (3.5) 

Now let (p(r)=re(r), 0 < r < l ,  and put 

2y ~o(]Q]) 
k,.(P) = a,,,.,~- f IQl<4, [P-Q[" da(Q), P -~ (X, y), y > O, 
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where Q lies in R m-1 and do- denotes (m-1)-dimensional measure. Since kr(P) 
is positive and harmonic in {y>0} the estimate 

v,(P) <-_ N(m, c)K(r)kr(P), PEDo, (3.6) 

can be proved by verifying it on ODo\OD ~ (where we know that (3.5) holds). 
If  P=(X, y) lies in ODo\OD ~ we define 

A , ( P ) - - - - { y = O } n B t I x [ X ,  - - ,  O < r = < r o ,  

and since we may suppose, without loss of  generality, that c_->~ it is clear, because 
IP l<2r  and e ( [PI )< l ,  that 

Thus 

Now, by (1.5), 

and so 

Also 

and so 

g0(IQI) ~ ~o([?l)-c[Iel- lOll, 

1 
~o([a[) _->-~ ~0(IPI), QEAr(P), 

IP-QI <= ~0(leI)+ ~~ QEAr(?), 
2c ' 

~o(IPI) k,(e) > Y f  
= O .  m ~AP){cp(lp[)(l+l)}mdCr(Q)' 

= N(m, c)y. 

Ar(P ) c {y = 0}n B(0, 4r). 

k,(e) ~ 2y f,, q,(IQI) .(P) ip__Q[m da(Q), P = (X, y)EODo\OD,. 

QE R m-l, 

P E ODo\OD~. 

P E ODo\OD~, 

P = (X,y)EODo\OD,, 

Combining this inequality with (3.5) we obtain (3.6). 
Finally we estimate kr(P) from above when P--(0,  y), 0 < y < l .  In that case 

f rp(IQ1 ) = N(rn)y f~" e(t) dt, k,(0, y) ~ IQn<4,. IQ[ ---------~ da(O) t 

after an appropriate change of variable. 
Combining this with (3.6) we obtain (3.3) and our proof  of  part (ii) is complete. 
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4. Proof of the Corollary 

Since ~p(t) is increasing the graph y=tp( t )  
1 form o = l r c - - e i ( r ) ,  r>O, O=el(r)<-~ 7r, where 

r 2 = t 2 + r (/)2 
and 

tan el(r) -- r 
t 

Using (1.6) and the monotonicity of tp (t) we obtain 

~o(t) = o(t) ,  t ~ O, 
so that 

r = t ( l+o(1)) ,  t ~ 0 ,  
and 

may be represented in the polar 

el(r) = - ~  (1 +o(1)), t-~O. 

We deduce from (1.6) that 

~ el(r) dr < ~ ,  

and so we can apply part (i) of our theorem to the domain Di defined by el(r). When 
E1 is defined by r (t) we evidently have 

D~ c E~ 

while the part of 0D1 determined by e~ (r) is a subset of the part of 0El determined 
by r (t). Thus part (i) of Theorem A follows by an application of the maximum 
principIe. 

To prove part (ii) of Theorem A we shall construct a function ao(r) satisfying 
1 n) in the interval 0<r~_ro, the hypotheses of part (ii) of our theorem (with c =-~ 

such that 

D = {P = (X, y): ]P I < ro, 0 = O < 2-eo( lP] )}  c Eo (4.1) 

and 

O'D = {P  = (X, y): IP I = ro, 0 <= 0 <= 2--eo(lPI)} c Eo. (4.2) 

The function eo(r ) and ro will depend only on ~o(t). 
We can then deduce part (ii) of Theorem A by noting that 

D O = {P: roPED} 

satisfies the hypotheses of part (ii) of our theorem. We deduce that 

co (P) _-> Const . y, e = ( 0 ,  y), 0 < y < r  o, (4.3) 
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where ~o (P) is the harmonic measure of  rg'D with respect to D and the strictly positive 
constant  depends only on ~p(t) and m. Now, by (4.2), 

min{G(P,  Po): PCtg'D} 

is strictly positive and depends on tp (t), m and P0 so that,  by the maximum principle 
and (4.3), 

G(P, Po)>=Cons t . y ,  P = ( 0 ,  y), 0 < y < r o .  

The constant  here depends on cp(t), m and P0, and the p roo f  o f  par t  (ii) is easily 
completed. 

To  construct  eo(r) we first need a Lipschitzian majorant  for  ~p(t) in (0, 1). 
We put  

q9o(2-") = ~p(2-"+1), n = O, 1, 2 . . . .  , 

and then take ?o( t )  to be linear in each o f  the intervals [2 - " -1 ,  2 - ' ] ,  n=O,  1, 2, . . . .  
Since ~o(t) is increasing we have 

q~o(t) >= ~o(t), O < t < = l ,  

and it is easy to check that  

fo ~Po (t) dt < co. (4.4) 

Because ~Oo(t ) is itself increasing on (0, 1), we deduce that  

r = o(t) ,  t ~ O, 

and for  n = 0 ,  1, 2, ... we have 

Thus we can choose 

Now we put  

tp;(t) = 2"+l(~Po(2-")--CPo(2-"-1)), 2 - n - 1  < t < 2 - n ,  

<---- 2 "+1 q~o(2-"). 

ro, O < r o < l ,  such that  

l~p0(r)--~P0(S)[ < Ir--st, r, sC(O, ro). 

eo(r) -- ~q~~ 0 < r ~-- ro 
2r ' 

so that, by (4.5), 

0 <= ao(r) < ~ ,  O < r ~  ro. 

Also, by (4.4) and (4.5), we have 

/. 

(4.5) 
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and  

1 
[reo(r)-Seo(S)l < - ~ l r - s l ,  r, s~(O, ro), 

so that  eo(r) satisfies the hypotheses of par t  (ii) of  our  theorem in (0, r0). 

To complete the proof  of  the corollary it is only necessary to show that  (4.1) 

and  (4.2) are true. To do this we need to check that  

rs ineo(r )  > qg(rcoseo(r)),  0 < r <= ro, 

holds. I n  fact we have 

r sin eo(r) > _2 reo(r) = qg0(r) => q~(r) => q~(r cos eo(r)), 
7c 

as required. 
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