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In this work we give a minimum modulus theorem which enables us to prove 
the invertibility of a large class of  ultradifferential operators. 

It  is known that the invertibility of convolution operators defined by ultra- 
distributions S with compact support is equivalent to the existence of  a certain 
lower estimation for the modulus of  the Fourier transform of S (see [1], [3], [8], [9]). 
While usual differential operators with constant coefficients are all invertible even 
in the space of  Schwartz's distributions, the following problem is still open: 

Is every ultradifferential operator invertible in the corresponding ultradistribu- 
tions space or at least in the "union" of all ultradistributions? 
In [2] Ch. Ch. Chou positively solved this problem for elliptic ultradifferential 

operators. For  the general case some results are given by the same author in [1]; 
unfortunately, the invertibility is proved under very restrictive conditions on the 
considered ultradistributions space. 

The aim of this work is to give a general minimum modulus theorem, improving 
the well-known theorem of  L. Ehrenpreis [7] and which yields to an invertibility 
result in ultradistributions spaces satisfying less restrictive conditions then those of  
Ch. Ch. Chou. In particular we prove that all ultradifferential operators of  class 
{k! (//~=2 In j)~} with ~ ~ 1, are invertible, while Chou's result works only for ~ >2.  

1. A minimum modulus theorem 

L e t f b e  an entire function with f(O) = t and let al,  a2 . . . .  be its zeros indexed 
such that [al[<=[a2[<= . . . .  We denote for each r>O 

and 

My (r) = sup If(z)[ 
lzl=r 

ny(r) = the numbers of a k with lak[ -< r. 
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Then, by the Jensen formula (see [14]), we have 

(1.1) n:(r) <= lnM:(er), r > O. 

The following result is a refinement of the minimum modulus theorem of 
L. Ehrenpreis from [7] (for other variants see [8] and [9]); in its proof we use tech- 
niques both from [7] and from [15], Section 23. 

Theorem 1.1. Let f be an entire function of  finite exponential type with f ( 0 ) =  1; 
then for every ro>O and O < z <  1/8e, there is an r" with ro-<-r'~(1 +z)r o, such that 

IzJ=,'inf In ]f(z)[ >----61nMf(2ero)lnl-8z Zj=I+~ 4 j 
ln M:(2Jero) 

Proof Let us define the entire function g by 

If  for 

so that 

(1.2) 

If  al, as . . . .  
factorization theorem ([14], 8.22 and 8.24), we have 

~'+=~<+co and g(z) = l I L ~  1 -  
k = l  ]a~l 2 

Let ro>0 and 0 < z < l / 8 e  be fixed and denote 

n' = n:((1--Z)ro), n" = n/(2ro). 

We define the entire functions gl, g2, g3 by 

a~J 

g 3 ( z )  = 

Then 

g = gig~g3. 

g(z )=f (z ) f ( - - z ) ,  zEC, 

r>0 ,  z,~C is such that Iz, l=r and ]f(z,)l=inflzl= , ]f(z)[, then we have 

inf [g(z)[ <= [f(zr)l" [f(--zr)] -< i!~fr lf(z)l .M:(r), 
Izl=r 

inf ln[f(z)[ ~ - - lnM:(r )+ !lnf lnIg(z)[, r > O. 
Izl=r 

are the  zeros o f f ,  indexed such that ]al[<= ]as I<--..., by Hadamard's 

z~C. 
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Let  r with ro~r<=(l+z)ro and put  n=nf(r); let fur ther  z 6 C  such that  Iz]=r.  
We can write 

z~, 2 ~ fak ~ ) an" + 1 .. �9 an 
a~, ... a~ z - ~  : 1 I~_ , ,  t - Y -  1 . g l ( Z )  = 

As for  l~k<=n, [akl~lzl, we get 

z2n I (1.3) a~.--.., a,, ~ => 1. 

Next ,  since for  k>n', [akl>(1--v)r0,  we have 

a , ' ,+ l  . . .  a ,  ~ 
=tT~j �9 

Using the inequality 

1 - u  > 1 / ~ -  1, l + u  = u '  0 < u < _ - -  

it follows that  

t (1.4) a , ,+l  .,. a ,  ~2,,,-,,). 

Finally, for  1 <=k<=n ", we have 

~ ,  I > _ _  
2"2 1 = 

hence 

(1.5)  

By (1.3), (1.4) and (1.5) 

consequently 

(1 .6)  

(r--Iakl) ~ ( r - ( i  - z) ro) ~ ( r - ( 1  - z ) r )  ~ 
r 2 ~ r 2 = r 2 : T2~ 

IjTk.~ 1)1 ~ ~.  , 
- ~ z  2 / I  

I gi (z)  l --> z ~"' --> ,2 . /~0) ,  

I 
In ]ga(z)l _->-2nf(2ro) l n - - .  

T 

Let  us now estimate lg3(z)[, for  Izt=r, ro<=r<=(1 +z)ro. We have 

2" 2 
= 1 _ z ~  . 

Using the inequality 

U 
l n ( 1 - - u )  > O < u  < 1, 

= - - l - - u  ' 
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we obtain 

In i g3 (z) l -> - Zy=2 Z, ,~ , (2 , -~ ,o )<k~_ . , cZJ .o )  
l _ - ~ k  2" 

Since for j_->2 and n:(2J-lro)<k<-n:(2Jro) we successively have 

1 

[-h-~k 1 + ~  9 z ro(l+'r) ~ _ _  _ _ _  
~_ 2J_lr-------- ~ _ 2 j _ 1  2J+2 , 

_~k 2 81 
4 j+2 81 8 

1-- _zz 2 = 81 4J+2--81 -- 4J '  
ak 1 4772 

then 

(1.7) 

Finally we observe that 

nf (2Y ro) 
In Ig.(z)L >- -8  Zf'=, 4J 

/ / . '<k_~."  (a~ --  z 2) 
(1.8) g2(z) = a,,+12 ... a~,, 

and we apply the Boutroux--Cartan theorem (see [15], Section 2.2) to the polynomial 
in the numerator of  the fraction from (1.8). Thus for z~C outside of 2 ( n " - n ' )  
circles with the sum of their diameters less then 8er0 z2, we have 

so that 

I//,'<k~_," (ak ~-z2)[ => (2r0z2) 2("-"') 

(1.9) Ig~(z)l > ~a(,--,,) ~ T,,-. 

Since 8eroz2<roz, there exists r '  with < '-< ro=r = ( l + z ) r 0  such that every zEC, 
Izl=r', is outside of the above 2 ( n " - n ' )  circles. 

By (1.9), for Izl=r" holds 

(1.10) In Ig~(z)l > -4nf(2r0) In 1 
T 

Introducing the estimates (1.6), (1.7) and (1.10) in (1.2), we find 

_ nf(2Jro) 
inf ln lf(z)[ >----lnMf(2ro)--6nf(2ro)ln 1 8 Zj+=~ 4~ 

Izl=r' "C 

Using (1.1) in the above inequality, the proof of the theorem is complete. Q.e.d. 
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If  we take in the above theorem, for example v = e  -4, then we reobtain the 
minimum modulus theorem of  L. Ehrenpreis ([4], Th. 6). In our result, unlike those 
of  similar kind of  O. von Grudzinski from [8] and [9], the dependence of  the mini- 
mum of  the modulus on the parameter z has a more simple form which is very useful 
in the applications. This is illustrated by the following 

Corollary 1.2. Let ~: (0, +o~),-~ (0, +co) be an increasing function with 

f+~ cz(r) r f+= dr< + co and d l " 7  In ~ dr < + co. 

Then there exists an increasing function fl: (0, + co) ~_~ (0, +oo) such that 

f [ ~  ~r(~r) d r <  +0% 

and with the property: 
I f  f is an entire function satisfying 

(1.11) lnIf(z)] <_- ccr zEC, 

for  some c, c'>O, then there exist d, d '>O such that for every ro>O 

sup inf In If(z) l ---> - dfl ( r0 ) -  d'. 
ro~-r~-ro +aa(ro) Izt=r 

Proof. Since l im,~+~(r ) / r=O,  (see [12]), there exists co>0 such that 

c#(2er) 1 
l + r  < --~'e ' r > 0 .  

For  r>0 ,  let us put  

1 + r ~ (2Ser) 
fl(r) = 6~(2er)ln CoOt(2er--- ~ b8~,~= z 4i 

Then fl: (0, +oo)~-~(0, +~o) is an increasing function such that 

(1.12) fl(r) >= ~(2er), r > 0. 

By the assumptions on the function 0~, we successively have 

f+= a(2er) 1 + r 
r~ In Co~(2er------ ~ dr < + co, 

f+.lz ~ Z dr<= e Z dr-<+ o o  
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(r) f f  dr < + ~o. 
r 2 

Let f be an entire function satisfying (1.11) and to>0;  we can obviously suppose 
that f ( 0 ) = l .  Apply Theorem 1.1 to f ,  for z=coe(2ero)/(1 +r0); then, by (1.12), 
there is an r" with ro~r'<=ro+cofl(ro), such that 

inf In I f (z)  l --> - c/~ (r0) - 6c' (In 8 + 2). Izj =r" 

Then the Corollary results with d = m a x  (Co, c) and d'=6c'( ln 8 +2). Q.e.d. 

2. Invert ible  ultradifferential  operators  

Let 0<tx<=t2~... be such that t l<+Oo and ~ = l l / t k < + ~ .  For rz-0 
we define 

the distribution function of the sequence {tk} 

n(r) = n{ tk} ( r  ) = the number of tk with tk --<-- r; 

the associated function of the sequence {tk} 

N(r) = N( tk}  (r) = In max 1, sup 

We further define the entire function of exponential type zero co = co{tk} by 

O)(Z) = ]'/'~=1{1+ iTk ) ,  zCC. 

We note that (see [12], Ch. I. or [13], Ch. II, Section 1) n, N and co satisfy the non- 
quasianalyticity conditions 

1 

Moreover, we have 

(2.2) lim n(r) 
r ~ + ~  r 

As 

(2.3) 

-+i_~ N(r) dr < +o% -+I/~ In Io~(r)l dr < +~o. 
r 2 ~ 1  r 2 ,i 1 

= O, l i m  N ( r )  _ O, lim lnl~o(r)l _ O. 
r ~ + ~  r r ~ + o o  r 

N ( r )  = 
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it follows that  

(2.4) 

Obviously 

(2.5) 

n (r) <-- N(er).  

g ( r )  < In tco(r) l 

On the other hand,  for every r > O  

1 + ~  

= + n (2) 2 (Z~----+ rZ--) d2 n(2)In 1+-~- a=o 

, z ,  r2 d2 + ~ +  ~ f=J~ r2 
= Jo  n(2)2(2~-~r2) j=2 j 2,_~ n(;O 2()fiTr2 ) d2 

_< f 2 ,  n (2) d2 + Z +  • f2 , ,  n(2) 1 
- -  a o ,~ J=Z J 2s-~r 2 4j_ 1 d2 

1 
4J-~ .to - - i f -d2 ,  

hence by (2,3), we finally get 

N(21r) 
(2.6) In Ico(r)l <-- 4 ~ i + ~  4J 

We shall give now the 

Lemma 2.1. Let  n, N, o9 be an above. Then the following statements are equiv- 
alent: 

( i )  < + 
tk 

r 
(ii) a f+=l n ( r ) l n - ~  2 < + ~ ;  

N(r)  r 
(iii) "+l_ ~ In dr < + ~;  

F 2 

(iv) "+1 = ln lc~ l n - -  
r g , / 1  lnl~o(r)[ 

d r < + o o .  
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Proof. (i),~,(ii). Let k =  > 1 integer; integrating by parts, we get: 

r In ~ dr flt].~ n(r)ln~_~dr 2 dtkftk+x Zr 2 r 

(1) 
= kf,~ In r d - - k In k 

= k ~,(lntktk- lntk+ll+(k--klnk)Jtktk+l ! -'fi- 

= k t" (lntkt[ In tk+ltk+l +(k-kink) .  tk+; 
Hence 

= ~'k-=~ [k ( lntk "tk lntk+l)+(k-klnk)(~ tk+l tk+x 1 ) ]  

k k 

= Zk=~ [ lntk + [  tk l - In  (k_l)k_l ] t k  

k k 
= ,~k=l i. /k "r 1 + In k--lntk (k_ 1)k_l ] . 

Using the Stirling formula, it is easy to get 

lim [ l + l n k - l n  (k?~)k,1 ] = O, 

hence there exists c > 0  such that 

1 + In k -  In 

This yields the desired equivalence. 

k k I 
I < c ,  k > 1. ( k -  1) k-x I = --- 

we have 

(2.7) 

Let us further examine the condition (iv). By the inequality 

a21n 1+ =~ln(l+u2), a ,u  > 0 ,  

a21nlo[--t/[>=lnlo)(t) [, a,t>O. 
i ~ a l l  
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Using (2.6) and (2.7), we obtain 

--/+= In [~o(r)] I n -  
./1 r 2 

r 
dr 

In Io~(r)l 

4 += 1 +~ N(2Jr) 
= ~ j = l  ~ - f l  rZ l n - -  In Iog(r)l 

dr 

+ ~ +  N(t )  
: 4 Z _  .2J f~; ~ f In {') 2 j In co ~7 

dt 

4 - - + ~  1 ~+~ N( t )  
<= Z j = ~ J ~  t2 In 

2J a2 t 

4Ja21n 
dt 

4 - - + "  1 ~+= N(t )  
--< .~ ' j= l~j -J l  t~ In 

2 j a2t 

In Ico(at)l 
dt 

4 +~ 1 + ~  t = (~J=1 ~7) fl Nt--(t)Inln,~o(at)[ 
( In 2~a~)f+~ N(t) 

- - d t + 4  ~ f ~  2J ] 1 t2 dt. 

Thus, by (2.1), (iv) holds if 

(2.8) f i ~  N4t)l n t lnIa~(at)l d t < + c o  for some a > 0 .  

(iii)=~(iv). This implication results immediately from (2.5) which imply (2.8) 
with a--- 1. 

(ii)~(iv). By (2.4) and (2.5), we have 

In ]co@r)[ _-> n(r). 

Hence, from (2.8) for a=e, it is enough to prove that 

N(t) t 
(2.9) ! i  += t2 l nn - -~ -d t<  +co. 

Let 2 >  h and n=n(2).  Then 

f += 1 t = ft,+l 1__ t t 
t~ In n -~  dt  a~ t 2 - -  In n--~- dt + 2k~--n-bl fi'2 +1 l l n - ~ i y d t  

f t " + ~ l l n t "  ~ a t " t "+~l lnk  = j ~  t2 c l t+Zk~_n+l t  k dt. 
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Since 

we deduce 

t 
1 + l n - -  

f~_l  I n t d t -  t c /-constant, c , t > 0 ,  

+~ t 1 1 tk!l.).. 

,nZ 1. 
+ 

2 t. + ~  tk tk + 1 

2 k - 1  
In - -  In 

1 n k 
= - r  + - - - = -  + 2 , k ~ . + ~  , 

A A ~ tk 
consequently 

2 
l n ~  

-+~ 1 t 1 n(2) 
(2.10) J ~ --filn~(t) dt <= -f--t 2 

Further, by (2.3) and (2.10) we have 

N(t) t = f+= 1 ( f t  n(2)d2/ t 
t~ l n ~ d t  Jt~ t - ~ t J t ~ - - f -  )ln-n-~(t) dt 

_ S + -  n(,~)~ -+ -  I , ~,)<~ 
- , , - r - I ,  J2 "~-lnn'-~O 

Therefore (2.9) holds. 
(iv) =, (ii). By (2.7), (2.5) and (2.4), we have 

e 2 In Ice(r)l >_- In Io)(er)l >= n(O, 
so that 

n(r) In [co(r)[ ~ e 2 
r r 

The function, t-~t In 1/t is increasing for O<t<e -1, 

r : ~ O ,  

so that by (2.2) 

~_~2r r In [~(r)[ r ) 
In ntr)~ <-- e 2- r2 -In e21n ice(r) [ 

if r is sufficiently large; this yields the desired implication. 
By a similar reasoning we deduce that (iv)=.(iii) and this ends the proof of 

the lemma. Q.e.d. 
We can now give our main result: 
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Theorem 2.2. Let O<tl<~t2<:... be such that 

+~ 1 l n ~  
tl +~o, 2k=t  ~k + and Zk=l 

tk 

Then there exists O<sa<=s2<= ... .  sl< +~ ,  ,~k~ 1/Sk< +~ ,  with the property: 
I f  f is an entire function with 

(2.11) ]f(z)] ~ Colco{,k}(Izl)[ "o 

for some Co>0, n0E1 integer, then there exist a, M > 0  such that 

sup In]/(~+q)]  ~-alnmlco{s~}(l~[), ~EC, 
lql~-alnMlCO{su}([~l)] 

where the supremum can be taken over R, when ~ E R. 

Proof. Let us denote ~ ( r )= ln  ]co(r)l, r>0 .  Then by Lemma2.1,  the con- 
ditions from Corollary 1.2 are fullfilled for the functoin ~. Hence there exists an 
increasing function fl:(0, + ~ ) ~ ( 0 ,  + ~ )  with f+~176 such that for 
every function satisfying (2.11) there are d, d '  > 0  such that for each ro > 0  

sup inf If(z)] >=-dfl(ro)-d'. 
ro~_r<=ro+dp(ro) Izl=r 

But from the above inequality we easily get 

(2.12) sup lnlf(~+r/)I >:-dfl( l~I)-d' ,  ~EC, ~ ~ O, 

where for real ~, the supremum can be taken over qER, as a simple 
reasoning shows. 

Further, by a result of O. I. Izonemcev and V. A. Marcenko [11], for the func- 
tion/3 there is a sequence 0<Sl<=S2 <- . . . .  ~ 1/sk< +co, such that 

/3(t) <: In[co(s~}(t)[+d, t > 0 

for some constant d>0 .  Then the statement results from (2.12) for suitable positive 
constants a and 34, enabling us also to remove the restriction ~ 0 .  Q.e.d. 

We shall give now the 

Definition 2.3. Let O<q<=t2<= ... .  q <  +~o, ~ + ~  1/tk< + ~  and co=c%~}. 
An entire function f is called co-slowly decreasing if  there are a and M > 0  such that 

sup If(~+t/)l => M-~lco(~)l -~, V ~ R .  
[q[ ~ a  In M[r 

q E R  

Let us remark that all kinds of  slowly decreasing functions considered in [1], 
[8] and [9] are co-slowly decreasing for some suitable function co, as the above men- 
tioned result on entire majorants from [11] shows. 

From Theorem 2.2 we immediately get 
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Corollary 2.4. Let o~{tk} , a~{sk} and f be as in Theorem 2,2; then f is oo{sk}-slowly 
decreasing. 

In order to apply the above results to ultradifferential operators we recall some 
facts about the o~-ultradistributions considered in [3], [4], [5] and [6]. 

For  K c  R compact, we define the functions space: 

{ PL'"(~~176176176 } 
~o, (K) = q~ E C0~ (K); ,~R 

for every L > 0, n => 1 integer, supp ~0 c K 

(~ denotes the Fourier transform of  ~p) 

~ = ,tim ~ ( K ) .  
K c R  

The elements of the dual @" are called a~-ultradistributions. The "union" over co 
of all eo-ultradistributions coincide with the "union" of all Roumieu (or Beurling) 
ultradistributions (see [6]); the parametrization over a~ presents a series of advan- 
tages among which we mention the stability under ultradifferential operators of 
each ~,~. 

As for distributions, one can define the notion of support for o~-ultradistribu- 
tions. I f  SE~o; has a compact support, then its Fourier transform S is defined by 
&z)=(s, e-%, z~C. 

Definition 2.5. We say that the co-ultradistribution S with compact support is 
invertible in ~ if S . ~ = ~ .  

In [3] the following result is proved: 

S is invertible in ~ iff S is o~-slowly decreasing. 

In [5], [6] we called co-ultradifferential operators all linear operators on ~,~ preserving 
the support. 

Among the a>ultradifferential operators we distinguish a particular class 
defined by 

Definition 2.6. An operator of the form 

f(D) = Z ~  Ck Dk, c, E C, 

is called an oo-ultradifferential operator with constant coefficients if there are c o, no > 0  
such that 

IT(z)] <-- c0[a~(lz])t% z~C. 
(We mention that in [5], [6] we called o~-ultradifferential operators with constant coeffi- 
cients a more general class of operators, but in applications those from the above 
definition are more significant), co-ultradifferential operators with constant coeffi- 
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cients have the property that the series Z + ~  Ck Dk converges in 5e(~ ' ) ,  without 
requiring additional properties for the function o) (as the condition (M.2) of stability 
under ultradifferential operators in the frame of Roumieu or Beurling ultradistribu- 
tions in [10]). Moreover, every ultradifferential operator of class (MR) or {Mk} 
(see [10]) is an ~o-ultradifferential operator for a suitable function o9. With the above 
considerations we directly get from Theorem 2.2: 

Proposition 2.7. Let 0 t~= t~ . . . .  , be such that 

ln~ 
k 

- -  < - [ -  o o .  

tk 

so that 

Consequently 

(2.14) 

M(r) In M(r) <= Q(r). 

f:'-~ M(r)lnM(r)r 2 dr <= f:'-= Q(r)r2 dr < + ~ ,  

+ ~ 1  (2.13) t,<+oo, Zk=l~<+~ and Z[~  

Then there exists 0<Sl~Ss<= . . . .  sl<q-~o , ~ff=~ 1/sk<q-oo such that every 
o)(tk}-uhradifferential operator with constant coefficients & invertible in ~{sk  ) . 

We shall apply this invertibility result in some particular cases. 
I. It is clear that the Gevrey sequence tk=k ~, ~>1,  satisfies conditions (2.13). 
II. Let tk=k(ln k) ~, ~>1;  an easy computation shows that also this sequence 

satisfies the conditions (2.13). So we can positively answer the question asked in 
[1] concerning the invertibility of ultradifferential operators of class {k!(/]~ =2 In j)~}, 
for arbitrary c~>l. In [1] only the case c~>2 was solved. 

III. Finally we remark that the above proposition improve Theorem III 2 - -3 ,  
from [1]. 

Namely, let {M~}E~', where ~ '  is the space of sequences from [1]. If  there 
is {Qk}EJ/ such that the associated functions M(r) and Q(r), to the sequences 
tk=Mk/Mk_ 1 and Sk=QffQk_I, satisfy 

i) r ~ * - - Q ( r )  is decreasing and +~ M(2t)tQ(t) d t =  0 - - Q  r) , 

Q , ,  Q(r) 

ii) ~ e  , , - > I ,  

then by Theorem III. 2--3. from [1], each {Mk}-ultradifferential operator with 
constant coefficients is invertible in a N(Rk), for a suitable sequence {Rk}~dr 

As for r sufficiently large Q(r)<=r, from ii) we get 

e(,)  rM(r) 
e M(') >-_ >- M(r), 

Q(r) - 
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(we used the non-quasianalyticity of the sequences from ~') .  By Theorem 4, Ch. II, 
w 2 from [13], (2.14) is equivalent to 

(2.15) ~_=~ In t______~k < + ~.  
tk 

It is obvious that condition (2.15) implies condition (2.13) and thus Proposition 2.7 
extends Chou's result. Let us still remark that for the sequence {tk} from II, (2.15) 
holds only for c~>2; the case 1<c(-<_2 can be solved only in the frame of the less 
restrictive condition (2.13). 
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