Solvability and alternative theorems for a class of non-linear functional equations in Banach spaces

Jens Frehse

0. Introduction

In a preceding paper [4], we proved the existence of a minimum for mappings $F: B \rightarrow \mathbf{R}$ from a reflexive Banach space B into the reals under the following assumptions (we present only a special case):
(0.1) F is lower semi-continuous in the weak topology.
(0.2) F is bounded from below.
(0.3) F is convex (resp. satisfies a surrogate convexity).
(0.4) F is semi-coercive, i.e.

$$
F(u) \geqq c\|u\|^{p}-K\|Q u\|^{p}-K
$$

with constants $c, K, p>0$ and a linear projection Q onto a finite dimensional subspace.

$$
\begin{equation*}
F(u+t v) \text { is a polynomial in } t \in \mathbf{R} . \tag{0.5}
\end{equation*}
$$

Furthermore, we obtained a Fredholm alternative theorem for the existence of minima of $F(u)+\langle g, u\rangle, g \in B^{*}$.

Note that condition (0.4) frequently occurs in the theory of partial differential equations. It is well-known that condition (0.5) can be deleted if "full" coercivity $F(u) \geqq c\|u\|^{p}-K$ holds.

In this paper, we present a non-variational analogue of the above theorem for continuous mappings T from a Banach space B into its dual B^{*}. In particular we shall show that equ. $T u=0$ is solvable if the following conditions hold:

$$
\begin{gather*}
\langle T u-T v, u-v\rangle \geqq 0, \quad u, v \in B \tag{0.6}\\
\lim \inf \langle T u, u\rangle /\|u\| \geqq 0 \quad(\|u\| \rightarrow \infty) \tag{0.7}\\
\langle T u, u\rangle \geqq c\|u\|^{p}-K\|Q u\|^{p}-K \tag{0.8}
\end{gather*}
$$

with c, K, p, Q as in (0.4)

$$
\begin{equation*}
\langle T(u+t v), w\rangle \text { is a polynomial in } t \in \mathbf{R} . \tag{0.9}
\end{equation*}
$$

The difference between this result and the classical one is that we do not assume the "full" coerciveness $\langle T u, u\rangle \geqq c\|u\|^{p}-K$. Again, condition (0.8) is natural for applications involving partial differential equations, however condition (0.9) may not be deleted in this case.

Our method of proof yields the following alternative theorem: Under the above conditions - without the asymptotic non-negativity (0.7) - the linear hull of the range $R(T)$ of T has finite codimension and equ. $T u=f$ is solvable if and only if

$$
f-T(0) \perp(R(T)-T(0))^{\perp}
$$

i.e. $R(T-T(0))$ is a linear closed subspace of B.

Alternative theorems with linear principal part have been obtained by Kačurovskii [7], [8], Hess [6] and Petryshyn. Our conditions allow polynomial growth of the mapping T. The alternative theorems of Pohodjayev [12], Nečas [10] and Petryshyn [11], Theorem 2, are of a different type since they treat only the surjectivity of T.

1. The finite dimensional case

We study continuous mappings $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ with the following properties
(1.1) "Polynomial behaviour". If for some pair $v, w \in \mathbf{R}^{n} \limsup |(T(w+t v), v)|<\infty$ $(t \rightarrow \infty)$ then $(T(w+t v), v)$ is constant in $t \in \mathbf{R}$. Here, (., .) denotes the Euclidean scalar product.
(1.2) "Even polynomial behaviour". If for some pair $v, w \in \mathbf{R}^{n}$ we have

$$
\begin{equation*}
\lim \inf |t|^{-1} \varphi(t) \geqq 0 \quad(|t| \rightarrow \infty) \tag{i}
\end{equation*}
$$

(ii) $\quad \lim \sup |t|^{-1} \varphi(t) \geqq 0 \quad(|t| \rightarrow \infty)$,
where

$$
\varphi(t)=(T(w+t v), w+t v)
$$

then

$$
t^{-1} \varphi(t) \rightarrow 0 \quad(|t| \rightarrow \infty)
$$

(1.3) "Asymptotic monotonicity". For any fixed $v \in \mathbf{R}^{n}$

$$
\lim \inf |u-v|^{-1}(T u-T v, u-v) \supseteqq 0 \quad(|u| \rightarrow \infty)
$$

(1.4) "Asymptotic non-negativity."

$$
\lim \inf |u|^{-1}(T u, u) \geqq 0 \quad(|u| \rightarrow \infty) .
$$

Property (1.2) holds if the components of T are polynomials in n variables. Then $\varphi(t)$ is a polynomial in t and condition (i) implies that φ is an even polynomial. Condition (ii) implies that φ is at most linear (for this special pair v, w) and, being even, must be constant. But then, $t^{-1} \varphi(t) \rightarrow 0(|t| \rightarrow \infty)$.

Theorem 1.1. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a continuous mapping which satisfies the conditions (1.1)-(1.4). Then the equation $T u=0$ is solvable.

For the proof of Theorem 1.1 and, later, Theorem 1.2, we need the following technical

Lemma 1.1. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a continuous mapping which satisfies (1.1)(1.4). If for some $v \in \mathbf{R}^{n}$ we have

$$
\sup \left\{(T w, v) \mid w \in \mathbf{R}^{n}\right\}<\infty
$$

then $v \perp R(T)$.
Here $R(T)$ denotes the range of T.
Proof. Let $t \in \mathbf{R}$. We insert $w+t v$ for w in (1.5) and obtain

$$
\begin{equation*}
g(t):=(T(w+t v), v) \leqq K, \quad t \in \mathbf{R} . \tag{1.6}
\end{equation*}
$$

We show that $g(t)$ is bounded from below for fixed $w \in \mathbf{R}^{n}$. By (1.3)

$$
\lim \inf |t|^{-1}(T(w+t v)-T w, t v) \geqq 0 \quad(t \rightarrow \infty)
$$

and hence there exist constants $C(w)$ and t_{0} such that

$$
(T(w+t v), v) \geqq-C(w), \quad t \geqq t_{0}
$$

Thus, for fixed $w \in \mathbf{R}^{n}, g(t)$ is bounded from above and below and hence, by condition (1.1)

$$
\begin{equation*}
(T(w+t v), v)=\text { const }:=(T w, v), \quad t \in \mathbf{R} \tag{1.7}
\end{equation*}
$$

Now, let

$$
\begin{equation*}
\varphi(t)=(T(w+t v), w+t v), \quad t \in \mathbf{R} \tag{1.8}
\end{equation*}
$$

By (1.3)

$$
\lim \inf |t|^{-1}(T(w+t v)-T(2 w),-w+t v) \geqq 0 \quad(|t| \rightarrow \infty)
$$

This yields in view of (1.7)

$$
\limsup |t|^{-1}(T(w+t v), w) \leqq C(w), \quad|t| \rightarrow \infty, \quad t \in \mathbf{R}
$$

with some constant $C(w)$. Using (1.7) again we obtain

$$
\lim \sup |t|^{-1} \varphi(t)<\infty \quad(|t| \rightarrow \infty)
$$

From this, condition (1.4), and (1.2) we conclude

$$
\begin{equation*}
|t|^{-1} \varphi(t) \rightarrow 0 \quad(|t| \rightarrow \infty) \tag{1.9}
\end{equation*}
$$

Finally, for fixed $s \in \mathbf{R}$, we have in view of (1.3)

$$
\begin{equation*}
\lim \inf |t|^{-1}(T(w+t v)-T(s w),(1-s) w+t v) \geqq 0 \quad(|t| \rightarrow \infty) . \tag{1.10}
\end{equation*}
$$

Using (1.7), (1.8), and (1.10)

$$
\lim \inf |t|^{-1}[(1-s) \varphi(t)+s(T w, t v)-(T(s w),(1-s) w+t v)] \geqq 0 \quad(|t| \rightarrow \infty)
$$

Passing to the limit $t \rightarrow \pm \infty$ and using (1.9) we find the inequality

$$
\pm s(T w, v) \mp(T(s w), v) \geqq 0
$$

from which

$$
s(T w, v)=(T(s w), v)
$$

and, in view of (1.5)

$$
s(T w, v) \leqq K, \quad s \in \mathbf{R} .
$$

Passing to the limit $s \rightarrow \pm \infty$ we obtain

$$
(T w, v)=0, \quad w \in \mathbf{R}^{n}
$$

Proof of Theorem 1.1: Set $T_{\varepsilon} u=T u+\varepsilon u, \varepsilon>0$. In view of (1.4) the mapping T_{ε} is coercive, i.e. $\left(T_{\varepsilon} u, u\right) /|u| \rightarrow \infty$ as $|u| \rightarrow \infty$. Thus there exists a solution u_{ε} of the equation $T_{\varepsilon} u=0$ (cf. e.g. [3]). If the sequence (u_{ε}) is bounded as $\varepsilon \rightarrow 0$ it has a clusterpoint u^{*} which solves $T u^{*}=0$. Hence we may assume that for a sequence Λ_{0} of numbers $\varepsilon \rightarrow 0$ we have $\left|u_{\varepsilon}\right| \rightarrow \infty,\left|u_{\varepsilon}\right| \neq 0$. Selecting a subsequence $\Lambda \subset \Lambda_{0}$ we may assume that $\left|u_{\varepsilon}\right|^{-1} u_{\varepsilon} \rightarrow v(\varepsilon \in A, \varepsilon \rightarrow 0)$ for some $v \in \mathbf{R}^{n}$ with $|v|=1$. We show $(T w, v)=0$ for all $w \in \mathbf{R}^{n}$. By condition (1.3)

$$
\begin{equation*}
\liminf \left(T_{\varepsilon} u_{\varepsilon}-T_{\varepsilon} w, u_{\varepsilon}-w\right) /\left|u_{\varepsilon}-w\right| \geqq 0 \quad(\varepsilon \rightarrow 0, \varepsilon \in \Lambda) \tag{1.11}
\end{equation*}
$$

Using $T_{\varepsilon} u_{\varepsilon}=0$ and then passing to the limit $\varepsilon \rightarrow 0$ we obtain from (1.11)
and by Lemma 1.1

$$
\begin{equation*}
-(T w, v) \geqq 0, \quad w \in \mathbf{R}^{n} \tag{1.12}
\end{equation*}
$$

In the case $n=1$ this gives us the solvability of $T u=0$. For $n \geqq 2$, we proceed by induction: Let $\langle v\rangle$ be the one dimensional subspace spanned by v and $V=\langle v\rangle^{\perp}$ its orthogonal complement. Then the restriction T_{V} of T to V maps V into itself and satisfies the conditions (1.1)-(1.4). By induction hypothesis, there is a $u^{*} \in V$ such that $\left(T u^{*}, z\right)=0$ for all $z \in V$. Using (1.12) it follows that $T u^{*}=0$ which proves the theorem.

With the method of the proof of Theorem 1 one can obtain the following "alternative theorem".

Theorem 1.2. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a continuous mapping which satisfies the conditions (1.1)-(1.3) and let $T(0)=0$. Then the equation $T u=f$ is solvable if and only if $f \perp R(T)^{\perp}$, i.e. $R(T)$ is a linear subspace of \mathbf{R}^{n}.

In the simplest case of a monotone mapping T with polynomials as components the above theorem yields that the equation $T u=f$ is solvable if and only if $f-T(0)$ is orthogonal to $R(T-T(0))^{\perp}$.

We first prove
Lemma 1.2. Let $v \in \mathbf{R}^{n}, v \neq 0, v \perp R(T), V=\langle v\rangle^{\perp}$ and $z \in \mathbf{R}^{n}$ such that $z \perp T(V)$. Then, under the assumptions of Theorem 1.2, $z \perp R(T)$.

Here $\langle v\rangle^{\perp}$ denotes the orthogonal complement of the space spanned by v.
Proof. Let $z=z_{1}+\zeta v, z_{1} \in V, \zeta \in \mathbf{R}$, and $w \in V, \alpha \in \mathbf{R}$. By (1.3) and the orthogonality $v \perp R(T)$

$$
\lim \inf |t|^{-1}\left(T\left(w+t z_{1}+\alpha t v\right)-T\left(w \pm 2 t z_{1}\right), \pm t z_{1}\right) \geqq 0 \quad(t \rightarrow \infty)
$$

We have $z_{1} \perp T(V)$ and $w \pm 2 t z_{1} \in V$. Thus $\left(T\left(w \pm 2 t z_{1}\right), z_{1}\right)=0$ and

$$
\lim \left(T\left(w+t z_{1}+\alpha t v\right), z_{1}+\alpha v\right)=\lim \left(T\left(w+t z_{1}+\alpha t v\right), z_{1}\right)=0 \quad(t \rightarrow \infty)
$$

By (1.1) thence $\left(T\left(w+t z_{1}+\alpha t v\right), z_{1}+\alpha v\right)=0$ for all t or $\left(T\left(w+t z_{1}+\alpha t v\right), z_{1}\right)=0$ for all $t \in \mathbf{R}, \alpha \in \mathbf{R}, w \in V$. Setting $t=1$, the lemma follows.

Proof of Theorem 1.2. The "only if" - part of the theorem is trivial: If f is not orthogonal to $R(T)^{\perp}$, then there is a $w \in \mathbf{R}^{n}$ such that $(f, w) \neq 0$ and $(w, T x)=0$, $x \in \mathbf{R}^{n}$. But then equ. $T u=f$ cannot be solvable.

Since $T(0)=0$, we conclude from (1.3) the asymptotic nonnegativity (1.4) and the coercitivity of the mapping $T_{\varepsilon}=\varepsilon \mathrm{Id}+T$. If u_{ε} remains bounded as $\varepsilon \rightarrow 0$, a clusterpoint u^{*} of (u_{ε}) exists and is a solution of $T u=f$. Thus we may assume that (u_{ε}) is unbounded and that for a subsequence A we have the convergence $\left|u_{\varepsilon}\right| \rightarrow \infty$ and $\left|u_{\varepsilon}\right|^{-1} u_{s} \rightarrow v(\varepsilon \rightarrow 0, \varepsilon \in \Lambda)$ with $|v|=1$. By (1.3)

$$
\lim \inf \left|u_{\varepsilon}-w\right|^{-1}\left(T_{\varepsilon} u_{\varepsilon}-T w, u_{\varepsilon}-w\right) \geqq 0 \quad(\varepsilon \rightarrow 0, \varepsilon \in \Lambda)
$$

for every $w \in \mathbf{R}^{n}$ and hence

$$
\begin{equation*}
(f-T w, v) \geqq 0, \quad w \in \mathbf{R}^{n} \tag{1.11}
\end{equation*}
$$

From Lemma 1.1 we then conclude

$$
\begin{equation*}
(v, T w)=0, \quad w \in \mathbf{R}^{n} . \tag{1.12}
\end{equation*}
$$

By hypothesis, $f \perp R(T)^{\perp}$, and thus

$$
\begin{equation*}
(f, v)=0 \tag{1.13}
\end{equation*}
$$

If $n=1$, it follows from (1.13) that $f=0$ and from (1.12) that $T w=0, w \in \mathbf{R}^{n}$, i.e. $T u=f$ is solvable. If $n \geqq 2$ we conclude from (1.12) that

$$
T: V \rightarrow V
$$

where

$$
V:=\langle v\rangle^{\perp} .
$$

Let $z \perp T(V)$. By Lemma 1.2 we conclude $z \perp R(T)$ and hence $f \perp z$ by hypothesis. Therefore, we have $f \perp(T(V))^{\perp}$ and, by (1.13), $f \in V$. Applying the induction hypothesis for the dimension $n-1$ to the mapping $T: V \rightarrow V$ we obtain the theorem.

2. The infinite dimensional case

In this section we want to generalize the results of section 1 to the case of regular mappings $T: B \rightarrow B^{*}$ from a reflexive real Banach space B into its dual B^{*}.

We call a mapping $T: B \rightarrow B^{*}$ regular if for every bounded closed convex set \mathbf{K} and any $f \in B^{*}$ the variational inequality

$$
\langle T u-f, u-v\rangle \leqq 0, \quad v \in \mathbf{R}
$$

has a solution $u \in \mathbf{K}$.
Monotone or pseudomonotone continuous mappings are regular (see [2], [3]). We shall deal with the following conditions
(2.1) 'Polynomial behaviour". If for some pair $v, w \in B$

$$
\lim \sup |\langle T(w+t v), v\rangle|<\infty \quad(t \rightarrow \infty)
$$

then $\langle T(w+t v), v\rangle$ is constant in $t \in \mathbf{R}$.
(2.2) "Even polynomial behaviour". If for some pair $v, w \in B$ we have

$$
\begin{array}{ll}
\lim \inf |t|^{-1} \varphi(t) \geqq 0 & (|t| \rightarrow \infty) \tag{i}\\
\lim \sup |t|^{-1} \varphi(t)<\infty & (|t| \rightarrow \infty)
\end{array}
$$

(ii)
where

$$
\varphi(t)=\langle T(w+t v), w+t v\rangle
$$

then

$$
t^{-1} \varphi(t) \rightarrow 0 \quad(|t| \rightarrow \infty)
$$

(2.3) "Asymptotic monotonicity". For every $v \in B$

$$
\lim \inf \|u-v\|^{-1}\langle T u-T v, u-v\rangle \geqq 0 \quad(u \in B,\|u\| \rightarrow \infty)
$$

(2.4) "Asymptotic non-negativity".

$$
\lim \inf \|u\|^{-1}\langle T u, u\rangle \geqq 0 \quad(u \in B,\|u\| \rightarrow \infty)
$$

(2.5) "Semi-coercitivity". There exists a finite dimensional subspace $V \subset B$ with bounded linear projection $Q: B \rightarrow V$ and a constant C such that

$$
\|u\| \leqq C\|Q u\|+C \text { for all } u \text { with }\langle T u, v\rangle \leqq 0 .
$$

For Theorem 2.2 we need a stronger condition
(2.5'). There exists a finite dimensional subspace $V \subset B$ with bounded linear projection $Q: B \rightarrow V$ such that for every $K \in \mathbf{R}$

$$
\sup \left\{\|u\| /(\|Q u\|+1) \mid u \in B,\|u\|^{-1}\langle T u, u\rangle \leqq K\right\}<\infty .
$$

Remark. Condition (2.1) and (2.2) have been explained in section 1. Condition (2.5) is satisfied if the following "Garding"-type inequality holds:

$$
\langle T u, u\rangle \supseteqq c\|u\|^{p}-\lambda\|Q u\|^{p}-\lambda
$$

with constants $\lambda, c, p>0$ resp. $p>1$ in the case (2.5).
Theorem 2.1. Let $T: B \rightarrow B^{*}$ be a regular mapping from a real reflexive Banach space B into its dual B^{*}, which satisfies (2.1)-(2.5). Then the equation $T u=0$ has a solution.

We first prove
Lemma 2.1. Let $V_{0} \subset B$ be a linear subspace such that $V_{0} \perp R(T)$. Then, under the assumptions of Theorem 2.1,

$$
\operatorname{dim} V_{0} \leqq \operatorname{dim} V
$$

Proof. We argue that the assumption of the existence of a space V_{0} with $\operatorname{dim} V_{0}=n+1, n:=\operatorname{dim} V$, and $V_{0} \perp R(T)$ leads to a contradiction. Let $z_{i} \in V_{0}$ be $n+1$ linearly independent vectors. The $n+1$ vectors $Q z_{i} \in V$ must be linearly dependent, thus there exist numbers λ_{i} such that $\sum_{i}\left|\lambda_{i}\right| \neq 0$ and $\sum_{i} \lambda_{i} Q z_{i}=0$ $(i=1, \ldots, n+1)$. Let $z=\sum_{i} \lambda_{i} z_{i}(i=1, \ldots, n+1)$. Then $z \neq 0$ and $Q z=0$. By hypothesis

$$
\langle T(t z), t z\rangle=0, \quad t \in \mathbf{R}
$$

On account of the semi-coercitivity (2.5)

$$
\|t z\| \leqq C\|t Q z\|+C=C
$$

which, as $t \rightarrow \infty$, results in a contradiction.
Proof of Theorem 2.1. We may assume $\operatorname{dim} B=\infty$ and suppose that equ. $T u=0$ is not solvable. By induction we then construct linearly independent elements $z_{i} \in B, i=1,2,3, \ldots$, such that $z_{i} \perp R(T)$ which contradicts Lemma 2.1. Assume that $z_{j}, j=1,2, \ldots, i-1$, have been constructed. Let W be a closed linear
complement to the space spanned by the elements z_{1}, \ldots, z_{i-1}. For $i=1$ set $V_{i}=\{0\}$. Since T is regular, the variational inequality

$$
\begin{equation*}
\langle T u, u-x\rangle \leqq 0, \quad x \in B_{R} \cap W, \quad B_{R}=\{x \in B \mid\|x\| \leqq R\}, \tag{2.6}
\end{equation*}
$$

has a solution $u_{R} \in B_{R} \cap W$. If u_{R} lies in the algebraic interior of $B_{R} \cap W$ for some $R>0$ then $T u_{R} \perp W$ and hence $T u_{R} \perp W \oplus V_{i}=B$ by the induction hypothesis. This leads to the contradiction $T u_{R}=0$. Therefore, we may assume $u_{R} \in \partial B_{R}$ and $\left\|u_{R}\right\|=R$. Setting $\quad x=0$ in (2.6) we obtain

$$
\left\langle T u_{R}, u_{R}\right\rangle \leqq 0
$$

and from (2.5)

$$
\begin{equation*}
\left\|u_{\mathrm{R}}\right\| \leqq C\left\|Q u_{\mathrm{R}}\right\|+C \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|Q u_{R}\right\| \rightarrow \infty \quad(R \rightarrow \infty) \tag{2.8}
\end{equation*}
$$

By (2.7), (2.8), and the boundedness of Q

$$
\begin{equation*}
\left\|Q u_{R}\right\| \leqq K\left\|u_{R}\right\| \leqq 2 C K\left\|Q u_{R}\right\|, \quad R \geqq R_{0} \tag{2.9}
\end{equation*}
$$

From (2.9) and the asymptotic monotonicity (2.3) we conclude for any $w \in B$

$$
\begin{equation*}
\liminf \left\|Q u_{R}\right\|^{-1}\left\langle T u_{R}-T w, u_{R}-w\right\rangle \geqq 0 \quad(R \rightarrow \infty) . \tag{2.10}
\end{equation*}
$$

Let $w=w_{1}+w_{2}, w_{1} \in W, w_{2} \in V_{i}$. Since u_{R} satisfies the variational inequality (2.6), $w_{1} \in W \cap B_{R}$ for $R \geqq R^{\prime}$, and $w_{2} \perp R(T)$, we obtain from (2.10)

$$
\lim \inf \left\|Q u_{R}\right\|^{-1}\left\langle-T w, u_{R}\right\rangle \geqq 0 \quad(R \rightarrow \infty)
$$

By (2.7), the elements $\left\|Q u_{R}\right\|^{-1} u_{R}$ remain bounded uniformly as $R \rightarrow \infty$, and since B is reflexive there exists a subsequence Λ and an element $z \in W$ such that

$$
\begin{equation*}
\left\|Q u_{R}\right\|^{-1} u_{R}-z \quad \text { weakly } \quad(R \rightarrow \infty, R \in \Lambda) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle-T w, z\rangle \geqq 0, \quad w \in B \tag{2.12}
\end{equation*}
$$

Furthermore, since Q maps B onto a finite dimensional space we conclude from (2.11) that $\|Q z\|=1$ and $z \neq 0$.

Now, let V_{w} be the space spanned by w and z which we equip with some scalar product (.,.). Let $T_{w}: V_{w} \rightarrow V_{w}$ be the mapping defined by

$$
\left(T_{w} x, y\right)=\langle T x, y\rangle, \quad x, y \in V_{w} .
$$

T_{w} satisfies the assumptions of the mapping T in Lemma 1.1. Hence, by (2.12)

$$
\begin{equation*}
\langle T w, z\rangle=0, \quad w \in B \tag{2.13}
\end{equation*}
$$

Since $z \in W, z \neq 0$, we have that $z \notin V_{i}$ and the element $z_{i}:=z$ is linearly independent of z_{1}, \ldots, z_{i-1}, but orthogonal to $R(T)$. This completes the construction of the z_{i} and we obtain a space $V_{0} \perp R(T)$ with $\operatorname{dim} V_{0}=\infty$ which contradicts Lemma 2.1. The theorem is proved.

Theorem 2.2. Let $T: B \rightarrow B^{*}$ be a regular mapping from a real reflexive Banach space into its dual B^{*}, which satisfies (2.1)-(2.3), (2.5) and the condition $T(0)=0$. Then the equation $T u=f \in B^{*}$ is solvable if and only if $f \perp R(T)^{\perp}$, i.e. $R(T)$ is a linear and closed subspace of B. Furthermore,

$$
\operatorname{dim} R(T)^{\perp} \leqq \operatorname{dim} V(<\infty)
$$

Proof. We note first that also condition (2.4) holds on account of (2.3) and $T(0)=0$. The "only if-part" of the theorem is trivial, cf. Theorem 1.2. For the "if-part" we may assume $\operatorname{dim} B=\infty$ and suppose that the equation $T u=f$ has no solution where $f \perp R(T)^{\perp}$. Similarly to the proof of Theorem 2.1 we construct linearly independent elements $z_{i} \in B, i=1,2,3, \ldots$ such that $z_{i} \perp R(T)$ and $z_{i} \perp f$, which contradicts Lemma 2.1. Assume that $z_{j}, j=1,2, \ldots, i-1$ have been constructed. Let W be a closed linear complement to the space V_{i} spanned by the elements z_{1}, \ldots, z_{i-1}. Set $V_{1}=\{0\}$. Since T is regular, there exists an $u_{R} \in B_{R} \cap W$ such that

$$
\begin{equation*}
\left\langle T u_{R}-f, u_{R}-x\right\rangle \leqq 0, \quad x \in B_{R} \cap W \tag{2.14}
\end{equation*}
$$

If u_{R} lies in the algebraic interior of $B_{R} \cap W$ for some $R>0$, then $T u_{R}-f \perp W$ and hence $T u_{R}-f \perp W \oplus V_{i}=B$ since $f, T u_{R} \perp V_{i}$ by induction hypothesis. This yields the contradiction $T u_{R}-f=0$. Therefore, we may assume $u_{R} \in \partial B_{R}$ and $\left\|u_{R}\right\|=R$. From (2.14)
and from (2.5')

$$
\begin{equation*}
\lim \sup \left\|u_{R}\right\|^{-1}\left\langle T u_{R}, u_{R}\right\rangle<\infty \quad(R \rightarrow \infty) \tag{2.15}
\end{equation*}
$$

with some constant C.
Hence

$$
\begin{equation*}
\left\|Q u_{R}\right\| \cdots \infty \quad(R \rightarrow \infty) \tag{2.16}
\end{equation*}
$$

Similarly as in the proof of Theorem 2.1 we conclude from the asymptotic monotonicity condition (2.3) for any $w \in B$

$$
\begin{equation*}
\liminf \left\|Q u_{R}\right\|^{-1}\left\langle T u_{R}-T w, u_{R}-w\right\rangle \geqq 0 \quad(R \rightarrow \infty) \tag{2.17}
\end{equation*}
$$

From the variational inequality (2.14) and the orthogonality $V_{i} \perp R(T)$ and $V_{i} \perp f$, we know for $w=w_{1}+w_{2} \in B, w_{1} \in W \cap B_{R}, w_{2} \in V_{i}$,

$$
\left\langle T u_{R}-f, u_{R}-w\right\rangle \leqq 0
$$

From (2.17), we obtain

$$
\lim \inf \left\|Q u_{R}\right\|^{-1}\left\langle f-T w, u_{R}-w\right\rangle \geqq 0 \quad(R \rightarrow \infty)
$$

for all $w \in B$.
With the same argument as in the proof of Theorem 2.1 we obtain a subsequence Λ and an element $z \in W, z \neq 0$, such that

$$
\left\|Q u_{R}\right\|^{-1} u_{R} \rightarrow z \quad \text { weakly } \quad(R \rightarrow \infty, R \in \Lambda)
$$

and

$$
\langle f-T w, z\rangle \geqq 0, \quad w \in B
$$

Using the mapping T_{w} of the proof of Theorem 2.1 we obtain with aid of Lemma 1.1

$$
\langle T w, z\rangle=0, \quad w \in B
$$

and by hypothesis,

$$
\langle f, z\rangle=0 .
$$

Setting $z_{i}=z$ this completes the construction of the z_{j} (Cf. the last lines of the proof of Theorem 2.1).

The inequality $\operatorname{dim} R(T)^{\perp} \leqq \operatorname{dim} V$ follows from Lemma 2.1. The theorem is proved.

The following simple lemma gives some insight into the "linear" structure of the mapping T occurring in Theorem 2.2. For this we need the stronger condition
(2.18) If for some triple $v, w, z \in B, v \neq 0$,

$$
\lim |t|^{-1}\langle T(w+t v), z\rangle=0 \quad(t \rightarrow \pm \infty)
$$

then $\langle T(w+t v), z\rangle$ is constant in $t \in \mathbf{R}$.
Condition (2.18) is satisfied if $\langle T(w+t v), z\rangle$ is a polynomial in t.
Lemma 2.2. Let $T: B \rightarrow B^{*}$ be a mapping which satisfies the asymptoiic monotonicity (2.3) and condition (2.18). Let $v \in R(T)^{\perp}, v \neq 0$. Then for every $w \in B$

$$
T(w+t v) \text { is constant in } t \in \mathbf{R} .
$$

Proof. By (2.3) and the orthogonality $v \perp R(T)$ we have for any $w, z \in B$

$$
\lim \inf |t|^{-1}\langle T(w+t v)-T(w-z), z\rangle \geqq 0 \quad(t \rightarrow \pm \infty)
$$

and hence

$$
\liminf |t|^{-1}\langle T(w+t v), z\rangle \geqq 0 \quad(t \rightarrow \pm \infty)
$$

Replacing z by $-z$ we conclude

$$
\lim |t|^{-1}\langle T(w+t v), z\rangle=0 \quad(t \rightarrow \pm \infty)
$$

and by (2.18) that $\langle T(w+t v), z\rangle$ is constant in $t \in \mathbf{R}$. The lemma follows.

3. Applications

Let Ω be a bounded domain of \mathbf{R}^{n} whose boundary satisfies the cone property cf. [1], pp. 11, Def. 2.1. Let $\left[H^{m, p}\right]^{r}$ be the space of r-vector-functions with components in the Sobolev space $H^{m, p}(\Omega), p>1$, cf. [9], and let W be a closed subspace of $\left[H^{m, p}(\Omega)\right]^{r}$. As usual we define

$$
\|u\|_{p}=\left(\int|u|^{p} d x\right)^{1 / p}, \quad\|u\|_{m, p}=\sum_{j}\left\|\nabla^{j} u\right\|_{p}+\|u\|_{p}, \quad(j=1, \ldots, m)
$$

We consider formal differential operators

$$
\sum_{\alpha}(-1)^{|\alpha|} \partial^{\alpha} A_{\alpha}\left(x, u, \nabla u, \ldots, \nabla^{m} u\right) \quad(|\alpha| \leqq m)
$$

and mappings $T: W \rightarrow W^{*}$ defined by

$$
\langle T u, v\rangle:=\sum_{\alpha} \int_{\Omega} A_{\alpha}\left(x, u, \nabla u, \ldots, \nabla^{m} u\right) \partial^{\alpha} v d x
$$

Here, we have used the usual notation with multi-indices α, and the A_{α} are functions with values in \mathbf{R}^{r} which satisfy the following conditions.
(3.1) $A_{\alpha}(x, \eta)$ is measurable in $x \in \Omega$ and continuous in η.
(3.2) $\left|A_{\alpha}(x, \eta)\right| \leqq K\left(1+|\eta|^{p-1}\right)$
(3.3) $\langle T u, u\rangle \geqq c\|u\|_{m, p}^{p}-K\|u\|_{p}^{p}-K$
(3.4) $\quad \sum_{\alpha}\left(A_{\alpha}(x, \eta)-A_{\alpha}(x, \zeta)\right)\left(\eta_{\alpha}-\zeta_{\alpha}\right)>0, \quad \eta \neq \zeta, \quad|\alpha|=m$.
(3.5) $\quad \sum_{\alpha}\left(A_{\alpha}(x, \eta)-A_{\alpha}(x, \zeta)\right)\left(\eta_{\alpha}-\zeta_{\alpha}\right) \geqq-K, \quad|\alpha| \leqq m$.
(3.6) $A_{\alpha}(x, \eta)$ is a polynomial in $\eta,|\alpha| \leqq m$.

Condition (3.5) may be replaced by the asymptotic monotonicity condition

$$
\lim \inf \|u-w\|^{-1}\langle T u-T w, u-w\rangle \geqq 0 \quad(\|u\| \rightarrow \infty),
$$

condition (3.6) by the more general condition (2.1)-(2.2).
Theorem 3.1. Under the assumptions (3.1)-(3.6), the equation

$$
T u=f \in W^{*}
$$

has a solution if and only if

$$
f-T(0) \perp(R(T)-T(0))^{\perp} .
$$

Furthermore, $R(T)$ has finite codimension in W^{*}.

Concerning the solvability of $T u=0$ we need an asymptotic non-negativity condition of type (2.4), say

$$
\begin{equation*}
\sum_{\alpha} A_{\alpha}(x, \eta) \eta_{\alpha} \geqq-K \tag{3.7}
\end{equation*}
$$

Theorem 3.2. Under the assumptions (3.1)-(3.7), the equation $T u=0$ has a solution.

Proof of Theorem 3.1 and 3.2. The continuity and pseudo-monotonicity follow from (3.1), (3.2) and (3.4). (A trick from [5] is used in order to obtain pseudomonotonicity). Condition (2.1) and (2.2) of Theorem 2.1 and 2.2 follow from (3.6), condition (2.3) from (3.5). (2.5) resp. (2.5') follow from (3.3) since $p>1$. Rellich's Lemma in L^{p} is used, cf. [4], § 3, to obtain the finite dimensional projection Q in condition (2.5) resp. (2.5'). Finally, (2.4) is a consequence of (2.7). The results of section 2 then complete the proof.

Example. Let $P_{j}: \mathbf{R}^{s} \rightarrow \mathbf{R}, j=1, \ldots, s$, be polynomials such that

$$
\begin{equation*}
\left|P_{j}(\zeta)\right| \leqq K+K|\zeta|^{p-1} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j} P_{j}(\zeta) \zeta_{j} \geqq c|\zeta|^{p}-K \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j}\left(P_{j}(\zeta)-P_{j}(\xi)\right)\left(\zeta_{j}-\xi_{j}\right) \geqq 0 \quad(j=1, \ldots, s) \tag{iii}
\end{equation*}
$$

with constants $K, c>0$ and $p>1$.

$$
\begin{equation*}
P_{j}(0)=0, \quad j=1, \ldots, s \tag{iv}
\end{equation*}
$$

Let L_{j} be second order uniformly elliptic operators defined by

$$
L_{j} u=\sum_{i k} a_{i k}^{(j)} \partial_{i} \partial_{k} u, \quad(i, k=0, \ldots, n)
$$

where $\partial_{0}=$ identity. Assume $\partial \Omega \in C^{2+\alpha}, a_{i k}^{(j)} \in C^{\alpha}$. Let $W=H_{0}^{1, p} \cap H^{2, p}$ and $T: W \rightarrow W^{*}$ be defined by

$$
\langle T u, v\rangle=\sum_{j} \int_{\Omega} P_{j}\left(L_{1} u, \ldots, L_{s} u\right) L_{j} v d x \quad(j=1, \ldots, s)
$$

Then the equation $T u=f \in W^{*}$ has a solution if and only if $f \perp R(T)^{\perp}$. (Note that one may replace (3.4) by (iii).)

References

1. Agmon, S., Lectures on elliptic boundary value problems. Van Nostrand, Mathematical Studies New York, 1965.
2. Brézis, H., Equations et inequation non-linéaires dans les espaces vectoriels en dualité., Ann. Sci. Institut Fourier, 19 (1968), 115-176.
3. Browder, F. E., Problèmes non-linéaires. Seminaire de Mathématique Supérieurs 15 (1965), Université Montreal.
4. Frehse, J., An existence theorem for a class of non-coercive optimization and variational problems. Math. Z. 159 (1978), 51-63.
5. Frehse, J., Existenz und Konvergenz von Lösungen nichtlinearer elliptischer Differenzengleichungen unter Dirichletrandbedingungen, Math. $Z .109$ (1969), 311-343.
6. Hess, P., On the Fredholm alternative for non-linear functional equations in Banach spaces, Proc. Amer. Math. Soc. 33 (1972), 55-61.
7. Kačurovskif, R. I., On Fredholm theory for non-linear operator equations. Dokl. Akad. Nauk. SSSR 192 (1970), 751—754.
8. Kačurovskit, R. I., On non-linear operators whose ranges are subspaces. Dokl. Akad. Nauk. SSSR 196 (1971), 168-172.
9. Morrey, C. B., Jr., Multiple integrals in the calculus of variations. Springer, Berlin-Heidelberg-New York, 1966.
10. NeČas, J., Sur l'alternative de Fredholm pour les opérateurs non-linéaires avec applications aux problèmes aux limites. Ann. Soc. Norm Sup Pisa 23 (1969), 331-346.
11. Petryshyn, W. V., Fredholm alternatives for non-linear A-proper mappings with applications to non-linear elliptic boundary value problems. J. Funct. Anal. 18 (1975), 288-317.
12. Pohodjayev, S. I., On the solvability of non-linear equations with odd operators. Funct. Appl. 1 (1967), 66-73.

Jens Frehse
Institut für Angewandte Matbematik der Universität
5300 Bonn/W. Germany

