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O. Introduction 

In a preceding paper [4], we proved the existence of a minimum for mappings 
F: B---R from a reflexive Banach space B into the reals under the following 
assumptions (we present only a special case): 

(0.1) F is lower semi-continuous in the weak topology. 
(0.2) F is bounded from below. 
(0.3) F is convex (resp. satisfies a surrogate convexity). 
(0.4) F is semi-coercive, i.e. 

F(u) >--_ c IlulIP-KIIQull p - K  

with constants c, K, p >0  and a linear projection Q onto a finite dimensional subspace. 

(0.5) F(u+tv)  is a polynomial in tER. 

Furthermore, we obtained a Fredholm alternative theorem for the existence of 
minima of  F(u)+(g,  u), gE B*. 

Note that condition (0.4) frequently occurs in the theory of partial differential 
equations. It is well-known that condition (0.5) can be deleted if "full" coercivity 
F(u) ~_ c llull p - K  holds. 

In this paper, we present a non-variational analogue of the above theorem 
for continuous mappings T from a Banach space B into its dual B*. In particular 
we shall show that equ. 

(0.6) 

(0.7) 

(0.8) 

Tu=O is solvable if the following conditions hold: 

(Tu--Tv, u--v) >= O, u, vEB 

l iminf(Tu,  u)/llull >= 0 (llull ~ )  

(Zu, u) >-- c l lu l lP-Kl laul lp-g  
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with c , K , p , Q  as in (0.4) 

(0.9) (T(u + tv), w) is a polynomial in t ER. 

The difference between this result and the classical one is that we do not assume 
the "full" coerciveness (Tu, u)>=c[]ul]P-K. Again, condition (0.8) is natural for 
applications involving partial differential equations, however condition (0.9) may 
not be deleted in this case. 

Our method of proof yields the following alternative theorem: Under the 
above conditions - -  without the asymptotic non-negativity (0.7) - -  the linear hull 
of the range R(T)  of T has finite codimension and equ. T u = f  is solvable if and 
only if 

f -  T(O) _L (R(T)  -- T(0)) • 

i.e. R(T--T(O)) is a linear closed subspace of  B. 

Alternative theorems with linear principal part have been obtained by 
Ka6urovskii [7], [8], Hess [6] and Petryshyn. Our conditions allow polynomial 
growth of  the mapping T. The alternative theorems of Pohodjayev [12], Ne6as [10] 
and Petryshyn [ll], Theorem 2, are of a different type since they treat only the 
surjectivity of  T. 

1. The finite dimensional case 

We study continuous mappings T: R " ~ R  n with the following properties 

(1.1) "'Polynomial behaviour". I f  for some pair v, w E R" limsup [(T(w + tv), v)l < ~o 
( t ~ o )  then (T(w+tv), v) is constant in tER. Here, (. ,  .) denotes the Euclidean 
scalar product. 

(1.2) "Even polynomial behaviour". I f  for some pair v, well" we have 

(i) liminfItl-a~o(0 -_> 0 (It[ ~ )  

(ii) l imsup ftl-l~p(t) ~ 0 (It t ~oo), 
where 

(t) = (T(w  + tv), w + tv), 
then 

t-lop(t) ~ 0 (It I - -~ )  

(1.3) "Asymptotic monotonicity". For any fixed vER" 

lira inf l u - v [ - l ( T u -  Tv, u--v) ~ 0 (lu[ ~ ~) 

(1.4) "Asymptotic non-negativity.'" 

liminflul-a(Tu, u) ~= 0 (]uj ~ o ) .  
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Property (1.2) holds if the components of T are polynomials in n variables. Then 
r is a polynomial in t and condition (i) implies that tp is an even polynomial. 
Condition (ii) implies that tp is at most linear (for this special pair v, w) and, being 
even, must be constant. But then, t-l~o(t)~O ( [ t ] - ~ ) .  

Theorem 1.1. Let T: R n ~ R  n be a continuous mapping which satisfies the con- 
ditions (1.1)--(1.4). Then the equation Tu=O is solvable. 

For  the proof  of  Theorem 1.1 and, later, Theorem 1.2, we need the following 
technical 

Lerama 1.1. Let T: RnoR"  be a continuous mapping which satisfies (1.1)-- 
(1.4). 1f for some vER n we have 

sup {(Tw, v) I w E R"} < ~ ,  
then v 3_ R (T). 

Here R(T) denotes the range of T. 

Proof. Let tER. We insert w+tv for w in (1.5) and obtain 

(1.6) g( t ) := (T(w+tv),v) <= K, tER. 

We show that g(t) is bounded from below for fixed wER n. By (1.3) 

lim inf Itl-l(T(w + tv)-- Tw, tv) ~= 0 (t -*~) 

and hence there exist constants C(w) and to such that 

(T(w +tv),  v) >= - C(w), t >= to. 

Thus, for fixed wER", g(t) is bounded from above and below and hence, by con- 
dition (1.1) 

(1.7) (T(w+tv), v) = const : -  (Tw, v), tER. 

Now, let 

(1.8) q~(t) ----- (V(w+tv), w+tv), tER. 

By (1.3) 
lira inf Itl-~(T(w+tv)--T(2w), - w + t v )  >-- 0 (ttl ~oo). 

This yields in view of  (1.7) 

limsup ltl-~(T(w+tv),w) <= C(w), Itl ~ ,  tER 

with some constant C(w). Using (1.7) again we obtain 

t imsup [tl-Xq~(t) <co (It[ -~o~) 

From this, condition (1.4), and (1.2) we conclude 

(1.9) Itl-lq~(t) ~ 0 (It 1 ---~). 
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Finally, for fixed sER, we have in view of (1.3) 

(1.10) lira infltl-l(T(w+tv)--Z(sw), ( 1 - s ) w + t v )  >-_ 0 (ltl ~oo). 

Using (1.7), (1.8), and (I.i0) 

lira inf Itl-l[(1--s)q~(t)+s(Tw, tv)-(T(sw), (1 - s )w+tv ) ]  >= 0 (Itl ~oo) 

Passing to the limit t-~ +__ ~ and using (1.9) we find the inequality 

• (r(sw), v) => 0 
from which 

s(rw, v) = (r(sw),  v) 
and, in view of (1.5) 

s(Tw, v) <- K, sER. 

Passing to the limit s ~  • we obtain 

(Tw, v) = 0, wER" 
q.e.d. 

Proof of Theorem 1.1: Set T~u=Tu+eu, e>O. In view of (1.4) the mapping 
T, is coercive, i.e. (T,u, u)/lul~oo as lul-~oo. Thus there exists a solution u~ of 
the equation T~u=O (cf. e.g. [3]). If the sequence (u~) is bounded as e-~0 it has 
a clusterpoint u* which solves Tu*=O. Hence we may  assume that for a sequence 
A0 of numbers ~ 0  we have [u~l~oo, lu~l~0. Selecting a subsequence AcAo 
we may assume that lu~l-lu,~v (~EA, ~ 0 )  for some vER ~ with [v[=l. We 
show (Tw, v)=O for all wER n. By condition (1.3) 

(1.11) liminf(T,u~-T~w,u~-w)/lu~-w[ >=0 (5-~0, eEA). 

Using T,u~=O and then passing to the limit e ~ 0  we obtain from (1.11) 

-(Tw, v) >= O, wER n 
and by Lemma 1.1 
(1.12) (Tw, v) = 0, wER ~. 

In the case n = l  this gives us the solvability of Tu=O. For n~2 ,  we proceed 
by induction: Let (v) be the one dimensional subspace spanned by v and V=(v) • 
its orthogonal complement. Then the restriction Tv of T to V maps V into itself 
and satisfies the conditions (1.1)--(1.4). By induction hypothesis, there is a u*E V 
such that (Tu*,z)=O for all zEV. Using (1.12) it follows that Tu*=O which 
proves the theorem. 

With the method of  the proof of  Theorem 1 one can obtain the following 
"alternative theorem". 
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Theorem 1.2. Let T: R " ~ R  n be a continuous mapping which satisfies the con- 
ditions (1.1)--(1.3) and let T(0)=0.  Then the equation Tu=f  is solvable if and 
only if  f •  i.e. R(T) is a linear subspace of R". 

In the simplest case of a monotone mapping T with polynomials as components 
the above theorem yields that the equation Tu=f  is solvable i f  and only i f  f--T(O) 
is orthogonal to R(T-- T(O)) • 

We first prove 

Lemma 1.2. Let vER n, v~0 ,  v •  V=(v) • and zER" such that z •  T(V). 
Then, under the assumptions of Theorem 1.2, z Z R(T). 

Here (v) • denotes the orthogonal complement of  the space spanned by v. 

Proof. Let Z=Zx+(V, ZlE V, (ER, and wE V, aER. By (1.3) and the orthogonal- 
ity v • R (T) 

l iminf l t l - l (T(w+tz~+atv)-T(w• +_tzz) ~ 0 (t ~oo). 

We have Zl•  and w+_2tz~EV. Thus (T(w• and 

lim (T(w + tz~ + atv), za + ~v) = lim (T(w + tzl + atv), za) = 0 (t ~ oo). 

By (1.1) thence (T(w+tz~+atv),zx+av)=O for all t or (T(w+tz~+atv), za)=0 
for all tER, aER, wE V. Setting t = l ,  the lemma follows. 

Proof of Theorem 1.2. The "only i f"  - -  part of  the theorem is trivial: I f f  is 
not orthogonal to R(T) • then there is a wER" such that ( f ,  w ) r  and (w, Tx)=0,  
xER". But then equ. Tu=f  cannot be solvable. 

Since T(0)=0,  we conclude from (1.3) the asymptotic nonnegativity (1.4) 
and the coercitivity of the mapping T ~ = s I d + T .  If  u, remains bounded as 8-*0, 
a clusterpoint u* of (u~) exists and is a solution of  Tu=f. Thus we may assume 
that (u,) is unbounded and that for a subsequence A we have the convergence 
[u~[~o and [u~[-tu~v (s-~0, sEA) with [vl=l .  By (1.3) 

liminflu~--wl-X(T~u~--Tw, u~--w) >--0 (s -~0, sEA) 

for every wER" and hence 

(1.I1) (f--Tw, v) >--_ O, wER". 

From Lemma I. 1 we then conclude 

(1.12) (v, Tw) = 0, wER". 

By hypothesis, f •  R(T) • and thus 

(1.13) (f,  v) ---- O. 
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If  n = l ,  it follows from (1.13) that f = 0  and from (1.12) that Tw=0,  wER", i.e. 
T u = f  is solvable. If  n ~ 2  we conclude from (1.12) that 

where 
T: V ~ V  

v : =  (v)• 

Let zLT(V) .  By Lemma 1.2 we conclude z •  and hence f_l_z by hypothesis. 
Therefore, we have f •  (T(V)) • and, by (1.13), fEV. Applying the induction 
hypothesis for the dimension n -  1 to the mapping T: V~ V we obtain the theorem. 

2. The infinite dimensional case 

In this section we want to generalize the results of section 1 to the case of  
regular mappings T: B ~  B* from a reflexive real Banach space B into its dual B*. 

We call a mapping T: B ~ B *  regular if for every bounded closed convex 
set K and any fEB* the variational inequality 

(Tu- f ,u -v )<=O,  vER 
has a solution uEK. 

Monotone or pseudomonotone continuous mappings are regular (see [2], [3]). 
We shall deal with the following conditions 

(2.1) "Polynomial behaviour". I f  for some pair v, wEB 

lim sup [(Z(w+tv), v)l < co (t ~ )  

then (T(w+tv), v) is constant in tER. 

(2.2) "Even polynomial behaviour". I f  for some pair v, wEB we have 

(i) lim inf ltl-l~0 (t) ~ 0 (It[ ~ ~)  

(ii) lim sup ]tl-xq)(t) < ~ (ltl ~=,) 
where 

then 
~o(0 = (r(w+tv), w+tv), 

t-lqo(t) ~ 0 (ttl ~ )  

(2.3) "'Asymptotic monotonicity". For every vEB 

lim inf llu--v[I-l (Tu-- Zv, u--v) >--_ 0 

(2.4) "Asymptotic non-negativity". 

lira inf Ilutl-l(Zu, u) >= 0 

(uCB, Iiul[ ~ )  

(uEB, Ilul[ ~ )  
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(2.5) "'Semi-coercitivity". There exists a finite dimensional subspace V c B  with 
bounded linear projection Q: B ~  V and a constant C such that 

[lull ~ Cl[Qu[[+C for all u with (Tu, v ) ~ O .  

For  Theorem 2.2 we need a stronger condition 

(2.5'). There exists a finite dimensional subspace V c B  with bounded linear projec- 
tion Q: B ~  V such that for every KER 

sup {]lult/(IlQutl +1)  i uE B, [lul[-l<Tu, u) <= K} <~o. 

Remark. Condition (2.1) and (2.2) have been explained in section 1. Condition 
(2.5) is satisfied if the following "Garding"- type  inequality holds: 

(Tu, u) ~ c l lu[ f -2 l lQu l f -2  

with constants 2, c , p > 0  r e s p . p > l  in the case (2.5"). 

Theorem 2.1. Let T: B-~ B* be a regular mapping from a real reflexive Banach 
space B into its dual B*, which satisfies (2.1)--(2.5). Then the equation Tu=O has 
a solution. 

We first prove 

Lemma 2.1. Let VocB be a linear subspace such that Vo• R(T).  Then, under 
the assumptions of Theorem 2.1, 

dim Vo -<- dim V. 

Proof. We argue that the assumption of the existence of a space Vo with 
dim V o = n + l ,  n : = d i m  V, and V o L R ( T  ) leads to a contradiction. Let zzEVo 
be n + 1 linearly independent vectors. The n +  1 vectors Qz i ~ V must be linearly 
dependent, thus there exist numbers 2 i such that ~ I2i1r and ~i2iQzi=O 
( i - 1  . . . .  , n + l ) .  Let z=~i2 iz l  ( i=1  . . . .  , n + l ) .  Then z r  and Qz=-O. By 
hypothesis 

(T(tz), tz> = 0, tER. 

On account of  the semi-coercitivity (2.5) 

[]tzU ~ clltQzlt + c  = C 

which, as t~oo ,  results in a contradiction. 

Proof of  Theorem 2.1. We may assume dim B=oo  and suppose that equ. 
Tu=O is not solvable. By induction we then construct linearly independent elements 
z~CB, i = 1 , 2 ,  3 . . . .  , such that z i •  ) which contradicts Lemma 2.1. Assume 
that  zj, j = l ,  2, .. . ,  i - l ,  have been constructed. Let W be a closed linear 
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complement to the space spanned by the elements z~ . . . . .  z~_~. For  i=1  set 
V~= {0}. Since T is regular, the variational inequality 

(2.6) (Tu, u--x) ~= O, XEBRnW, MR = {xEBIIIxll <= R}, 

has a solution uaEBan W. If  u R lies in the algebraic interior of B a n  W for some 
R > 0  then Tug i W and hence TIA R ]_ W O  Wi-~-B by the induction hypothesis. This 
leads to the contradiction Tua=0.  Therefore, we may assume URs and 
llua][=R. Setting x = 0  in (2.6) we obtain 

(TuR, uR) <= 0 

[luRI[ ~ C[[QuRI[ +C 
and from (2.5) 

(2.7) 
and 
(2.8) I[QuR[ I --,.oo (R--,-,~). 

By (2.7), (2.8), and the boundedness of Q 

(2.9) IIQURII <= KIIuRII =~ 2CKIIQURII, R ~ Ro. 

From (2.9) and the asymptotic monotonicity (2.3) we conclude for any wEB 

(2.10) liminflIQuRU-l(TuR--Tw, UR--W ) >= 0 (R ~ ) .  

Let w = w l + w  2, waEW, w2EVi. Since u R satisfies the variational inequality (2.6), 
w I E W n B  g for R~=R ', and w2• we obtain from (2.10) 

lim inf IIQUR[ I - a ( - T w ,  us) ~= 0 (R -+~). 

By (2.7), the elements [JQug[]-lu R remain bounded uniformly as R - ~ ,  and since 
B is reflexive there exists a subsequence A and an element zE W such that 

(2.11) I]QUl~li-luR~z weakly (R~o% REA) 
and 

(2.12) (--Tw, z) >= O, wEB. 

Furthermore, since Q maps B onto a finite dimensional space we conclude from 
(2.11) that I]Qzl[=l and z~0 .  

Now, let V w be the space spanned by w and z which we equip with some scalar 
product ( . ,  .). Let Tw: Vw~ Vw be the mapping defined by 

(T~x,y) ---- (rx, y), x, yEV~. 

T~ satisfies the assumptions of the mapping T in Lemma 1.1. Hence, by (2.12) 

(2.13) (Tw, z) = O, wEB. 
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Since zE W, z # 0 ,  we have that z~ Vi and the element z i :=z  is linearly independent 
of  zt . . . . .  z,_~, but orthogonal to R(T).  This completes the construction of  the 
z, and we obtain a space Vo • R(T)  with dim V0 = co which contradicts Lemma 2.1. 
The theorem is proved. 

Theorem 2.2. Let T: B ~  B* be a regular mapping from a real reflexive Banach 
space into its dual B*, which satisfies (2.1)--(2.3), (2.5) and the condition T(0)=0.  
Then the equation T u :  f E B* is solvable i f  and only i f  f •  R ( T) • i.e. R ( T) is a linear 
and closed subspace of  B. Furthermore, 

dim R(T)  • <= dim V ( <  ~). 

Proof. We note first that  also condition (2.4) holds on account of  (2.3) and 
T(0) = 0. The "only if-part" of  the theorem is trivial, cf. Theorem 1.2. For  the "if-part"  
we may assume dim B=oo  and suppose that the equation T u = f  has no solution 
w h e r e f  I R (T) l .  Similarly to the proof  of  Theorem 2.1 we construct linearly indepen- 
dent elements ziEB, i=1 ,  2, 3 . . . .  such that  z~•  and z~,• which contradicts 
Lemma 2.1. Assume that z j ,  j =  1, 2 . . . . .  i --1 have been constructed. Let W be a 
closed linear complement to the space V• spanned by the elements zl . . . . .  z~_~. 
Set V~={0}. Since T is regular, there exists an UREBRC~ W such that 

(2.14) (TuR--f, uR--x) <= O, xEB R n W. 

I f  UR lies in the algebraic interior of  B R c~ W for some R > 0 ,  then TuR - - f •  W and 
hence T u R - - f •  W • V i = B  since f ,  Tu R i V i by induction hypothesis. This yields 
the contradiction TuR--f=O. Therefore, we may assmne uREOB R and []u~[l=R. 
From (2.14) 

and f rom (2.5") 

(2.15) 
with some constant C. 
Hence 

(2.16) 

l imsup IlURII--I(TUR, UR> < ~o (R -~'~) 

IlUR[I ~ CllQugll+C, (R ~oo), 

IIQuR[I-~ ( R ~ ) .  

Similarly as in the proof  of  Theorem 2.1 we conclude f rom the asymptotic mono- 
ton• condition (2.3) for any wEB 

(2.17) l iminfl[QuR[l-l(TuR-TW , UR--W ) ~ 0 (R ~o~). 

From the variational inequality (2.14) and the orthogonality Vi .1. R(T)  and Vi Z f ,  
we know for w=wl+w2EB, wlEWc~BR, w2EV~, 

(TuR--f, ua-- w) ~ O. 
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From (2.17), we obtain 

l iminf[IQuRlI-l~f-Tw, u R - w )  >= 0 (R ~ )  
for all w E B. 

With the same argument as in the proof of Theorem 2.1 we obtain a sub- 
sequence A and an element zEW,  zr  such that 

I]QuR]l-luR~ z weakly ( R - ~ ,  REA) 
and 

( f - -Tw ,  z} ~= O, wEB. 

Using the mapping Tw of the proof  of Theorem 2.1 we obtain with aid of Lemma 1. l 

(Tw, z) -~ O, wEB 
and by hypothesis, 

(f ,  z) = 0. 

Setting z~=z this completes the construction of the zj (Cf. the last lines of the 
proof  of Theorem 2.1). 

The inequality d imR(T)2 -~d im V follows from Lemma 2.1. The theorem 
is proved. 

The following simple lemma gives some insight into the "linear" structure 
of  the mapping T occurring in Theorem 2.2. For  this we need the stronger condition 

(2.18) I f  for  some triple v, w, z E B, v ~ O, 

lira l t1-1(T(w+tv), z) = 0 (t -~ +__~) 

then (T(w+tv) ,  z) is constant in tER. 

Condition (2.18) is satisfied if (T(w+tv) ,  z) is a polynomial in t. 

Lemma 2.2. Let T: B ~ B *  be a mapping which satisfies the asymptotic" mono- 
tonicity (2.3) and condition (2.18). Let vER(T)  j-, v~O. Then for  every wEB 

T (w +tv )  is constant in tC R. 

Proof. By (2.3) and the orthogonality v_L R(T )  we have for any w, zEB 

l i m i n f I t l - l ( T ( w + t v ) - T ( w - - z ) ,  z) >= 0 (t ~ +_~o). 
and hence 

l im in f l t l - l (T (w+tv ) ,  z) >= 0 (t -~ • 

Replacing z by - z  we conclude 

lira l t j - l (T(w+tv) ,  z) = 0 (t ~ +__~) 

and by (2.18) that (T(w+tv) ,  z) is constant in tER. The lemma follows. 
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3. Applications 

Let s be a bounded  domain  of  R" whose bounda ry  satisfies the cone p roper ty  
cf. [1], pp: 11, Def.  2.1. Let  [Hm'p] r be the space o f  r-vector-funct ions with com- 

ponents  in the Sobolev space H m,p(f2), p > 1, cf. [9], and  let W be a closed sub- 
space of  [H"'P(f2)] ". As usual we define 

Ilullp=(flul~dx) l/p, Ilullm,.= z~jl[VJuH~+llull~, ( j =  1 . . . .  ,m) .  

We consider fo rmal  differential opera tors  

Z~(-1)l'!O'A~(x. u. Vu ..... Wu) (l~l <-- m) 

and  mappings  T: W ~  W* defined by 

(ru, v> : =  , ,  Vu, ..., V ' u ) O ' v d x .  

Here,  we have used the usual no ta t ion  with multi-indices a, and  the A, are func- 
tions with values in R" which satisfy the following conditions. 

(3.1) A,(x, rl) is measurable  in xCf2 and  cont inuous  in t/. 

(3.2) ]A,(x, r/)l <= K(1 + It/] p - l )  

(3.3) (Tu, u) >= cllullPm,p-Kl[ulff.-g 

(3.4) X , ( A , ( x , n ) - A , ( x ,  ff))(r/,-{,) > 0, t/ r ~, Ia[ = m. 

(3.5) X.(A. (x .  , ) -A. (x .  0 ) ( , . - ~ 3  =>-K. I~l <-- m. 

(3.6) A,(x, tl) is a po lynomia l  in r/, Is] ~ m. 

Condi t ion (3.5) m a y  be replaced by the asympto t ic  monoton ic i ty  condi t ion 

l iminfl lu--wll- l(Tu--Tw, u - w )  >= 0 (llu[I ~ = ' ) ,  

condi t ion (3.6) by  the m o r e  general condi t ion (2.1)--(2.2). 

Theorem 3.1. Under the assumptions (3.1)--(3.6),  the equation 

Tu = fE  W* 
has a solution i f  and only i f  

f - -  T(O) _1_ (R(T) -- T(O)) • . 

Furthermore, R(T) has finite codimension in W*. 
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Concerning the solvability of Tu=O we need an asymptotic non-negativity 
condition of type (2.4), say 

(3.7) ~ A~(x,q)q,  >=-K 

Theorem3.2. Under the assumptions (3.1)--(3.7), the equation Tu=O has 

a solution. 

Proof of  Theorem 3.1 and 3.2. The continuity and pseudo-monotonicity follow 
from (3.1), (3.2) and (3.4). (A trick from [5] is used in order to obtain pseudo- 
monotonicity). Condition (2.1) and (2.2) of Theorem 2.1 and 2.2 follow from (3.6), 
condition (2.3) from (3.5). (2.5) resp. (2.5") follow from (3.3) since p > l .  Rellich's 
Lemma in L p is used, cf. [4], w 3, to obtain the finite dimensional projection Q in 
condition (2.5) resp. (2.5'). Finally, (2.4) is a consequence of (2.7). The results of 
section 2 then complete the proof. 

Example. Let Pj: RS~R, j = l ,  .. . ,s, be polynomials such that 

(i) 

(ii) 

IPj(OI ~ K-4-KI~[ p-~ 

(iii) Z ~ ( p j ( O - e A r 1 6 2  j) -> 0 ( j  = 1 . . . . .  s) 

with constants K, c>0  and p > l .  

(iv) Pj(0)---0, j--= 1, . . . ,s .  

Let L I be second order uniformly elliptic operators defined by 

Lju  = z~ika[~)OiO~u, (i, k = 0 . . . .  , n) 

where 00=identity. Assume Of2~C 2+', a~)C C ". Let W= H ~ 'n n H 2"p and T: W~ W* 
be defined by 

(Tu, v) = ~ j  f o  Pj(LlU, ..., Lsu)Ljv  dx ( j  = 1 . . . .  , s). 

Then the equation T u = f 6  W* has a solution i f  and only i f  f •  R ( T )  J-. (Note that 
one may replace (3.4) by (iii).) 
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