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1. Introduction 

Given a subset E of the set Z of  all integers, denote by L~ the space of  all 
integrable functions f on the unit circle T whose Fourier coefficients f ( n )  vanish 
for all integers n outside the set E; normalize the measure on T so that 

llflll = 2re o [f(O)l dO. 

We prove the following analogue of a classical theorem of Paley, and we use it 
to improve on the known estimates concerning the Littlewood conjecture. 

Theorem 1. I f  E is infinite and bounded below, then there is a strictly increasing 
sequence {hk}~=0 of elements of  E such that, for each index k there are fewer than 
4 k elements of E less than hk, and such that 

(1) Z~~ lf(hk)j 2 <= 8(l[/llx) 2, 

for all functions f in L~. 

Corollary 1. I f  F is a finite subset o f  the integers having N elements, then 

(2) Ilflll --> [(log, N)/8] 1/2 mip If(n)l, 
for all functions f in L~. 

A similar estimate was proved under added assumptions about  the size of  the 
coefficients f ( n )  by S. K. Pichorides [25]. We shall discuss other work on the 
Littlewood conjecture at the end of this section and at the end of  the paper.  

* Research partially supported by National Research Council of Canada operating grant 
number A--4822. 
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Paley's theorem [21] asserts that for each real number 2=--1 there is a con- 
stant C(2) so that, if {hk};=0 is a strictly increasing sequence of  nonnegative in- 
tegers with the property that hk+l>=2hk for all k, and if f ( n ) = 0  for all n <0 ,  
then 

(3) (Z~=0 ]f(hk)I~) 1/2 <_-- C(~,)IIIH1. 

In Section 2, we state Theorem 2, a common generalization of Theorem 1 and Paley's 
theorem, and we show how the latter two theorems follow from Theorem 2. In 
Section 3, we prove Theorem 2 by giving a direct proof  of  a dual assertion; we also 

show that when 2_>-2 the best value of the constant C(2) in Paley's theorem is ]/2-. 
The idea that theorems about thin sets in Fourier analysis have equivalent 

dual formulations goes back to Banach [1]. In 1956, W. Rudin [30] observed that 
Paley's theorem is equivalent to the assertion that, if 2 and {hk}~'= 0 are as in the 
statement of  that theorem, then for every square-summable sequence {Vk}~~ there 
exists a bounded function g, with [J gl[ oo <= C (2)Ilvll2, and such that 

~,(hg)=vk for all k, while ~ ( n ) = 0  for all other n_->0. 

Rudin's methods did not yield an explicit procedure for obtaining such a function 
g given the sequences {hk}~~ and {Vk}~= 0. Such a procedure was discussed by 
Z. Nehari [19], in a paper on bounded bilinear forms that appeared in 1957, but 
the connection with Rudin's paper was apparently not noticed at the time. 

In his paper, Nehari used the Schur algorithm, a procedure that was discovered 
by various mathematicians just before World War I. In Section 3, we prove Theorem 
2 by applying the Schur algorithm to functions of several complex variables, and 
then using some elementary properties of  finite Riesz products. We also use the 

Schur algorithm in one variable to verify that }~ is the best value of the constant 
C(2) when 2~=2. We discuss other applications of this method in Section 4. First 
we consider an analogue of Paley's theorem that was discovered by Gundy and 
Varopoulos [12]; we give a new proof  of this analogue and of  some related results. 
Then we answer a question raised in [9] by proving a theorem about Fourier coeffici- 
ents before gaps. Finally, we give a new, constructive proof  of  Grothendieck's 
inequality. 

Other proof  of  Paley's theorem have appeared in [13], [33], [20], and [17, p. 
274]. The last of  these proofs is based on properties of Hankel operators, and it 
was one of  the clues that led the present author to Nehari 's paper. 

Finally, we comment briefly on the history of  the Littlewood problem. In [14], 
Hardy and Littlewood conjectured that there is a constant A so that, if F is a finite 
subset of  Z having N elements, and if f is the function in L~ with the property 
that f(n) = 1 for all n in F, then II fill >=A log N. In [4], Paul Cohen showed that 

!Ifl[~ ~ A (log N/log log N) 1/8 
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for all sufficiently large values of N; this lower bound was soon improved to 
A (log N/log log N) ~I~ by H. Davenport  [5]. Recently, S. K. Pichorides [23] modified 
the method of  Cohen and Davenport  to obtain the lower bound A .(log N/log log N) 112. 
The methods used in these papers also work for all functions f in L~ with the 
property that [ f ( n ) ] ~ l  for all n in F. 

In 1977, Pichorides [26] used a completely new method to show that l] f l ] ~  
A (log N) ~/~ if f~L~, and I f (n i l=  1 for all n in F; this method also yields that 
if f~L 1, and l~]f(n)]~=B for all n in F, then [[ fl[~=A (B) (log N) ~/2, where 
A(B)~O as B ~ o .  By Corollary 1, this estimate actually holds with a constant 
A that is independent of B. 

In many cases, better lower bounds than A (log N) 1/2 are known to exist. 
Enumerate the set F as {nk}~= x. A special case of a theorem of  Bockarev [2] on uni- 
formly bounded, orthonormal systems is that 

1 N __1_1 f2,~ g - ~ c = 1  2re o ['~=lexp(inkO)ldO~= Al~ 

that is, Littlewood's conjecture holds on the average. In another direction, P. G. 
Dixon has shown [6] that if we merely add the assumption that the sequence 
{nk+~-n~}f-~ is nondecreasing, then IlfIh_->A (log N/log log N) for all sufficiently 
large values of N, and all functions f in L~ with the property that ] f ( n ) I ~ l  for 
all n in F. Finally, there are interesting connections between the Littlewood con- 
jecture and the cosine problem. Assume that n > 0  for all n in F, let f be a func- 
tion in L~ with the property that [ f ( n ) I ~ l  for all n in F, and let M ( f ) =  
lmino Ref(O)[; one can ask how M(f )  behaves as N ~ .  As in [23] it follows 
easily from Corollary 1 that M(f)>=A (log N) 1/2. Pichorides has shown [24] that 

M(f)  logM(f)+Ilflla ~ A logN. 

I am grateful to Dr. Pichorides for sending me a copy of his interesting survey 
[25] on norms of exponential sums. I have also benefited from conversations about 
this subject with Grahame Bennett. 

2. A counting argument 

Before stating Theorem 2, we need some more notation and terminology. 
By a multiindex we mean a finite sequence c~= {~k}kr=0 of  integers. We say that 
a nontrivial multiindex c~ begins at k 1 and ends at k2 if kl and k s are the smallest 
and largest values of k for which akr We call a supplementary if it has the 
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following four  propert ies :  

(i) ~,~=0~k = 1, 
(ii) I f  ~ begins at  k~, and U>=ka, then ~ '0~k_- -> l ,  

(iii) ~'~=o [~k] -> 3, 
(iv) ~g~{--1,0,  1} for  all k. 

Given  a mult i index ~ =  {~k}~=o and a finite sequence h =  {hk}[= o 
we let 

~ . h  = .~:=0 cq, hk . 

o f  integers, 

We call an  integer n supplementary to the sequence h if  n = ~ .  h for  some supplement-  
ary mult i index ~, and  we let S(h) denote the set o f  all integers tha t  are supplementary  
to h. Similarly, if  h =  {hk}~= o is art infinite sequence o f  integers, then we let S(h) 
consist o f  all integers tha t  are supp lementa ry  to some finite part ial  subsequence 

{h }f=o 
Theorem 2. Let h = {hk}f= 0 be a finite or infinite sequence o f  integers. Suppose 

that an integrable function f has the property that f ( n ) = 0  for  all integers n in the 
set S(h). Then 

~kK=0 ]f  (hk)] 2 <= 8(llfll),) z. 

Before deriving Theo rem 1 f rom this assertion, we show how Paley 's  theorem 
follows f rom Theo rem 2. First,  choose an integer m so tlhat 2m~2,  and  split the 

given sequence {hk}k= 0 into m subsequences, {h(kJ)}k= 0 say, each with the p roper ty  
tha t  h(J) =>2h(k j) for  all k. N o w  if n is supplementary  to one o f  these subsequences, "k+l 

then n < 0 ;  one way to  see this is to use the fact  that,  in addi t ion to p roper ty  (iv), 
each supplementa ry  muli t index c~ tha t  ends a t  k has  the p roper ty  tha t  ek = --1.  
I f  f ( n ) = 0  for  all n < 0 ,  then, by  Theo rem 2, 

Z~~ [/(h~J))l 2 ~ 8 (llflli) 2, 

for  all j .  Thus  Paley 's  theorem holds with C(2)=(8m) 1/2. We shall see at  the end 
o f  Section 3 tha t  we can in fact let C(2)=(2m) ~/2. 

Proof  o f  Theorem 1. Fix a set E o f  integers tha t  is infinite and  bounded  below. 
Given  an integer n, let P(n) be the n u m b e r  of  elements m of  E for  which m<n.  
To derive Theorem 1 f rom Theorem 2, we merely  have to construct  an increasing 
sequence h =  {hk}~= o so tha t  S(h) is disjoint f rom E, and  so tha t  _P(hk)<4 k for  
all k. 

To  do this, we proceed inductively. Let  ho be the smallest e lement  o f  E, and  
let h~ be the next  smallest  element. Suppose  tha t  ho, h~, ... ,  hk-x have been chosen 
so that ,  for  all j < k ,  
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(a) hjE E 
(b) P(hj) < 4J 
(c) ~'{=0 ~ihir E, for all supplementary multiindices e that end at j. 

We shall let hk be the smallest element of  E that is greater than hk-1, and has the 
three properties above with j=k;  first, however, we have to verify that  E has 
such an element. 

Given an integer m in E, and a supplementary multiindex e that ends at k, 
we say that an integer n is disqualified by the pair (m, ct) if n>hk-1 and 

(4) O~kn+ ~ai<k O~ihi = m. 

Of course, an integer n may be disqualified by several different pairs (m, ~); we 
say that  n is disqualified by an integer j if n is disqualified by some pair (m, c 0 for 
which c~ starts at j. 

We consider the number D(j) of  integers that  are disqualified by a given 
integer j. Let N(j )  be the number of  supplementary multiindices c~ that begin at j 
and end at k. By properties (iii) and (iv), every such ~ must  have at least 3 nonzero 
terms; hence, N ( k - 1 ) = 0 ,  and D ( k - - 1 ) = 0 .  Now let j<=k-2; then exactly 
3 k - j -~  multiindices begin at j with the value + 1 and el~.d at k with the value - 1 .  
Every supplementary multiindex c~ must  begin with the value + 1, end with the 
value - 1 ,  and have property (i) as well. Hence N(j)<=~ 3 k-~-l. On the other 
hand, if m is given by formula (4) above, for some supplementary multiindex c~ 
that begins at j and ends at k, and some integer n>hk_~, then m<hj. This 
follows f rom properties (i), (ii), and (iii) above, and the fact that h i < h j + ~ < . . .  < 
hk_~<n. I f m  and c~ are given, then n is determined by formula (4). Hence 

D(j) <= P(hj)N(j) < 2 4J3k-J-1. 

The total number of  integers disqualified at the k-th stage is therefore smaller 
than 

l~k~_~ 4J3k_j_l -- -61 4k~k_2(3)k--j~j=O 

2 
<-g4 ~ 1-~ 

= 34k-1"  
2 

Let h k be the smallest element of  E that is greater than hk_ 1 and not disqualified. 
Then 

P(hk) < P(hk-1)+ 1 + 3  4k_~ < 4 k Z 
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Hence assertions (a), (b) and (c) above hold with j=k ,  and the induction is 
complete. 

To derive Corollary 1 from Theorem 1, simply let E consist of the given finite 
set F together with all integers that lie strictly to the right of F. The estimate (2) 
then holds not only for all functions f in L~, but also for all f in L~. The new 
method of Pichorides [26] does not seem to apply to general functions f in LI ;  
it was observed, however, by I. Kessler [16] that the method of  Cohen and 
Davenport  does apply to such functions, and the same is true for the version of 
this method used by Pichorides in [23]. The counting argument used above will 
also remind some readers of  Cohen's method. 

Finally we comment on the possible rates of  growth of the sequence {P(hk)kO~ 
If  the set E is very thin, consisting only of the powers of 2 for instance, then the 
conclusion of Theorem 1 holds with h k equal to the k-th element of  E for each k; 
in this case, P(hk)=k-1  for all k. On the other hand, when E consists of all non- 
negative integers, then condition (c) above forces P(hk) to grow rapidly; moreover 
[30], if ~~ [f(h~)12<o~ for all integrable functions f with the property that 
f ( n ) = 0  for all n<O, then there is a uniform bound on the number ,of terms in 
the sequence {hk}~= 0 that lie between successive powers of  2. Finally rapid growth 
of  P(hk) alone can fail to imply that ~~ If(hu)l~ oo for all f in L 1. For  in- 
stance, there are sets E so that if each h k is chosen to be the 4k-th element of E, 

t h e n  the sequence {hk}Z= 0 contains arbitrarily long arithmetic progressions; in 
this case [31, Theorem 4.1], there are functions f in L 1 for which ~Y~'=0 If(hk)l 2-- o~ E 

3. The Schur algorithm 

In this section, we construct certain bounded functions so that their Fourier 
coefficients have various prescribed properties, and so that the essential suprema 
of these functions are not much larger than their L~-norms. Our main goal is to 
prove Theorem 3, a dual assertion to Theorem 2. We state Theorem 3 below, and 
derive Theorem 2 from it by a duality argument. Next we consider, in a very special 
case, the problem of constructing a reasonably small, analytic function of several 
complex variables, given the "initial segment" of  its power series; we use the Schur 
algorithm to solve the relevant special case of this problem. We then state and prove 
Theorem 4, a version of Theorem 3 for functions of several complex variables, 
and we derive Theorem 3 from Theorem 4. To determine the best constant in Paley's 
theorem, we study the Schur algorithm in one complex variable. Finally, we com- 
pare the construction used here with the ones used for similar purposes in [32] 
and [8]. 

Denote the/a-norm of a square-summable sequence v =  {vk}~:= 0 by llv[]~. 
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Theorem 3. Let h= {hk}~= o be a sequence o f  integers with the property that 
the set S(h) is disjoint from the range of  h. Then for every square-summable sequence 
v =  {Vk}~:= 0 there is a bounded function g so that 

llgll=<=8 lz2 Ilvtl2 
~ ( n ) = 0  unless nC S(h) or n=hk for some k, 
and ~ (hk) = Vk for all k. 

I f  only a finite number of  the terms v k are nonzero, then the function g can be chosen 
to be a trigonometric polynomial. 

Proof o f  Theorem 2. It  is enough to deal with the case where the sequence 
h is finite. Suppose that  f is integrable, and that  f ( n ) = 0  for all n in S(h). I f  some 
term hkES(h), then f (hk )=0 ,  so that we can delete this term from the sequence 
h without affecting the conclusion of Theorem 2; we can therefore assume that 
S(h) is disjoint f rom the range of h. 

Let v =  {vk}~= 0 be a sequence of  complex numbers. Since K is finite, there 
is a trigonometric polynomial g with the properties listed in the statement of  Theo- 

rem 3. In particular, ~ ( n ) f ( n ) = 0  unless n=hk for some k. Thus 

--< 8 llflI  II vll . 

Since this inequality holds for all sequences v, we conclude that 

Z(=0 lf(h~)]" -<- 8( l l fh)  2, 

as asserted in Theorem 2. This completes the proof. 
We introduce some notation, mostly taken f rom [29], for our discussion of 

the Schur algorithm. Fix a positive integer N. The symbol w will always denote 
W N N Z u .  an element { ,},=1 of the product  T N, and the symbol fl an element {ft,}n=1 of  

By w ~ we mean the product  ,~,~1,~,~, ,~,#~, Every integrable function f on T u ,v 1 ,v  2 . . . .  v N �9 

has a Fourier series 

(5) Z#f@w . 

We define a partial order on Z N by declaring that f l ~ 0  if and only if fl,,=>0 for 
all n, and that fl'>=fl if and only if  fl'--fl@O. We call a series (5) a power series 
if f ( f l ) = 0  unless fl=>0, and we call a function f analytic if its Fourier series 
is a power series. 
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By the initial segment o f  a power  series (5), we m e a n  the sum of  the terms 

f ( f l )w ~ for  which 0~fi<=(1,  1, . . . ,  1). Given a sequence c={c,}~= 0 of  complex 
numbers ,  we fo rm the polynomia l  

PN (w) = cN + cN- 1 wN + cN- 2 wN w~_ 1 + . - .  + c0 wN wN- 1... wl. 

Observe that ,  if fiN(fl)r then the nonzero  te rms  in the sequence {fl,},N= 1 form 
a tail, tha t  is, i f  fin is nonzero,  then so are fin+l, fin+2, . . . -  We call a funct ion fN 
a good extension ofpN i f  fN is an analytic funct ion on T s,  its power  series has  in- 
itial segment  PN, the coefficients fN(fl) vanish unless the nonzero  te rms in the se- 

quence fl f o rm a tail, and  llfNIl~-< 1. 
The Schur a lgor i thm is an  explicit procedure  for  construct ing a good  extension 

when p s  has such an extension. Here  is how it works.  

L e m m a  1. I f  I}cltz<_-1/t/2, then PN has a good extension. 

Proof Suppose that  I[pNl[2=tlcll2<=l/(2. We can then define sequences of  
complex numbers  {b~}~=0, and  polynomials  {P,}~=I as follows. Let  bN=cN; cer- 
tainly IbNl<l .  We  observe tha t  

(pN(wl, w~,.. . ,  w~) - bN)/(1 -- Ibm[ ~) w N 

is actually independent  of  wN, and  we denote this polynomial  by  

p~_ ~ (w~, w2, . . . ,  w~_ 1)- 
Now 

]{P~II~--Ibm] ~ < (1/2)-]bN] ~ 1 
IIPN-~I[~ (l_lbNl~)2 = l_2]bNla  = - ~ -  

Lett ing bN_I=fiN_I(O)=cN_I/(1--1bNI2), we have tha t  l b ~ _ l t < l .  We  then let 

P I V - e ( W l ,  W2 . . . . .  WNJ2) -= (P/v-I(Wl, W2 . . . . .  WN-1) - -bN-1) / (1 -  (b~-lP)wN-~ 

and continue. Finally, we let bo=co/1-[~=l (1-Ib . l~) .  
Nex t  we use the sequence {b,}~= o to generate a sequence {fn}~=l of  rat ional  

functions.  Let  

b o w~ + b~ . 
fl(Wl) = 1 +~lbowl ' 

then IIf~l l~<l ,  because Ib01<l and  I b l l < l .  Given fn- l (wl ,  w2,-. . ,wn-1), let 

wnfn_l(wa, wz, ..., wn-1)+ bn ; 
fn(w , . . . ,  w , ) =  

again Ilf, ,[[=<l. Observe  tha t  

Pl (Wl) = Cl "1- r W1 
/ / . > 1  (1 -Ib.r  ~) 

= b 1 + ( 1 - [ b l l 2 ) b o w l ,  
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while 

f l  (Wa) = bl (1 + bl bo wl) - I b~ 12 bo Wl -~- bo wl 
1 +~lb0Wl 

= b~+(1 -[b~12)bowa [1 -blboW~+(blbowO 2-.. .].  

Thus pl  is the initial segment of  the power series of  f~. Consider the function of  
two variables given by (wt, w2)~-~w2fl(wi); the initial segment of  its power series 
is the polynomial (wl, w2)~-~w2p~(wa). It then follows, as above, that Pe is the initial 
segment of  the power series of  f2, and, by induction, that PN is the initial segment 
of  the power series of  fN. Finally, the same analysis shows that if fN(fl)r then 
the nonzero terms in the sequence fl form a tail. Hence fN is a good extension of  
PN, and the proof  of  the lemma is complete. 

Much as in Section 2, we use the symbol c~ to denote an element {c(,}N=0 of  
Z N+I, and the symbol z to denote an element of  T N+I. Denote the multiindex whose 
n-th term is equal to 1 and whose other teITns are equal to 0 by 3". Let S be the 
set of  all supplementary multiindices. 

Theorem 4. For each sequence c= {cn}f= 0 of  complex numbers there is a tri- 
gonometric polynomial p on T N+I of  the form 

(6) p(z)  = Z,N=0 e,z ,  + Z ,  Esfi(a)z~ 

with the property that ][p]]~I/-8[[cH2. 

Proof. Suppose initially that ]]elf2= 1/]/2-. When 1 <=n<=N, let w , = z , _ J z , .  
Form the polynomial PN as above, and let fN be the specific good extension o f  
PN that was constructed in the proof  of  Lemma 1. Let 

P(z)  = z N "iN(W1, W2 . . . . .  WN). 

The function P is unlikely to be a trigonometric polynomial, but it has most 
of  the other properties that we require of  the polynomial p. First of  all, 

zNPN(Wl, W2 .. . .  , WN) = CNZN+CN-lZN-I + ... +CoZo. 

More generally, every nonzero term in the Fourier series of  P is of  the form 
ZNfN(fl)W ~, where fN(fl)r Rewriting this term as P(e)z  ~, we have that 
aN= 1 --fiN, that a.=f l .+l - - f l ,  when 1 <=n<N, and that a0=fi l .  Then ~ = o  ~ . =  1 ; 
that is, a has property (i). Suppose that a begins at n~. I f  nl = N, then a N = 1 
by property (i); in this case, a = 6 N. I f  nl < N, then fl begins at nl + 1, and since 
the nonzero terms in fi are positive and form a tail, f t .>  0 for all n>n~; it 
follows that if nl<=m<N, then z~',"=0a,=flm+l>0. Thus a has property (ii). 
Moreover, any multiindex that has properties (i) and (ii) and is not equal to 6 = 
for some n, must also have property (iii). 
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We now use a Riesz product to pass to a polynomial p for which /3(a)= 0 
unless ~ has property (iv). Let 

1 
R ( z ) = / / , ~ 0  [1 + -~  (z,+~,)] .  

Then R is a nonnegative trigonometric polynomial, [IR[ll =/~(0) = 1, and k(6") = 1/2 
for all n; moreover _~(~)r if and only if ~ has property (iv). Suppose now that 

IIcll2= 1/2]/2, and let c',=2c n for all n. Use the sequence c' in place of e in the 
above construction to  get a function P ' .  Let p be the convolution R~p ' .  Then 

I[pll~ <= HUll= < 1 = ~ I[cl[2, 
and p has the form (6). 

Finally, we indicate what to do if IIc112~ 1/21/2. If  11c112 = 0, let p =- 0. Otherwise, 

let c'~'-=c,/(21/2 tlcli2) for all n, and let p" be the trigonometric polynomial that we 

obtain by proceding as above with the sequence c" in place of c. Let p = 21/21[c[12p'; 
then p has the desired properties. 

Proof of Theorem 3. It suffices, by a weak-star compactness argument, to deal 
with the case when K is finite. In this case, let N=K,  let N K {e,}n=o= {Vk}k=o, and 
let p be the trigonometric polynomial constructed above. Let 

g(O) = p (exp (ihoO), exp (ihlO) . . . . .  exp (ihsO)); 

then g is a trigonometric polynomial on T with the desired properties. This comp- 
letes the proof  of  the theorem. 

By using the function P in place of p, we could prove in the same way that 

Paley's theorem holds with C(2)=1/2 when 2=>2; in order to see that the con- 

stant l/2 is optimal, however, we work entirely with functions of  one complex 
variable. Fix a finite, increasing sequence h =  {hk}~= 0 of nonnegative integers such 
that hk+l=>2hk for all k<K, and such that h0=0; define another sequence 
{nk}~= 1 by letting nk=hk--hk_ 1 for all k. Later we shall need the facts that nk:~O 
for all k, and that 

(7) rlk+l> nl+n~+...+nk for all k < K; 

these assertions follow immediately from our assumptions about the sequence h. 
Denote by H I the space of  all functions f in L i f t )  such that f ( n ) = 0  for all 
n<0 ,  and denote the intersection L ~ ( T ) n  H I by H =. Let C be a positive constant. 
As in [30], the inequality 

(8) ( ~ = 0  If  (hk)[~) I/~<= CI]fl]l 

holds for all f in H 1 if and only if for every complex-valued sequence {Vk}f= o 
there exists a function g in L=(T)  such that 

~,(hk)=Vk for all k, and ~ ( n ) = 0  for all other n=>0, 
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and such that 

Ilgll~ ~- Cllvlh. 

Following Nehari [19], we associate with every function g having these pro- 
perties the function f given by the rule that 

f(O) = exp(ih~O)g(-O) for all 0. 

Then f C H  ~176 and []f][~-C[[v[[2. Moreover, the Fourier series of  f has the form 

VK+VK_ 1 exp (inrO) +. . .  +re exp [i(nK+ ... + n0 0] + ~ , > h k f ( n )  exp (inO). 

Let z = e  i~ and let 

(9) PK (z) = v~ + v K_ 1 z"~ + . . .  + v0 z"~+-"+"l; 

then px is a partial sum of  the Fourier series of f We call any function F in H ~~ 
such that p~ is a partial sum of  the Fourier series of  F, and such that ][ F][=< 1, 
a good extension o fpK.  Let 

C r = inf{C > 0; if ][PKI[ < l/C, then PK has a good extension} 

then, by the discussion above, CK is also the smallest number for which inequality 
(8) holds, with C=CK, for all f in H 1. 

We now show that C~=]/2 t0r all K, and that l imr~=CK=]/2.  To this end, 
we use the Schur algorithm much as in the proof  of  Lemma 1. Given a sequence 
{Vk}f= 0, we let b~=vK; if  !b~I~l,  we stop, but, otherwise, we let b r _ l =  
vr-1/( 1 -  [bK[0. We continue this process unless, at some stage, ]bK]----> 1. We call 
a sequence V={Vk}f= o good, if, for all k > 0 ,  the numbers b k are well defined 
and satisfy the inequality [bk]<l; we call v bad if it is not good. We claim that 
a sequence v is good if and only if the corresponding polynomial PK has a good 
extension. Indeed, suppose that p~ has a good extension, F r say. Certainly IbK] < 1. 
Regard F r as a function of  z, and let 

FK(z)--bK 
FK_I(z) = ( z , K ( l _ ~ r F K ( z ) ) .  

Then FK_IEH=, and []F~_l]loo<l; moreover, using property (7) of  the sequence 
{nk}~= x, we can verify that the polynomial 

pK-~(Z) = (pK(z)-- b~)/(1 --IbKl2)z"~ 

is a partial sum of  the Fourier series of FK_ ~. Now bK_I=PK_I(0), whence 
[b r _ l ] < l ;  we can therefore define function Fr_2 and p r - 2  etc. Thus v is good if 

PK has a good extension. Conversely, suppose that v is good. Define a sequence 
of  functions {fk}~=l by letting 

bo z"l + bl 
fl. (z) = 1 + ~1 bo z"l' 



210 John J. F. Fournier 

and, given fk-  1 (Z), letting 

fk(z) = b k + z " k f k - l ( Z )  
1 +bkZ"~,f1,_l(Z) " 

Much as in the proof  of Lemma 1, we have that fK is a good extension ofpK;  
again, in verifying this, we need property (7) of  the sequence {nk}k~=l. Thus PK has 
a good extension if v is good. 

Hence 
CK = inf{C > 0; if ][v][~ < 1/C, then v is good}; 

equivalently, 
Cr = sup{1/[]v]]2: v is bad}. 

We saw in the proof  of Lemma 1 that v is good if ]lvl[2~-l/]/2; therefore CK<=]/2. 
To get a lower bound for C~:, we construct a specific bad sequence v, and com- 
pute []vlt2. The sequence v will be defined in terms of another sequence b by the 
rule that 

(10) vk bk K = /-/j=,+l (1 --Ibjl 2 for all k. 

We let b0=l ,  and let bl be the positive number for which the L2-norm of  the 
polynomial 

p~(z) = (1 --Ib~12)boz'1+b~ 

is minimal; we then let b2 be the positive number for which the L2-norm of 

p2(z) = (1 --lb2le)z'~pffz)+b~ 

is minimal, and continue. Easy calculations show that b , = ( n +  1) -x/2, and ]]p,ll2 = 
[ ( n + 2 ) / 2 ( n + l ) ]  v2 for all n. Because b0=l ,  the sequence v defined by formula 
(10) is bad; hence 

(11) CK => 1/llvll~ = [2(K+ 1) / (K+2)]  1/~. 

In fact we have equality here, but all we need is inequality (11) and the inequality 

C K =~ 1/2, which imply that Cs,-* }/2 as K-~ ~ .  

It follows that Paley's theorem holds with C(,~)= ~/2 when ; ~ 2 ,  and that 

the constant 1/2 is best possible; in fact, if {hk}~= 0 is any infinite sequence of non- 
negative integers for which there is a constant C such that 

(~2"=0 ]f(hk)12) ~/2 <= CI[/][~ for all f in H ~, 

then C=>1/2. The same comments apply to a generalization, due to Rudin 
[28, p. 213], of Paley's theorem to the content of Ht-spaces on compact abelian 
groups with totally-ordered dual groups. Indeed, if one uses Rudin's theorem 
and Nehari 's method in this setting, then one is led to Lemma 1. There is also a 
version of  Paley's theorem for analytic functions of several complex variables [20]; 
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in this setting, however, our methods seem to work only in certain very special 
cases. 

Other constructions of functions with many of  the properties of  the function 
g devised in Theorem 3 have been discovered by Salem a n d  Zygmund [32], and 
by the present author [8]. To compare these constructions we fix a finite, complex- 
valued sequence {vk}~= o and a sequence {hk}~=o of nonnegative integers such that 
hk+l>3h k for all k<K. We call a multiindex c~ small if it has property (iv), and 
we observe that, if e and e'  are distinct small multiindices, then the integers c~. h 
and e ' .  h are distinct. I f  ct is small, we let 

K v~ = / / k = o  lvkl [~kl (sgn Vk)~k; 

here we use the standard conventions that sgn z = z / t z l  if z r  and s g n 0 = 0 ,  
and that 0 ~  1. We denote ~ : 0  l~kl by [c~ I. 

Let G be the trigonometric polynomial such that d(c~. h ) = ( - 1 )  ~ v ~ for 
all small multiindices c~, and ~ ( n ) = 0  for all other integers n. Salem and Zygmund 
showed that IIGll~<exp (21[vll~). Using this fact, one can easily show [7, p. 163], 
that the same estimate holds for the L~-norm of  the polynomial G" for which 
d ' ( e - h ) : d ( c ~ . h )  if e has property (i), and ~ ( n ) = 0  for all other integers n. Call 
a small multiindex complementary if it has properties (i) and (iii), and, in addition, 
its nonzero terms alternate in sign. Let G" be the polynomial such that d " ( ~ . h ) =  
G(~.h)  if ct=~ k for some k, or c~ is complementary, and such that G"(n)---0 
for all other integers n. It  was shown in [8] that IlG"il=<exp (llvll~/2). 

Since the transform (~" coincides on its support with G, and since d '  has the 
same property, we say that G" and G" belong to the family generated by G. The 
function g devised in Theorem 3 does not  belong to this family. Consider the basic 

case where Ilvll~= 1/21/2. It is true that the support of ~ is included in that of  ~, 
and that ~(a.h)=Vk=d(e.h) if ~=5 k for some k, but, if ~ is supplementary, 
and if v ' r  then ~&.h)r  For  instance, let c q = c q = l ,  let a 5 = - - l ,  
and let ek = 0 otherwise; then 

( -  1)(1~E-1)/2 v~ 
~ ( ~ .  h) = - -  

(1 --Ibs[) 2/--/k>5 (1 --lbkl2) 2 '  

where {bk}kK=O is the sequence associated with 2v. 
The construction used here and the construction used in [8] are related, however, 

in the following curious way. In [8], we defined sequences {g~}2=0 and {h,}2= o of 
trigonometric polynomials, and we computed Ig~l~+ Ih.I ~ using the complex identity 

(a+vbl2+ [b-~a[ 2 = (1 + [v[2)([a[~§ IbiS). 

Consider the function P used in the proof  of  Theorem 4, and denote it now by PN. 



212 John J. F. Fournier 

It is a rational function; in fact P n =  tN/qn, where tN and qn are the ,trigonometric 
polynomials defined by letting to = bo, q0 = 1, 

t, = t ,_ l+b,z ,q ,_l ,  and q, = qn_~+b,5,tn_l. 

This procedure differs only by a minus sign from one used in [8]; moreover, one 
way to verify that [[PN][=<I is to show that [q,12-1t,]%>0 for all n, using the 
identity 

Iq+gt] ~-  ltq-bq] ~ = (1 -lbl~)([q[ 2 -  [tl~). 

4. Other applications 

Gtmdy and Varopoulos [12] have discovered a new class of  subspaces of  Li(T)  
that have many of  the properties of the classical space H L  In particular, these 
subspaces are closed and translation invariant, and a version of  Paley's theorem 
holds for them. To  simplify the discussion, we describe only two of these spaces, 
but what we do also works for the other spaces considered by Gundy and 
Varopoulos. 

Let 

and 
A = {3"+k3"+1: kEZ, n = 0, 1,2 . . . .  }, 

B = {mCZ: either m = 4"+k4  "+1, 

or m = 2(4"+k4"+1), kEZ, n = 0, 1,2, ...}. 

Observe that if rn r  then exactly one of the numbers m and - m  belongs to the 
set A; the set B also has this property. 

Theorem 5. I f  fC L~, then 

(12) (.~n=0 lf(3n)12) 1/2 <= 1/-8 I}fl}x" 

I f  fE L~, then 

(13) (~~  If(2")Iz) 1/~ <-- 4H fi l l .  

Proof. Define a finite sequence {hk}ff= 0 by letting hk=3 x-k for all k. Then 
the set S(h) is disjoint from the set A; to see this, one merely needs to know that 
every supplementary multiindex has property (iv), and ends with the value - 1 .  
By Theorem 2, 

(Z~:=0 [/(3")]~) ~/~ -<- ]/8 [[flh 

for all f in L~. To obtain assertion (12), simply let K-+ oo. Similar applications 
of  Theorem 2 yield that, for all f in L 1, 

(Z~=0 [/(4n) 12) 1/2 -<- ]/8 [If{[1, 
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and 

( ~ = 0  [f(2.4")12) 1/2 <= ]/8 [If Ill. 

This completes the proof of the theorem. 
E ~ e p t  for the presence of the explicit constant ]/8, the firs t part of Theorem 5 

follows, immediately from Theorems 2 and 3 in [12]; the corresponding assertion 
for L~i however, does not seem to follow easily from the results in [12]. The spaces 
L,~ and L~ are associated with certain backwards martingales, and we can prove 
a stronger assertion than Theorem 4 by looking at martingale differences. We deal 
with L~ here. Given f in La(T), and an integer n ~ 0 ,  let 

f.(O) = 2-" Z~lf(O+ 2rck/2"), 

and let d .=fn- f .+  1. Denote the set of all multiples of 2" by o d d  numbers by 0.; 
then the Fourier series of d. is just 

Z , . c r  e ira~ 

Let 6. (0) = sgn d. (0) if d. (0) # 0, and let 6. (0) = exp (i2" 0) otherwise; then 

lf2  [Id.[]~ = ~ -  dn(O)bn(O ) dO, 

[6.(0)[= 1 for al l0,  and 3 . (m)=0 unless m~(9.. Moreover, 3.EL~ if d.CL~. Using 
Theorem 4, these properties of the functions 6., and a duality argument, we can 
show that 

(~'~'=o []d,[l~) 1/~ <- 4 []flh, 

for all functions f in L~. A similar inequality holds for functions in L~, but, in 
that case, more is known, namely that 

(z~=0 Id,]~)l/~E L~ for all f in L~; 

this follows from Theorems 1 and 2 in [12]. It may be possible to prove the cor- 
responding statement for L~ using the methods of [15]. 

Next we consider the properties of Fourier coefficients before and after gaps. 
Let {nk}~~ and {rnk}~~ be sequences of nonnegative integers such that no<=m~< 
n~<=rn2<n2<=...; for each k_->l, let lk=nk--mk--1. We consider regular Borel 
measures/t such that /~(n)=O whenever mk<n<nk for some k; that is,/~ vanishes 
in the gap of length l k before each n k. Denote the set of such measures/t  by M l. 
It was shown in [10] that if there is a positive number ~ such that lk+~eng for all 
k, then ~'~~ ]fi(n~)12< ~o for all measures # in M l. We can now prove that the 
coefficients before the gaps must also be square-summable in this case. 
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Theorem 6. Suppose that there is a positive number e such that lk+~>=enk for 
all k>: 1. Then there is a constant C so that 

(14) Z2=~ [~(mk)[ ~ --< C[[/~[[ z 

for all measures it in M r 

Proof. As in [10], it is easy to reduce matters to the case where z->l, and 
where dl~(O)=f(O)dO/2rc for some function f in LI(T). Inequality (14) will follow 
if it can be shown that 

S,IC+l (15) Z.,k=~ If(mk)l ~ <-- 8 Ilfll~ 

for all K<~o.  To prove the latter inequality let h k = m K + l _  k when O<=k<=K. 
I f  a supplementary multiindex a begins at k, then ak and the next nonzero term 
of  a are both equal to + 1 ; using this fact, property (iv), and the lacunarity assump- 
tion, one can show that ~. h falls in the gap between m k and n k. It then follows 
immediately from Theorem 2 that inequality (15) holds for all functions f in M t. 
This completes the proof  of the theorem. 

Fix an increasing sequence {hk}~~ of  nonnegative integers such that hk+l>--2hk 
for all k. In 1956, Rudin [30] used Paley's theorem to show that, for each square- 
summable sequence {vk}~=0, there exists a bounded function g such that ~(hk)=Vk 
for all k, and ~ (n )=0  for all other n ~ 0 .  During the 1960's, it was observed, in 
[9, Theorem 12] for instance, that, in this situation, there also exists a bounded 
function G such that G(hk)=vk for all k, and G(n) for all n<0 .  The interesting 
fact that both kinds of  functions exist was discussed by Goes in [11]. 

A specific function G with the properties mentioned above was constructed 

in [8]; it has the further property that IlGIl~<=l/e Ilvll~. The methods used in the 
proof  of  Paley's theorem given near the end of  Section 3 yield a specific function 

g, as above, for which IIg[h<_-l/2 Ilvlh. By combining the two constructions, we 
get an apparently new proof  of Grothendieck's inequality [18]. One of  the many 
equivalent formulations of this inequality asserts that there is a constant K c such 
that if A is a square matrix, of any size, with the property that 

I• < 1 i, j A i j a i  : 

whenever I[a[Ioo~l and [[b][~<:l, then, for all sequences {x t} and {yi} in the unit 
ball of  a complex Hilbert space, 

A i c I Z,,j ,J(X, YJ) I 
To prove this, we take the Hilbert space to be 12, and we construct functions g~ 

and Gj, as above, such that ~i(hk)=Xik for  all k, and Ilgll~<:l/-fllxell~, while 
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G j ( h k ) : y ~  for  all k, and  l iGIt~I /e l lyJ lh .  Then  

1 f2~ fn-a o gi (o)Gj (0) dO = (x ~, y J), 

because ~i(n)Gj(n)=O unless n = h  k for  some k. Therefore,  

a-- t'~ ZA , j  g,(o) GAo) do < - / ~ .  1~'/,i Au ( xi, Y J)[ = 2re ,/0 

This p r o o f  is only apparent ly  new, because it is just  a dual  vers ion of  a p r o o f  given 
by Pelczynski [22, p. 20]; our  m e t h o d  is based on more  explicit procedures,  how- 
ever, and  it yields a bet ter  constant .  A similar p r o o f  has been given by Blei [3]. 
Finally, we ment ion  tha t  we can m o d i f y  the above  procedure  to obta in  the in- 

equali ty with K C = 2  ra ther  than  l/2e; we omit  the p r o o f  because it is known [27] 
tha t  the inequali ty holds with KC<=e ~-~, where 7 is Euler 's  constant.  

Remark.  The  fol loving mat te rs  have  come to m y  at tent ion since this pape r  was 
written. First,  Pichorides  (Bull. Greek Math.  Soc. 19 (1978), 247--277 . )  has modified 
the new me thod  o f  [26] to obta in  ano ther  p r o o f  o f  the est imate l[ f i l l  => A (log N )  1/2 

when ]'EL}, where F has N elements,  and tf(n)l>= 1 for  all n in F. Next ,  
A. Baernstein I I  and  Eric Sawyer have independent ly  improved  on Dixon ' s  est imate 
[6], when n k + l -  nk -> n k -  nk-1 for  all k, by  showing that,  in this case, Ilfll~ => A log N. 
The  construct ion in [8], which is described briefly on p p . 2 1 1 - - 2 1 2  above,  and used 
on p.214, turns out  to have been discovered earlier by J .M. Clunie [Proc. London 

Math.  Soc. 14A (1965), 58--68. ]  Finally,  the essential cases of  Theo rem 6 above  
and  Theo rem 1 o f  [I0] were p roved  earlier, by other  methods,  by Y. Meyer  (Ann. 

scient. Ecole Norm. Sup. (4)1 (1968), 499- -588 .  (See p.533)). 
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