
The oblique derivative problem II 
Bengt Winzell* 

O. Introduction 

Let f2 be a bounded domain in R n, n=>3, of  class C ~+~ and consider a unit 
vector field 1 on the boundary 0f2. We will consider the following boundary value 
problem for the second order elliptic operator 5e in f2: Find a solution of 5fu=g 
in f2 such that  Ou/Ol=f on 0f2. When l is a conormal to Of 2 with respect to .LP, 
this is the Neumann problem and it is well known that  if the oblique vector field 
l never becomes tangential, then the problem is still elliptic. 

In this article we continue our investigation of  the degenerating problem, i.e. 
when I can be tangential to 00.  Writing l=~fz+X where ~ is the outer conormal 
and X is tangential, we see that  degeneracy occurs precisely when the scalar func- 
tion a is zero. In [5] we investigated the case when ~_->0 on 0 0  and now we intend 
to include a case when a changes its sign. Then, however, the problem, as stated 
above is not  well posed. In fact, it is known that  one has to allow singularities of  
the solutions or prescribe their values on certain subsets of  0f2. For  a historical 
review, and for references to results by other authors, we refer to [5]. 

The results given here are improvements of those in the author 's  thesis [4]. 
What makes them specific is that  we work in function classes of  HOlder type and 
that  we do not  make the usual assumption of  lower dimensionality of  the set 
where a vanishes. 

I. Basic assumptions and notations 

In order to describe the situation we introduce some further notation. We 
assume that  lE C 1+~ (0t2) and hence there are unique integral curves to X through 
every pEOt2. These will be called X-curves and we denote the maximal X-curve 
through p by ~v- I t  will also be convenient to use the symbol V~ for the component  
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of  ?p c~ A which contains p. Here A is any subset of  0f2. We associate with ye the 
standard parametrization 

d ~ (s) = Xo~p(s). s~2p(s)  where 2 p ( 0 ) - - p  and ~-s 

Similarly, if L denotes a Ca-extension of l to ~,  then the concept of  L-curves, the 
notation Fp for the maximal L-curve through pE ~ and F A for the component  of  
F p n A  which contains p, and a standard parametrization s-*xp(s) for Fp are 
introduced in an analogous way. 
The set of tangency for l is 

H = {p E 0f2: ~ (p) = 0). 

Let k0 be the supremum of all lengths of connected X-curves within H. We require 
that k0 be finite. 

Let 0g2 be the union of two closed sets M+ and s4_ such that e=>0 in d +  
and c~<=0 in d _  and such that  ~/t'=M+ n d _ = H  is an orientable manifold of  
dimension n - 2 ,  where n is the dimension of  the space. We assume that X satisfies 
a transversality condition of the following kind: 

There is a neighbourhood U of H in 0~2 such that for any p E dg either 

v intersects dg in one point, the angle between X(p) and dg is bounded (i) ?~ 
v away f rom zero by 00 > 0  and ~ changes its sign from minus to plus along ?p, 

o r  

v intersects d/t' only once and OH twice, and c~ changes its sign from plus (ii) ?p 
v to minus along ?p. 

The conditions (i) and (ii) separate J/f into two disjoint manifolds ~#+ and ~ _  
respectively. Note that Maz ' ja  in [3] was able to investigate a case where our trans- 
versality conditions were replaced by conditions on the behaviour of  X in a neigh- 
bourhood of the subset of  H where X is tangential to H. In [3], however, H is of  
the dimension n - 2  and ko=0. 

The operator ~cp has the form 

aijDiDj+biDi+c 

where Di represents differentiation with respect to xi and the summation conven- 
tion is used. We assume that  ~ is uniformly elliptic, that  the coefficients are in 
Cz(D) but that the aii: s have C 1+~ - regularity in a neighbourhood of H in 
and are C 2+a in a neighbourhood of ~r  H. We also require that c<-0 in 
a neighbourhood of  d/t'_. 

To conclude our list of  requirements we assume that I is in C 2+~ in a neighbour- 
hood of  H, that  the manifold dr'+ is of  class C 2+a, that ~ ' _  is C 3+a in a neigh- 
bourhood of ~ ' _ \ i n t  H, and that 0(2 is C 3+~ near H. Finally, we impose a mono- 
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tonicity condition on the X-curves through ~ '_ .  In fact, if p E J g _ \ i n t  H, then we 
require that dist (ffp(s), rig_) is monotonic for s=>0 and s_<-0 such that ~p(s) 
belongs to a fixed neighbourhood of ~ ' _ .  

In various estimates we will use seminorms [ ]k+z and [ ]k, and norms tl Ilk+z 
and [[ ilk. These are defined as in Agmon--Douglis---Nirenberg [1] (where, how- 
ever, I[ [I is written ] [). For  every neighbourhood W of H in ~ and every extension 
L of l to W we denote by S(W,  L) the Banach space o f  functions (J~ g, k) in 
CI+~(Os such that f~C2+~(O~2nW) and Og/OLEC~(W). 

The norm in S(W,  L) is given by 

os~ oanw a 0g[W,[  I ~u+ 
= [Ifll2+x +llgllx+ ~ - [  ~- hll2+x- II(f, g, h)II Ilflh+~+ 

2. Results 

We are now able to formulate the main results: 

Theorem 1. There is a positive constant m, depending on ~2, aij, tll[]~9, J g+ 
and Oo such that the following holds: 

Let W be a neighbourhood o f  H in ~.  Then i f  ko<m there is an extension L 

o f  l to W and a closed subspace S o f  finite co-dimension in S ( W ,  L) such that for  

every ( f ,  g, h)ES we may f ind a bounded solution - r~2+a (~ \d / {_ )  o f  u ~ t~lo c 

{ ~LPu = g in 

au 
(P) - ~  = f on O~2\dg_ 

t u = h on rig+ 

Moreover, codim S = d i m  ~V" where .A/" is the kernel 

{ u E C ~ c ( ~ \ d g _ ) n  C2(s L=(s A~ = 0 in s 

Ou 
O---{=O on O~2\Jg_ and u = O  on ~'+}. 

I f  the coefficient c in s is non-positive and i f  c takes on negative values or rig+ is 
non-empty, then (P) has a unique solution for  all f C C 1+ ~ (0~2), g E C ~ ( ~), h E C 2 + ~ (~ ) 
such that f is in C 2+~ in some neigkbourhood o f  H on OQ and Og/OL is in C ~ in 

some neigkbourhood o f  H in ~i 

Our method of proof also gives a second result which should be compared 
with works by Janusjauskas (see [2]) for "L-convex" domains and operators A ~ 
which "commute with O/OL as for lower order terms". Note that our regularity 
requirements are much weaker. 
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Theorem 2. Assume that ~[_ is empty and that there & an extension L o f  l to 
all of  ~ such that 

s OL OL ~LP = ~ I  + ~ O-L 

where ~1 and ~2 are first order operators. Furthermore, assume that ~/l+ is the boundary 
of  a manifoM A which is such that f2 is a union of  connected L-curves, all intersecting 
A once and under uniformly positive angle. Then Theorem 1 is true for any value 
of  ko and the solutions are o f  class C2+Z(O). 

For  the proof  of  this result, see Remark  3.2. 

3. Two lemmas 

Let L be a unit vector field of  class C 2+~, and assume that  A is an ( n - 1 ) -  
dimensional surface in R" of class C 2+z with C 2+~ boundary OA. Suppose that 
L is defined in a neighbourhood of  .4 such that  at any point p E A the angle between 
L(p) and A is O(p)>=01>O. 

W ~ Consider a family { }o~-~_~0 of domains with the properties: 

(i) W a is the union of  connected L-curves, originating in A and with length 
at most  6. 

(ii) WOD A 
(iii) For  any pE6 -1.  OW ~ the intersection (6 -1 �9 OW ~) n B(p) with a ball around 

p with radius equal to one can be mapped  onto a hemisphere of  radius 
one via a C 2+z transformation ~ such that N and N - a  both have C 2+z- 
norms bounded by a constant do which does not depend on 6. 

Then we can prove 

Lemma 3.1. Assume that the coefficients o f  ~ and their derivatives with respect 

to L are in C~(U~_~o W ~) and that c<0 .  Then there is a positive number 61<=6o 
such that for all 0 < 6 < 6 a  the problem 

I 
.~u = g in W ~ 

Ou 
(Pn) - ~  = f on OW ~ 

u = h on OA 

has a unique solution uEC2+X(W ~) i f  g and Og/OL belong to C~(W~), i f  fEC2+~(OW ~) 
and i f  h E C 2 + ~ (OA). 
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The solution satisfies an inequality 

(3.1) Ilull~+~ ~ C. I lg l lW~+ +llfll2+~+ll II~+~ OL z 

where C depends on 6, 2,, L, A, 01 and do. 

Proof. We will use functions of  the type 

(3.2) u (p) = v (x, ( -  s)) + f s  w o x ,  (e - s) de 

where - s = - s ( p )  is the unique parameter value on /'p such that xp(--s)~A. 
I f  we chose v and w with boundary values h and f respectively, then u, defined 

by (3.2), satisfies the two boundary conditions of (P~). Moreover, the choice can 
be made in such a way that the CX-norms of 2,u and 02,u/OL are bounded by a 
constant times the expression on the right hand side of (3.1). We may thus confine 
ourselves to the case when f and g are identically zero. 

The action of  2 '  on functions which are constant along L-curves defines an 
elliptic operator 2 ' '  in A for which the Dirichlet problem is uniquely solvable. 
Hence, in (3.2) we can take v as the solution of  2''v =g in A for which v = 0  on OA. 
For  w we choose the solution of2"w=Og/OL in W ~ which is zero on the boundary. 
The lemma will be proved if we can show that the map d :  g~2"u from X~ to Xa 
has range ~ ( d ) = X ~ .  Here X~ is the Banach space {g~C~(W~):Og/OL~C~(W6)} 
with norm 

][gl'[ = 61+~ [ ~ ] x  + 6  l ] ~  0 + 64 [g]z+ [lg[Io. 

The proof  will proceed in two steps: 

Step 1: We prove that d = I + ~ - - + , ~  where I is the identity, o~ is compact 
and Y has norm less than one if 6 is small enough. 

Step 2: By the Riesz--Schauder theory ~r has full range iff the kernel is trivial. 
We prove that 2"u=0  implies that g=0 .  

The commutator  2"0/OL -02"/OL can be decomposed into c~+~l+~O/OL 
where ~ is of the second order and N~ and N~ are first order operators, all with 
Ca-coefficients. Integrating 02"u/OL along Fp we get 

Og ~ w) o x,, (e) de 2 ,u (p )  = 2 , u ( p  o 2 " U -  e l U -  

where p'=xp(--s) and 2"u(p')=2''v(p')+.~w(p') with a first order operator 
.~. Hence 

p $ 

(~r -- g) (p) = .~w (p)  -- f0  (~1 u + ~ w +.L~u) o xp, (e) de 
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and we define ~J--g and J~fg as the functions 

and 

T(p) = --f~ c~ uox,, (z) dz 

r $ 
K ( p )  = ,.~w(p ) -- f o (~lU At-~2 w)oxp,  (72) d"c. 

We first prove that s f  is compact. In fact let 2 '<2 ,  note that 

IIKIll - ~ C .  {tl w IIW~ ~ +tl v 11 A+~} <= c .  {II w[I w~ ~, + Itvll~§ ~ c �9 Ilglll 

and use the fact that X~ is compactly embedded in Xx,. 

Now, [lTH0<=6.ll~ul[o and [T]x<=C.6.[C~u]x+C.61-X.ll~ullo because of 
the assumption that [st<-6 in W ~. Here the constant C possibly depends on 6o 
but not on 6. Hence 

IIZl[~ -<- C~ {61+~[Lr �9 IILPullo}. 
Using (3.2) we get 

(3.3) 

To estimate the right hand side of this we consider the function w" in 6-* W ~ 
defined by the relation w'(x)=w(6x). First we note that w' satisfies 

Og (6x) a,j (6x) w b (x) + 6 b, (6x) w; (x) + a' e (6x) w' (x) = 6 -fie 

and hence by the assumption (iii) for {W a} and Theorem 7.3 in Agmon--Dougl is - -  
Nirenberg [1] it follows that 

0g (6x) +llw'[10} 11w'lh+~ ~ c - 6  ~o ~ -  

with all norms taken over 6 -1 W ~ and C independent of  6. For  w in the domain 
W ~ this means 

N.+, ,w,. , .  l + , .  ,wHo] 

with C not depending on 6. 
Now the maximum principle applied to w-co.  (62-(dis t  ( . ,  A))~) �9 IlOg/OLLIo 

proves that Iw(p)[~Co.6 ~.][Og/oLl]o and hence the terms on the right hand side 
of (3.3) which contain w can be estimated by C'6.]lg]['a. Another use of the a 
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priori estimates, Theorem 7.3 in [1], proves that there is a bound for the terms 
containing v which is of  the same type. Hence the norm of ~J" is C.  6 which clearly 
can be made less than one. 

It remains to prove that r i g = 0  implies g =0 .  In fact, the function u corre- 
sponding to g and definied by (3.2) is then a solution of  (P6) with zero data. By 
Lemma 2.2 of [5] such a solution has its extreme values on 0A. But there u is zero 
and hence u vanishes identically in W ~. From this it follows that w=Ou/OL is zero 
in W ~ and that v vanishes in all of  A. But then g = L a ' v = 0  in A and Og/OL= 
.oq'w=0 in W ~, Consequently, g = 0  in W ~. The estimate (3.1) follows from the 
fact that ~r is invertible. QED 

Remark 3.2. Theorem 2 is a corollary to the proof  above since in case s vanishes, 
the operator J"  is zero and hence no bound on 6 a is necessary. 

We conclude this section by citing a result from [5] which will be of  great 
importance in Section 5. 

Lemma 3.3. (Theorem 3.2 of [5]) Assume that ~>=0 on Og-2, that e<=O and 

that c~O.  Then there is a constant m l > 0  depending only on f2, [[lll~ ~ and s such 
that the following is true as soon as ko<ml:  

Let ~ be a f i xed  neighbourhood o f  H in ~ and assume that f E C a + x (~ f2) n C 2 + 4 (~ n Of 2), 

gEC~(O) and Og/OLEC~(S) where L is a Ca-extension o f  l to ~ which is C 2+~ in 
a neighbourhood o f  H. Then there is a solution uEC2+X(O) o f  s  in f2 with 
Ou/~l=f on 0~2 satisfying the inequality 

(3.4) + l l f l l l + ~ +  0on.~ I1~11~+~ = c .  I l g l l ~+  ~L- IISlI~+~ �9 

Remark 3.4. If  H consists of  several disjoint closed sets H i with associated 
maximal lengths k i of  X-curves, then the Lemma 3.3 is true if the k i: s are less than 
a constant depending on the local behaviour o f  f2, I[llh and s in a neighbourhood 
of  the Hi: s. This follows by means of  a suitable partition of  unity. 

4. Proof of the uniqueness assertion 

The main result of  this section is 

l_emma 4.1. Assume that the coefficient c o f  s is non-positive and that c does 
not vanish identically or J[+ is non-empty. Let u be a bounded solution o f  s  
o f  class C ~ ( f 2 ) n C I ( ~ \ ~ ' _ )  which satisfies the boundary conditions Ou/Ol=O in 
Ol2~dg_ and u = 0  on ~ + .  Then u vanishes identically in (2. 
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For  the proof  we need a special barrier type function, given by 

Proposition 4.2. There is a neighbourhood of  s / / /_ \ in t  H in which a function 

w is defined and has the properties 
(A) w is of  class C 2 outside ~g_ 
(B) ~ew =< 0 

Ow 
(C) --~-f~O in d+\JCl_  and 

Ow -g( o in 

(D) There are positive constants cl and c2 such that 

ClW(p ) ~ -- log dist (p, sC{_) <- c2w(p). 

Proof Let s, t, p" be coordinates in a neighbourhood of J r  H such that 
p '  can be identified with coordinates in ~ ' _  and 0s is given by t---O. Since we 
have imposed a monotonici ty condition on the X-curves (see Section 1) we can 

choose s in such a way that  Os/OX>=O on 0~2 near J//_. 
In the expression for ~ in the new coordinates we single out the part  which 

contains all second order derivatives with respect to s and t: 

O~ O~ O~ 
ass-~sZ + 2ast-O-~ + a.  Ot ~ �9 

Now we define the function q0 as the non-negative solution of  

r = s~_2 a~ st-b a~ t 2 
att att 

and let 
w = - log qo. exp ( -  q0). 

I t  is readily verified that  

..q)W -= assatt--as~t logcp t-O(1/(p) 
art ~D 

as (p--O, and hence that  w satisfies (B). 
Furthermore,  since h is the outer conormal to 0~2 with respect to .~r it follows 

that  

&o Os 
0~- = sgn s .  OX 

near d / _ \ i n t  H on OQ\Jr Hence 

Ow Os 
O--l- = ( -  1/s + sgn s .  log Isl)" exp ( - I s l ) .  Ox  
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which means that (C) is true. By the very construction of  w it follows that (A) holds, 
and (D) follows f rom the ellipticity of  .oq ~. QED 

Proof of Lemma 4.1. Since u is bounded it follows that 

s u p u =  sup u. 
a ~ \ ~  _ 

Assume that this supremum, m, is positive. The value m cannot be attained at any 
point in 0 f 2 \ ~ ' _  since this would imply that u takes on the value m in J/L+. 
(See Lemma 2.2 of  [5].) Hence, there is a point p E J/ /-  such that 

m =  l imsup u(p').  
a a \ d g _  3 P' ~ p  

We claim that p cannot belong to the interior of  H. In fact, u is constant along 
7n\,u_ and if it has a maximum, then Ou/On is positive along that  arc and just as in 

P 

[5], Lemma 2.2, we get a contradiction via Ou/OX=-~Ou/On. 
Fix a neighbourhood W of ~ _ \ i n t  H in O so small that Proposition 4.2 

can be applied in W. Put m ' = s u p a \ w  u. Then m'<m and thus for all sufficiently 
small ~>0,  the function v = u - e w  is less than (m'+m)/2 on OWnf2.  Since w(p) 
tends to + oo as p approaches Jg_ ,  it follows that v<(m'+m)/2 on OW e n f2 too, 
where Wo={pEW:dis t (p ,  J l_)<O } and Q>0 is sufficiently small. 

On the other hand, on O ( W \ W e ) n O f 2  we have Ov/Ol=-eOw/Ol which is 
non-positive in d +  and non-negative in d _ .  Hence v<(m'+m)/2 in all of  W \ W  o 
for all O>0. First let 0 tend to zero and then e. Hence u<=(m'+m)/2 in W c o n -  
tradicting SUpw u=m. Since the same discussion can be applied to - u too, it 
follows that m has to be zero. QED 

From the proof  of  Proposition 4.2 it follows that  w does not depend on a. 
Moreover, for small distances to ~/_  we may  give a more precise estimate for 
~aw than that  in (B). In fact 

Proposition 4.3. The barrier function w of  Proposition 4.2 depends only on X, 
~[L_, f2, and the principle part of 5Y. Moreover, for sufficiently small q~ 

log r 
~ w  < Co. q~ 

where Co is a positive constant and q~ is equivalent to the distance to J/I_. 
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5. Proof  of  Theorem 1 in a special case 

In this section we assume that H is a neighbourhood of J / _  in 0f2. We also 
require that the coefficient e in ~ is non-positive and not  identically zero. 

We will construct local solutions u0 outside a neighbourhood of  ~ ' ,  ul in a 
neighbourhood of ~/+ and u 2 near ~r A special kind of a partition of  unity in 
t2 will then enable us to combine the local terms to a global, approximate solution 
of  (P). From now on we assume that f ,  g and h are fixed functions such that 
fEC1+2(0(2)~C2+~(~0~), g~Ca(O)(~Cl+;~(~) and h~C2+a(,~'+) where 27 is a 

fixed neighbourhood of H in 0.  

Construction ofuo: Choose an open neighbourhood "/~ of  ~ '+ in 012 and an 
open neighbourhood ~ of J//_ in 0f2 such that H\~r has a positive distance 

to ~ and ~ z c in t  H. Obviously, there is a unit vector field l '  which is plus or 
minus I outside ~/r~u~/r2 such that ~ ' = l '  . n ~ 0  on 0f2, the tangential component 
of  l" is parallel to X and l 'EC a+z is of  class C ~+x in XnOg'2. In order to be able 
to apply Lemma 3.3 with l" as the directional field on the boundary, we must know 
that the lengths of X-curves in H ' =  {pEOf2: ~ ' (p)=0} are sufficiently small. How- 
ever, since the X-curves are supposed to have zero length in OH n U according to 
(ii) in the definition of  ~ '_  in Section 1 and since cY > 0  in ~ this is always possible 
to achieve. In fact, by Remark 3.4 we can apply Lemma 3.3 locally and thus the  
existence of u0 is guaranteed by the smallness of  k 0 independently of  the choice of  
I' in the problem which we now are going to formulate. 
Put f = f  in d +  and = - f  in d _ .  We choose a smooth function r / in Of 2 which 
is zero in a neighbourhood of  ~ / b u t  equals one in a neighbourhood of 0 f 2 \  
( ~ u ~ ) .  Denote the function ~ / . f  by f '  and let u0 be the unique solution of 
s in f2 with Ou/Ol'=f' on 0f2. 

Construction of  u 1 �9 To obtain ux we will use Lemma 3.1. Hence we have to 
define A and {W~ Let _n be a smooth extension of  the normal vector field _h to 
a neighbourhood of ~ '+ .  l~ix a sufficiently small 60>0 and let A be the union 
of  integral curves to n in O, originating in J[+ and with length 60. We also intro- 
duce the function t(p) in A as arclength on the integral curve to _n through p, nor- 
malized in such a way that t = 0  on J~+. Let ~ be a C ~+~ unit vector field in a 
neighbourhood of A such that ~ is normal to A and tangential to 0f2. Introduce 
the coordinate function s(p) as arclength (with sign) on integral curves to ~, nor- 
malized in such a way that s = 0  on A. This is well defined for all p on ~-curves 
originating in A. Thus to every such p there is the coordinate s(p), the coordinate 
t(p)=t(p') where p '  is the intersection of  the F-curve through p with A, and the 
point p"(p)E~/+ which is the intersection of  the n-curve through p '  with ~t'+. 

The construction of {W ~ is thus reduced to the definition of a corresponding 
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family of two-dimensional domains. Let cg 1 be a CS-curve in the (s, t)-plane which 
consists of  the line {t=0, 0<=s~ 1}, a convex arc f rom (1, 0) to (2, 1) and then the 
line {s=2, 1-<_t<=2}. 

Let cg s be a C3-curve in the (s, t)-plane which consists of the two straight lines 
{s=2 or - 2 ,  2 ~ t ~ 3 }  and a convex arc, symmetric with respect to the t-axis, 
which has strictly positive curvature at s = t = 0 .  Hence we get W e as a combina- 
tion of  two curves congruent to 6-Cgl, one curve congruent to 6.cgz and two 
straight lines. 

f 
I 
I 121 
I 
I 

S 
! 

I 

I 

I 

W ~ 

Furthermore, if  k0 and ~1 are small enough, then Og/~DDfll for some 
6>k0 for which the problem (Pc) in Lerrana 3.1 is solvable when L is an extension 
of  l to W e0 such that L is tangential to W e0 at OA and has uniformly positive 

angle with A. 

Construction of us: Define us on 0~?\~t '_ as u0 outside ~ and for P~r as 

p S 

(5.1) u2(p) = uo(p )+ fo fo2,, (v) dz 

where p'EH\~r p=2p,(s)  and the X-curve from p '  to p is completely contained 
in H \ ~ ' _ .  This in general produces a singularity on Jr Extend us to all of  
by solving ~u=g in O with boundary values as above. 

Construction of a partition of unity: Let Oa be equal to one on a neighbourhood 
of  H c~r163 but equal to zero in 00\r Since I is not  tangential to 0 0  in r 
we may extend 01 to ~ such that ~OlEC2+~(~), supp ~ic W e'O~a/OLECs+~(W~), 
0~--~1~1, and 0~1/0l=0 on 0~.  
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Let ~ have support in a neighbourhood of  ,///_ such that supp ~2~ OOcH 
and ~ = 1  in a neighbourhood of Y~2. We may take ~'z in C2+a(D) such that 
&pJOL'~C=+a(~) for a fixed extension L" of l '  and such that 0<=~92<-_1. 

(5.2) 

Now we define the approximate global solution: 

u = ( 1 - 6 ~ - ~ , ~ ) U o + ~ q u ~ + r  

We will prove that Ou/Ol=f on 0 f 2 \ d d _ ,  that u=h on +g+ and that ~eu=g+Yg 
where ~ corresponds to a compact linear perturbation in some space. 

It is obvious that u=h on d/+ since on that manifold ~1 = 1 but ~2=0,  
and u~ equals h there by definition. 

Since OUo/Ol'=f" it follows that OUo/Ol=f except in a subset of ~11, the 
closure of  which is also contained in ~r or in Y/~2. Hence, if the subset of 
in which ~1 = 1 covers the first of these exceptional sets it follows that Ou/Ol=f 
except possibly in supp O~nOf2. However, in this set Oa=0 and I=X. Outside 
~t/~, Uo=U2 and hence Ou/Ol=f there. In ~r ~ = 1  and hence u=u2. Thus by 
(5.1), OuJOX = f and 3u/Ol= f. 

Now s 2 where the ~g:s  are first order operators 
with supports in supp (grad ~a) u supp (grad IPe), supp (grad 6a) and supp (grad ~ )  
respectively. For  the construction of u0 we only had to require that Og/OL'~ Ca(~ ") 
where 27 is a neighbourhood of H\Y/~ in ~. Similarly, the construction of ui was 
possible, provided only that Og/OL~ C ~ (W~). Note that .L~u has the same regularity 
since the Ni: s are of the first order. This means that we can assume that f = 0  and 
h = 0  in the sequel since the construction above enables us to reduce the problem 
(P) to that situation by subtracting a function u according to (5.2). 

Now introduce the Banach space 

with norm 

S = {gC Ca(~): ~0g ~C,(Wa) ,  ~0g C Ca(Z')} 

Og W6 Og 2" 
[IgLl~ = ]lgll~+ ~ - a  + -b-L -7 a 

and define the linear map d in S by ~r : g ~ Seu where u is obtained from (5.2) via 
the constructions of u0, Ul and u2. Then d = I + ~ f f  where as before ~"g=N0u0+ 
Nlul+~2u~. We claim that ~ff is compact in S. 

In fact, the map g~ui, i=0 ,  1, 2, is continuous from S into C z+z and therefore 
the map g-*~"g is continuous from S into C l+a. We will prove that the maps 
g--*OYd'g/OL'lx, and g~OYgg/OLIw, are continuous from S into C l+a. From this 
the compactness of zr Will follow. However, in 27, O/OL'~ffg=~ o OUo/OL'+~o'uo+ 
~ OuJOL + ~s where the operators are of the first order. We thus have to consider 
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OUo/OL" and OuJOL" in supp (grad ~ ) .  Since u0 and us satisfy the weak identity 

Oui Og 
.LP OL" - OL" ~-.~u~ 

where .~ is of the second order, it follows from Theorem 9.3 in Agmon--Dougl i s - -  
Nirenberg [1] that Ou~/OL'EC T M  in any open domain in E' which meets Of 2 in a 
set where l ' =  •  and that there is an a priori estimate 

OL z+z <= C.[Igll~. 

A similar argument applies to OJ~fg/OL in W ~. 
By the Riesz--Schauder theory, it follows that the range Yl(si) of d = I + 3 f "  

is all of S if and only if the kernel Jg'(~r is trivial. Thus, assume that r i g = 0 ,  i.e. 
~ u = 0 .  Since Ou/Ol-=O in 0f2\,r and u = 0  on J /+  it follows from Lemma 4.1 
that u = 0  in f2. We will prove that this implies that g =0 .  In fact, this will 
follow if we can prove that Uo=Ul in W ~ and uo=u2 in f2 when u =0 ,  since then 
u 0 = u = 0  and g = ~ u o - - 0 .  

First, consider v=uo-u2  in O. Since s in f2 and since by construction, 
Uo=U2 in 0 0 \ ~ ,  we only have to show that Ov/Ol'=O in ~ to conclude that 
v = 0  in f2 by the maximum principle. But this follows from the fact that u2=0 
in {~02= 1} which is a neighbourhood of ~ by construction. Hence, OuJOl'=O 
and since by definition Ouo/Ol'=O it follows that Ov/Ol'=O. 

Next, consider w-=uo--ul in W ~. This difference satisfies s and by 
construction w = 0  on OA and Ow/OL=O in OWe\Of2. On OW~nO0 we note 
that OUo/Ol'=O but that Oul/Ol=O. However, if l'=+_l this means that Ow/Ol=O 
and if l ' # . •  then ~1=1. By (1-~k0.u0+~k~.u~=0 it thus follows that ua=0 
in a neighbourhood of { l '~  + l}  in ~ f rom which OUl/Ol'=O, too. But these con- 
ditions on the boundary imply that w=0.  

This completes the proof  of Theorem 1 in the special case. In the next section 
we apply an approximation procedure to get the general result. 

6. Proof of Theorem 1 in the general case 

It is enough to prove the theorem under the hypothesis that f = 0  and h=0 .  
Let 6k",,0 and take smooth functions t/k on 0s such that 0~t/k<_--1, r /k(p)=l  if 
dist (p, , l t '_)>6k and r/k=0 in a neighbourhood of d /_ .  Replacing ~ by t/k'~ we 
get new fields Ik. 

Using the monotonicity of  the X-curves in a neighbourhood of  s /g_ \ in t  H 
we can choose {t/k} such that the X-curves within OHk\H, where Hk= 
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{pEOg2: (r/k~)(p)=0}, have zero length. Hence, there is a unique solution of 
(Se-a)u~=g in I2 such that OUk/Olk=O on 0(2\~//r and uk=O on J//+. Here 
a is a smooth function, chosen such that c--a<=O in f2, c - a < O  at some point 
in f2, and a = 0  in a neighbourhood of Jg_.  

Since we want to select a converging subsequence of {uk} we first prove the 
following result: 

Lemma 6.1. Let ~ be a neighbourhood of  dg_ in ~. Then there is a constant 
C which does not depend on g or k such that for sufficiently large k 

(6.1) u a'~ u -< { [00~ k w} It ktl + +tl c [Igll~+ 

where W is a fixed neighbourhood of  H in ~. 

Proof Application of Agmon--Douglis--Nirenberg [1] outside H and use 
of the technique in the previous article [5], Section 3.1 and in Section 3 of this 
article shows, that we only have to consider the estimates in a neighbourhood of 
the components H_ of H which contain ~ ' _ .  

From a weak identity ..~(Ou/OLk)=Og/OLk+~u with a second order operator 
~ ,  and from Lemma A.2 in [5] it follows that 

Ilu~llff~-x = C. ~.llukllz+x+llg!lz + ~ z 

where 2 7 ' c c S "  are neighbourhoods of  H _ \ S .  
However, from local estimates for the Dirichlet problem and the fact that 

Ouk/OX=O in H, a bound for the C~+Z-norm of uk up to 0f2 in the interior of H_ 
is easy to get. Hence, 

{,,o 3 } 
Next we claim that in a neighbourhood U of 2;, 

(6.2) [ukl ~ C . m a x  Ig{+sup lukl. 

In fact, let w be the barrier function according to Proposition 4.2. Let UQ be the 
set {pE ~:  dist (p, ,///_)<~} and choose ~=6~,,  v=  1, 2, .... The function v = u - e w  
satisfies (see Propositions 4.2 and 4.3) 

~ v  = g - E ~ w  >= g-eCo log~o in Ua~, 
~0 

Ov Ow 
eglk -- e-~k on 0f2c~Ue~ and 

v < = u  on 
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If  we choose s to be - C o l  max [gl" 0v/log 0v we find that Zav=>0 in UQv and 
hence that u-ew  <-sup~v~vu in UQv (cf. the proof of Lemma 4.1). Thus 
u <- sup~uo,,u+(Co.cO-~.ov.max [g] in UQ,,\UQv+I from which it follows that 
u<=sup~u~xu+C"~k "max ]g[ in UQ1. A similar argument applies in U\UQx and 
this proves (6.2). 

Hence we get 
u ~ " ~ +  u ~ 0g  re 

II ~llm+~ II kllL'(m -<- C'{llg[l~+ ~ ~+llukllL~(~"~)} 

from which the lemma follows by a compactness argument. QED 

Choosing a sequence of domains 27k" x J#_ and applying a diagonal procedure 
we get a subsequence {Uk, } which converges in C~+X(~\2~) for every ~D.r and 
which is bounded. Hence the limit function u satisfies ~ u = g  in f2, Ou/~l=O on 
0 t 2 \ ~ ' _  and u = 0  on dr'+. Furthermore, u is bounded. 

Tending to the limit in (6.1) we get 

(6.3) u ~ \ ~ +  u <-C(27).{11g[[,+ ~ ~} 11 IIm+x II IlL-(O) 

if the extensions Lk of lk are chosen such that they converge to a fixed extension 
L of l. In the same way as Theorem 3.2 of [5] was proved from Theorem 1 in [5], 
it follows from (6.3) that there is a unique solution of ( ~ - a )  u=g with boundary 
conditions as before, if only gECZ(~) and ~g/OLEC~(W). Finally from (6.3) and 
the fact that a is zero in a neighbourhood of ~ '_  it follows that the map d :  g ~  
.Leu=g+a. u is the sum of the identi tymapin S'(W, L ) =  {gEC~(~): Og/OLECa(W)} 
and a compact operator. Hence Theorem 1 follows from the Riesz--Schauder 
theory. In particular, the result on the codimension of ~ follows from the observa- 
tion that if uE~" then v=u is the unique solution of s with zero 
boundary data. 
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