A minimum modulus theorem and applications to
ultradifferential operators

Toana Cioranescu and Laszld Zsidd

In this work we give a minimum modulus theorem which enables us to prove
the invertibility of a large class of ultradifferential operators.

It is known that the invertibility of convolution operators defined by ultra-
distributions S with compact support is equivalent to the existence of a certain
lower estimation for the modulus of the Fourier transform of S (see {1], [3], [8], [9].
While usual differential operators with constant coefficients are all invertible even
in the space of Schwartz’s distributions, the following problem is still open:

Is every ultradifferential operator invertible in the corresponding ultradistribu-

tions space or at least in the “‘union” of all ultradistributions?

In [2] Ch. Ch. Chou positively solved this problem for elliptic ultradifferential
operators. For the general case some results are given by the same author in [1];
unfortunately, the invertibility is proved under very restrictive conditions on the
considered ultradistributions space.

The aim of this work is to give a general minimum modulus theorem, improving
the well-known theorem of L. Ehrenpreis [7] and which yields to an invertibility
result in ultradistributions spaces satisfying less restrictive conditions then those of
Ch. Ch. Chou. In particular we prove that all ultradifferential operators of class
{k! (IT5_,Inj)} with a>1, areinvertible, while Chou’s result works only for a>2.

1. A minimum modulus theorem

Let f be an entire function with f(0)=1 and let a,, a,, ... be its zeros indexed
such that |g;|=|a,|=.... We denote for each r=0

M. (r) = sup §{€4]

and
n(r) = the numbers of g, with || =r.
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Then, by the Jensen formula (see [14]), we have
(1.1) ny(r)=InM;(er), r=0.

The following result is a refinement of the minimum modulus theorem of
L. Ehrenpreis from [7] (for other variants see [8] and [9]); in its proof we use tech-
niques both from [7] and from [15], Section 23.

Theorem 1.1. Let f be an entire function of finite exponential type with f(0)=1;
then for every ry=0 and O<1<1/8e, thereis an r’ with ro=r'=(+1)ry, such that

te IN M (2ery)
j=1 yH] :

Illrit;" In|f(2)] é—61an(2er0)1n%—82’

Proof. Let us define the entire function g by

g(2) =f(2)f(—2), zeC.
If for r=>0, z,€C is such that |z,|=r and |f(z)|=inf,_, |f(z)|, then we have
inf g(2)] = £z - f—2)] = inf 7]+ M, (),

so that
(1.2) l;In:fr In[f(z)] = —1In Mf(r)+!ziln=fr In[g(z)|,, r=0.

If a;,as, ... are the zeros of f, indexed such that |a;|=|a,|=..., by Hadamard’s
factorization theorem ([14], 8.22 and 8.24), we have

2

o 1 o z
> —|2<+oo and g(z):[]kﬂ[l—?], z€C,

k=1 la, k
Let r,=>0 and O<7<1/8¢ be fixed and denote
n =n((1-0ry), n”=n;(2ry).
We define the entire functions gy, g., g; by

82 = e (1)

k

Z2
gZ(z) = Hn’<k§n” (1 —:1_2] >

k
Z2
8a() = e (1)
k
Then
g = 818283-
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Let r with ry=r=(141)r, and put n=n,(r); let further z€C such that |z]=r.

We can write

21 2 2 2
gu(2) = 2" Gyyi--dp Jii (&_1)
WO =g e e (T

As for 1=k=n, |a,|=|z|, we get

z2"

(1.3) =1

as ... a3

Next, since for k=#’, |a,|>=(1—1)r,, we have

[ 1 _1)2(11—"’)
= 1+1' .

=u, O<u§V§—l,

2 2
Ayr 41 ++- Ay
Zz(n—n')

Using the inequality

it follows that

(1.4)

2 2
az ., ...a:

= '52("_",)
Zz(n —n’)

Fimnally, for 1=k=n’, we have

>

3_5_1( _ O—la? | (== _ (r=(1-=7r)® _ "
z2 - r2 - re = 2
hence

(1.5)
By (1.3), (1.4) and (1.5)

alzf 2n’
Hkénr ?—1 = 7",

81(2)] = 7 = o),
consequently

(1.6) In|g,(2)] =—2n,(2r,) ln%.

Let us now estimate |g;(z)|, for |zl=r, ry=r=(1+1)r,. We have

22]
— )

k

- z
In|gs(2)| = 3. In (1— —

k

2
] = 2j'=2 2n,(21—1r0)<k§nf(2fr,,) In [1 -

Using the inequality

1n(1—u);—$, 0<u=<l,
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we obtain

z 2

g
z

ax

Injgy(2)| =— 3, Zn,(zf—1r0)<k§n,(zfro) z "

Since for j=2 and n (2'"'r))<k=n;(2’r,) we successively have

1
z| _ ro(1+1) - 1+—8— 9
a | = 2Ty, T YT T iR
iz 81
al 4 8l <£
: z[? =1 81 — 4i+2_g1 T 47
Iz — T
then
) In gy @) =8 375 57
Finally we observe that
w<kmn (AF—29)
(1.8) g = AL pEn ot

2
ayq ... ak

and we apply the Boutroux—Cartan theorem (see [15], Section 2.2) to the polynomial
in the numerator of the fraction from (1.8). Thus for z€C outside of 2(n”"—n")
circles with the sum of their diameters less then 8er,72, we have

2 2("'—}1
so that
(1.9 lga(2)] = P = 7o

Since 8ery12<r,t, there exists r’ with ro=r"=(1+1)r, such that every z€C,
|z|=r’, is outside of the above 2(n”—r") circles.
By (1.9), for |z|=r" holds

(1.10) In |g.(2)) §—4nf(2r0)ln—;-.

Introducing the estimates (1.6), (1.7) and (1.10) in (1.2), we find

ne(2iry)

mf In|f(2)| = —1In M,(2ry)— 6nf(2r0)1n———82+°° &

Using (1.1) in the above inequality, the proof of the theorem is complete. Q.e.d.
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If we take in the above theorem, for example t=e"%, then we reobtain the
minimum modulus theorem of L. Ehrenpreis ([4], Th. 6). In our result, unlike those
of similar kind of O. von Grudzinski from [8] and [9], the dependence of the mini-
mum of the modulus on the parameter 7 has a more simple form which is very useful

in the applications. This is illustrated by the following

Corollary 1.2. Let a: (0, +0)— (0, + ) be an increasing function with

f: oc(r) dr<=+o and f+ OC(r)l ()dr<+o°

Then there exists an increasing function B:(0, 4 o) (0, + o) such that

[ B
1
and with the property:

If f is an entire function satisfying

(1.11) In|{f(2)| = ca(lz)+¢’, z€C,
for some ¢, c"=0, then there exist d,d’=0 such that for every ry=0

sup inf In|f(2)] = —dB(ry)—d’.

ro=r=rq+dp(ry) lzl=r

Proof. Since lim,, ,  a(r)/r=0, (see [12]), there exists ¢,>0 such that

cot (2er) 1
T+r 8¢’ r=0.
For r=0, let us put
147 w a(2er)

Br) = 6a(2er)ln—(§e—r)-+ g

Then f: (0, 4+ )—(0, + <) is an increasing function such that
(1.12) B(r) = a(er), r=0.

By the assumptions on the function «, we successively have

f+oo o(2er) In 14r
1 r2 coo(2er)

f+°o [2+m agZJrer)] dr = e[ ;:l,z_lj]erw a(r) dr < 4o,

dr <+ oo,
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so that

+e (1)
f B(

5 dr <+ oo,
1 r

Let f be an entire function satisfying (1.11) and r,>0; we can obviously suppose
that f(0)=1. Apply Theorem 1.1 to f, for t=c,a(2ery)/(1+ry); then, by (1.12),
there is an #” with ro=r'=ry+c;f(r,), such that

nf In|f(2)] = —cBr)—6¢'(In8+2).

Then the Corollary results with d=max (cy, ¢) and d’=6¢"(In 8+2). Q.e.d.

2. Invertible ultradifferential operators

Let 0<f=t,=... be such that i<+ and 2, 1/ty<+o. For r=0
we define
the distribution function of the sequence {t;}

n(r) = n(,k}(r) = the number of 7, with ¢ = r;

the associated function of the sequence {t,}

k
N(@) = Ngy(r) =1In max{l, sup ! }

k=1 b b

We further define the entire function of exponential type zero w=wy, by

w2 =1, [H—?], ze C.
%

We note that (see [12], Ch. L. or [13], Ch. II, Section 1) n, N and o satisfy the non-
quasianalyticity conditions

@.1) f:‘”

Moreover, we have

Q) +eo N(r) + In|w(r)]|
P dr <+ oo, fl p dr <+ oo, fl __r?-—dr<+°°'

22) tim "0 _ o, jim KO g i J0OL g,

r+-+oo r>+e r—~—+oo r
As

@2.3) N = 0# di,
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it follows that

(2.4) n(r) = N(er).
Obviously
2.5 N@r) =hnjo@)!

On the other hand, for every r=0

In ()] = % *In [1+£-] dn (i)

T e

_f (,1)/1(112 sy d/l-i-z fy 1, n(i );L(Az_l_rz)

_ rrn) oo p2ir n(d) 1
:fo —= di+2j=2fzj_lr-—_i g

- 2r n(4)
2-14] lfo l d'{

hence by (2.3), we finally get

(2.6) Inlo()] =4 33 N(z n

We shall give now the

159

Lemma 2.1. Let n, N, w be as above. Then the following statements are equiv-

alent:

0 Ztn— <o
k

()f“"(r)l sy &=t

(iif) f:wirgl)ln]v()dKer
) +eo In jw (r)]
@ f S Y ()l dr <+ oo
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Proof. ()e(ii). Let k=1 integer; integrating by parts, we get:

ft"”n(r)l L _dr= ftk”-;k~ln—-dr

te 12 n (r) te

= T 1 fes1 dr
—kftk Inrd [ r] klnk

r2

:k[lntk_ lntk+1]+(k ln k)ftk“ dr

I tet1

= (B fen )y ki (1— L.

98 tiyq e ks

Hence

+o0 n(r) r
ok

— ;;;[k[m’k————I“"‘“]Jr(k—klnk)(ti— L]

L4 le+ r k1

k

_ > [mt,, 1_h‘(k—l)k—l]

I

m | plnk—tno R
k k=17
= Z’k=1 o + .

14

Using the Stirling formula, it is easy to get

kk
k_l.ll_"'n [1 +Ink— W] =0,
hence there exists ¢=0 such that
kk

ll-!—lnk—ln(T_-T)k—_l—

=¢, k=1

This yields the desired equivalence.
Let us further examine the condition (iv). By the inequality

2
a2ln(l+%2-] =In(l1+u?, a,u=0,

we have

@7 a*In

w[—é—)‘ =Inlw@)|, a,t=0.
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Using (2.6) and (2.7), we obtain

f—.Loo In |w (@) In r r

1 r? In | (r)]
_ +oo N(277) r
=425 4 f 2 In lw(r)| dr
+ N(t) t
=437 1$. [, I j T
27 1n w[zj—)

+ee N(£) 2i gt
42] 12],/ 12 In

4Yazln|w

- +e N(1) 2i g2t
4252 12,f 2 N le@n %

_4(2 1)f+oo N(t)hl t dt+4( ;:; 1n2.fa2]./-+oo N(t)dt

J=1 24 2 In [w(at)]| 2J 1

Thus, by (2.1), (iv) holds if

+e N(t) t
ft1 £2 In In [w(af)]
(iii)=(iv). This implication results immediately from (2.5) which imply (2.8)

with a=1.
(i) = (iv). By (2.4) and (2.5), we have

(2.8) dt <+ for some a=0.

In |w(er)| = n(r).
Hence, from (2.8) for a=e, it is enough to prove that
+e N(t) t
(2.9) ftl T1nn—(5dz<+oo
Let A=#, and r=n(4). Then

oo 1 tn+1]~ tirr 1 t
L= L o B [ T

t

n+l 1 ey 1
_fl I dt+2k2,,+1f" ‘Fln?dt.
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Since
1t 1““‘2’
f —ln—dt ———;—+constant, c, t=>0,
we deduce
too 1 ¢ (1 1 [1 1 )
f" _ﬁln n(?) dr = (/1 - tn+1]+2kzn+1 Iy Il
lni jn Jrt Ink  plesr
+|—= S | — &
A lhs1 Akt WS Bt
In_}; lnu
— _1_+ h +Z’ _.___k__
- 1 A kzn+1 tk H
consequently
+e 1 t = n(l)
(2.10) fl i el ——dt —+ >

Further, by (2.3) and (2.10) we have

N(’)1 1 ar f*‘”l(f’ "a)dz]l 1 ar

n(1) y n(t)
+oo R(A) [ pte 1
2D ;ajdﬁdl
_f+°° "(’Dduff“’ LACIN %)—d/l

Therefore (2.9) holds.
(iv)= (ii). By (2.7), (2.5) and (2.4), we have

ehnjo®| =hlolr) =a@), r=0,
so that

n() _ ulnle)
r r

The function ¢—¢In 1/t is increasing for O<f<e™1, so that by (2.2)

n(r) ro_ o, Injo@) r
r? n(r) — r? e?In jw (7))
if r is sufficiently large; this yields the desired implication.
By a similar reasoning we deduce that (iv)=>(iii) and this ends the proof of
the lemma. Q.e.d.

We can now give our main result:




A minimum modulus theorem and applications to ultradifferential operators 163

Theorem 2.2. Let O<t,=t,=... be such that

w 1 o
h<+oo, ,j=17<+oo and 2;=IT—<+oo.
k k

Then there exists 0<s$,=8,=..., S;<-+oo, 2777 1/sy< oo, with the property:
If f is an entire function with

(2.11) If(2)] = co| gy (|2D]™
for some ¢,=0, ny=1 integer, then there exist a, M=0 such that

sup In If(£+’1)| =—qln M|w{sk)(|61)’ éEC,
l'l|§alnM|w(Sk)([§m

Where the supremum can be taken over R, when E€R.

Proof. Let us denote a(r)=In |w(r)|, r=0. Then by Lemma 2.1, the con-
ditions from Corollary 1.2 are fullfilled for the functoin a. Hence there exists an
increasing function B: (0, +<)—(0, +<°) with [~ B(r)/r?dr<+- such that for
every function satisfying (2.11) there are d, d’=0 such that for each r,>0

sap inf [f(2)| =z —df@ry)—d'.
ro=r=ro+df(ry) lzl=r
But from the above inequality we easily get
(2.12) sup In|f(E+m|=—dB(L)—d, £eC, E#0,
ml=dp(gn
where for real £, the supremum can be taken over 5€R, |7|=df(|&]), as a simple
reasoning shows.

Further, by a result of O. I. Izonemcev and V. A. Marcenko [11], for the func-

tion B there is a sequence O<s;=s,=..., 377 l/s,<-+-o0, such that

B() =Inlog, ()| +d, t=0

for some constant d=0. Then the statement results from (2.12) for suitable positive
constants ¢ and M, enabling us also to remove the restriction £=0. Q.e.d.
We shall give now the

Definition 2.3. Ler O<#=f6,=..., hi<+o, 7 Ity<+ and 0=y, .
An entire function f is called w-slowly decreasing if there are a and M =0 such that
sup |fE+ml= M) ViR

tnl =aln M{w(E)
n€R

Let us remark that all kinds of slowly decreasing functions considered in [1],
[8] and [9] are w-slowly decreasing for some suitable function w, as the above men-
tioned result on entire majorants from [11] shows.

From Theorem 2.2 we immediately get
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Corollary 2.4. Let WOy Oy and f be as in Theorem 2.2; then f is Wy, y-slowly
decreasing.

In order to apply the above results to ultradifferential operators we recall some
facts about the w-ultradistributions considered in [3], [4], [5] and [6].
For KcR compact, we define the functions space:
PLn(®) = sup [p(Nw(L1)"] <+ J
2,(K) = 9€C(K); teR
for every L= 0, n =1 integer, suppopc K

(¢ denotes the Fourier transform of ¢)

D, = Jim 2, (K).
KcR

The elements of the dual @, are called w-ultradistributions. The “union” over w
of all e-ultradistributions coincide with the “union” of all Roumieu (or Beurling)
ultradistributions (see [6]); the parametrization over w presents a series of advan-
tages among which we mention the stability under ultradifferential operators of
each 2.

As for distributions, one can define the notion of support for w-ultradistribu-
tions. If S€9, has a compact support, then its Fourier transform S is defined by
S(z)=(S, e~#"), z€C.

Definition 2.5. We say that the w-ultradistribution S with compact support is
invertible in 9, if Sx9,=9,.

In [3] the following result is proved:
S is invertible in D, iff S is w-slowly decreasing.

In [5], [6] we called w-ultradifferential operators all linear operators on 9, preserving
the support.

Among the ow-ultradifferential operators we distinguish a particular class
defined by

Definition 2.6. An operator of the form
f) = 2 5aD ¢¢C,

is called an w-ultradifferential operator with constant coefficients if there are c;, ny=0
such that

@) = eolo(z)j™, zeC.

(We mention that in [5], [6] we called w-ultradifferential operators with constant coeffi-
cients a more general class of operators, but in applications those from the above
definition are more significant). w-ultradifferential operators with constant coeffi-
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cients have the property that the series 3, ¢, D* converges in £ (92,), without
requiring additional properties for the function w (as the condition (M.2) of stability
under ultradifferential operators in the frame of Roumieu or Beurling ultradistribu-
tions in [10]). Moreover, every ultradifferential operator of class (M,) or {M,}
(see [10]) is an w-ultradifferential operator for a suitable function w. With the above
considerations we directly get from Theorem 2.2:

Propesition 2.7. Let O<t,=t,=..., be such that

w 1 - k
(213) t; <<+ oo, ,j:lt—<-|—-oo and Z;=1_7—<+°°'
k k

Then there exists 0<s;=s5,=..., sy<+oo, ZF¥° l[sy<-+oo such that every
wy, y-ultradifferential operator with constant coefficients is invertible in @aﬁ{sk}.

We shall apply this invertibility result in some particular cases.

I. It is clear that the Gevrey sequence #,=k% a=>1, satisfies conditions (2.13).

II. Let t,=k(In k)%, a=1; an easy computation shows that also this sequence
satisfies the conditions (2.13). So we can positively answer the question asked in
[1] concerning the invertibility of ultradifferential operators of class {k!([] ’;=2 In j)},
for arbitrary o=>1. In [1] only the case a=>2 was solved.

III. Finally we remark that the above proposition improve Theorem III 2—3.,
from [1].

Namely, let {M,}c.#, where .# is the space of sequences from [1]. If there
is {Qy}€A# such that the associated functions M (r) and Q(r), to the sequences
L=M /M, and s5,=Q,/Qy-1, satisfy

i) re Aég;) is decreasing and f:w ]t‘é((zt;) dt = O(er)],
L0 20
11) WEM() =1,

then by Theorem III. 2—3. from [l], each {M,}-ultradifferential operator with
constant coefficients is invertible in a Dy ;, for a suitable sequence {R.}c.4.
As for r sufficiently large Q(r)=r, from ii) we get

o)
M(r) = _r_M_(’)_ =
M EGm = M0,
so that
M@BInMGE) = 0.
Consequently

(2.14) f*“MM—mdrgf:”¥dr<+oo,

1 r2
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(we used the non-quasianalyticity of the sequences from .#). By Theorem 4, Ch. II,

§ 2 from [13], (2.14) is equivalent to
2.15) pmlnte
I

It is obvious that condition (2.15) implies condition (2.13) and thus Proposition 2.7
extends Chou’s result. Let us still remark that for the sequence {t,} from II, (2.15)
holds only for «=2; the case 1<w&=2 can be solved only in the frame of the less
restrictive condition (2.13).

10.
11,

13.

14.
15.
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