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In this paper we apply infinite dimensional Gaussian measures to prove results 
about plurisubharmonic and holomorphic functions on locally convex spaces. 
Specifically we are interested in the "size" of  polar subsets (i.e. the set of  points 
where a plurisubharmonic functions takes the value - co )  in a locally convex space. 

Since every polar subset of a finite dimensional space has Lebesgue measure 
zero we were led to consider the following two problems: 

Let A denote a polar subset o f  a locally convex space; 

(a) Is  # ( A ) = 0  for  every non-degenerate centered complex Gaussian measure 

# on E? 

(b) Can one find a complex Gaussian measure # on E such that # ( A - x ) = 0  
for  every x in E? 

We show that the answer to (a) in general is no and modulo certain restric- 
tions on a locally convex space E we show # (A) = 0  for every non-degenerate centered 
complex Gaussian measure # if an only if A does not contain a dense subspace 
of  E. We show that (b) is true for a reasonably large class of  polar subsets of E. 
We then apply the above results to show that the holomorphic completion of  "most" 
dense hyperplanes of  E is in fact equal to E. 

w 

If  E is a real quasi-complete locally convex space and/2 is a Radon Gaussian 
measure on E then (see [1]) (E, g) can be considered as an abstract Wiener space 
(i.e. there exists a separable Hilbert space H ,  and an injection i from H ,  into E 
such that #= i (v )  where v is the canonical Gaussian cylindrical measure on H,) .  
In that case i(Hu) is the set of  admissible translates of  # i.e. xEi(Hu) if  and only 
if # " # x  where # x ( A ) = # ( A - x )  for every #-measurable subset A of E. 



218 Se~n Dineen and Philippe Noverraz 

The measure # on E is said to be non-degenerate if E does not contain a proper 
closed subspace of  measure 1 or equivalently if  i(H.) is a dense subspace of  E. 

Now suppose E is a quasi-complete locally convex space over the complex 
numbers and let E R denote the underlying real locally convex space. By a complex 
Gaussian measure on E we mean a Radon Gaussian measure p on E R such that  
t t (ei~ for every 0 in (0, 2~) and every Borel subset B of  E. 

One can show (5) that a Radon Gaussian measure p on E R is a complex 
Gaussian measure on E if and only if the (real) covariance operator of  #, S . ,  is 
a complex linear operator. 

In the construction of certain complex Gaussian measures we are obliged to 
restrict ourselves to locally convex spaces with the following property:  

( . )  every sequence is contained in the linear span of  a compact  set. 
I t  is not difficult to show that  a locally convex space E satisfies ( * )  if and only 

if it satisfies 
( . . )  for each sequence (x.). in E there exists a sequence of non-zero scalars 

(;~,). such that  2.x.---0 as n ~ o .  
Every metrizable space satisfies ( , )  and ~ C is an exemple of  a space which 

does not satisfy (4 , ) .  I t  is also worth noting that every Gaussian measure on 
~ ,  C is degenerate, 

w 

For  the remainder of  this paper E will denote a locally convex space over 

the field of  complex number. 
A function v = E ~ [ - ~ ,  + ~] is said to be plurisubharmonic if it is upper 

semi-continuous and 

v(a) <- 1/2~ f2  ~ v(a + be io) dO 

for all a, b~ E. 
A subset A of E is a complete polar set if there exists a plurisubharmonic func- 

tion v on E, v ~ - - ~ ,  such that A={xEE;  v ( x ) = - - ~ } .  
A subset of  a complete polar set is called a polar set. We refer to [8] for details 

of  the theory of  plurisubharmonic functions on locally convex spaces. 
The following two results, included for the sake of  completeness, can be 

found in [9]. 

Lemma 1. I f  the plurisubharmonic function v is bounded on Bp(x, r ) =  {yE E; 
p ( x - y ) < r }  where p is a continuous semi-norm on E and It is a complex Gaussian 
measure on E then 

v(x) 1 ) ] f  p [Bp(O, r p(y)~_v(x+y)p(dy) 

for  any x in E. 



Gauss i an  measu res  and  polar  sets in locally convex spaces 219 

Proof The integral 

f ~ v (x + ye i~ Znp(o, ,) (Y) It (dy) 

is well defined and does not depend on 0. 
Hence 

f .(,)~_, v ix + y) It (dy) = 1/2 ~ f ~  dO f ~ v ix + y e'~ Z ~  (o, r)(Y) It (dy) 

= L [1/2re f2  = v(x + ye '~ dO] Znp(o,,)(Y)It(dY) 

=> f e v ix) x..,o ,) (y) It (dy) = v (x) p [Bp (0, r)], 

Proposi t ion 2. Let A denote a complete polar set of  E and let It denote a complex 
Gaussian measure on E. Then, i f  B={xEsupp It s.t. It[Bp(x, 1 ) h A ] > 0  for some 
semi-norm p}, then 

B + I t  u c A 

and I t (A)>0  implies H u c A  and I t (A)= l .  

Proof I f  B = 0  the inclusion is obvious. I f  B e 0 ,  for any b in B there exists 
a continuous semi-norm p such that the function V defining the polar set is bounded 
from above in Bp(b, 2). Therefore, i f h  belong to HunBp(b, 1), we have 

It[By(0, 1)]v(b+h) <= fB v(b+x+h)I t (dx)  
p(o, a) 

= f v(b+x)Ith(dX) = - - ~  
d Bp(h,1) 

since bEBp(h, 1)c'Bp(b, 2) and Ith~it. Hence B + H u c A .  I t  is not difficult to 
see that I t (B)=p(A)  hence I t (B+H.)=g(A) .  But #(B+Hu) equals 0 or 1, and 
the proof  is complete. 

Theorem 3. Let E denote a quasi-complete locally convex space satisfying �9 
(or * . )  and let (A.). denote a sequence of compIete polar subsets of E. There exists 
a complex Gaussian measure It on E such that I t (wA.)=0.  

Proof For  each n let x . E E \ A . .  Let K denote an absolutely convex compact  
subset of  E whose span contains the sequence (x.). The space Er is a Banach space 
and it is possible ([5]) to construct a complex Gaussian measure It on E~: such that 
( x . ) c H  u. I f  fi is the complex Gaussian measure on E defined by fi(B)=It(BnEK) 
for any Borel subset B of  E then Proposition 2 implies that f i (A.)=0 for each n 
and hence # ( u A . ) = 0 .  

As a corollary we obtain the following result of  ([3]). 

Corollary 4. In a quasi complete locally convex space satisfying (*)  the countable 
union of  polar sets has empty interior. 
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Theorem 4. Suppose E satisfies (*)  and is quasi-complete. Then there exists 
a centered non-degenerate complex Gaussian measure p on E such that # ( A ) = I  

i f  and only i f  A contains a dense separable subspace of  E. 

The assumption "subspace" cannot by replaced by "countable subset whose 
span is dense in E"  as the following example shows: Let (e.) be an orthonormal 
basis in a separable Hilbert space E, then the function 

- •  log Ilz-e.II 
n 

is plurisubharmonic in E. The complete polar set A = { v = -  ~o} contains the basis 
(e.) but no infinite dimensional subspace so # ( A ) = 0  for any non degenerate 

centered Gaussian measure. 

Proof of  Theorem 4. =*) follows f rom Proposition 2 and the separability of  

H ,  since s u p p # = H , .  
~ )  Let (e , ) cA  be a linearly independant sequence in A whose span is dense in E. 
By assumption, (e,) belongs to Et~ for an appropriate absolutely convex compact  
subset K of  E. Without loss of  generality we may assume that  

so the linear map 

is continuous. Let 

Z o  II e.II K < + 0% 

r: l~-~F_,~, x-~Z.oX.e.  

g = i o f  where i is the injection E K ( - -E .  

Since A is a G~-set that contains the span of  (e.) we can find a sequence (6.), 

6 .>0 ,  such that 
g-a(A) D L 

where L = { x ~ l  ~, [x.l~=6.,nEN}. We now choose a complex Gaussian Radon 
measure v on F=(l  ~, a(l ~, I0)  such that  v ( L ) > 0  and c00cHv where c00 the 
sequences having a finite number  of  non zero elements. Since F is a-compact  we 
deduce that  # = g ( v )  is a complex Gaussian Radon measure on E. The measure 
# is non degenerate since (e.) belongs to H . .  Moreover  

I~(A) = v(g-l(A))  >= v(L) > 0 

so Proposition 2 tells us that  # (A)=  1. 
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A more elementary but longer proof  was given in a conference at Lelong-s 
seminar (february 77). 

This completes our discussion of  problem (a). We now look at polar sets which 
are Gaussian null sets. 

A Borel subset B of a locally convex space E is said to be a Gaussian null set 
if  there exists a complex Gaussian measure # on E such that # ( A - x ) = 0  for 
every x in E. 

Theorem 4 easily implies that  a non-dense complete polar  set is a Gaussian 
null set with respect to any non degenerate Gaussian measures. 

I f  A is a Borel subset of  E and # is a complex Gaussian measure on E we let 
Au=  {xEE; # ( A - x ) =  1}. Note  that A~+H~=A u and that A~ is a G~-set. 

Lemma 5. I f  l~ is a complex Gaussian measure on E and if  A is a complete polar 
subset of E then: 

a) A u c A  
b) there exists a complex Gaussian measure v such that v(Au)=O. 

Proof. (a) follow f rom proposition 1. (b) Let x E E \ A  and let v denote a com- 
plex Gaussian measure on E such that  xEHv. Then v(Au)<=v(A)=O by pro- 
position 2. 

We remark that (b) of  the preceeding lemma can be modified to show that for 
every complete polar set there exists a complex Gaussian measure v such that 

v(A0=0. 
We now give examples of  dense polar  sets that  are Gaussian null sets. 

ProposRion6. I f  A is a complete polar subset of E and E r  
{ ( x - y l xEA ,  yEA }, then A is a Gaussian null set. 

Proof. Let xoEE\ (A- -A)  and let # denote a complex Gaussian measure such 
that x 0 lies in the reproducing kernel o f  #. 

Now suppose xlEA ~. Then xl+xo=x~EA~+H~=A~ and xo=x2--xlEA~-- 
A u c A - A .  This is impossible and hence A u = 0  i.e. A is a Gaussian null set. 

Proposition 7. A complete circled polar subset A of a locally convex space E 
is a Gaussian null set. (A is said to circled i f  e i~  for all 0E[0, 2re]). 

Proof Since A r  we can choose a point xoEE\A  and a complex Gaussian 
measure/~ such that  xoEH~. 

I f  x~A,  and 121= 1 then 

~(2(A-x))  = ~ ( A - x )  = ~ ( A - 2 x )  = 1 

and hence 2xEA,. 
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Since xo~A we have v ( x 0 ) > -  0o where v is a plurisubharmonic function on 
E which defines A. Let y~Au. Then 

1 f2~ 
v(x~ ~ 2--~ J o v(x~176 dO 

and hence Xo+ei~ A for almost all 0. 
This contradicts the fact that 

xo+ei~ = A ,  for all 0. 

Hence A u :  0 and A is a Gaussian null set. 

Corollary 8. I f  F is a polar subspace of a locally convex space then F is a 
Gaussian null set. 

Proof Since F is polar there exists a plurisubharmonic function v on E such 
that F c  {xEE; v ( x ) = -  ~}. The function vc defined by v (x)=suplzt~_l v(Ax) is 
easily seen to be plurisubharmonic on E and F c  {xEE; vc(x)= - ~,}=A. 

Since e i ~  for all 0~[0, 2~] an application of Proposition 7 completes 
the proof. 

We now give a few applications of  the preceeding results. 

Theorem 9. I f  U is an open subset of  C n and ~ is the subspace of H(U)  consisting 
of  functions which can be analytically continued outside U then either r/---H(U) 
or tl is a Gaussian null set. 

Proof This result follows from the fact that every complex Gaussian measure 
on H(U)  is supported by a Banach subspace of  H(U) and from the fact that ~/nE 
is a polar subspace of  every Banach subspace of H(U) ([7]) by applying Corollary 8. 

Now, let E denote the completion of  the locally convex space E. The largest 
subspace o f / ~  to which every holomorphic function on E can be continued as 
a holomorphic function is called the holomorphic completion of E and is denoted 
by Eo. The space Eo always exists ([8]) and we say that E is holomorphically com- 
plete if E=Eo. 

Theorem 10. Let E denote a Frdchet space and let (ai)ic I be an algebraic basis 
for E. Let (bi)i~ t denote a set of  linear forms on E such that bi(aj)=fij for all 
i, jEL Then at most a finite number of the hyperplanes Hi=b71(O), iEI, are holo- 
morphically complete. 

Proof Suppose there exists an infinite set of holomorphically complete hyper- 
planes (Hi,)n, Hi. is a polar subset of E for each n ([18]). Let E n = ~lm:,.-n Hi.." Each 
En is polar in E and hence I J ,  E , r  by Corollary 4. Since each xEE lies in all 

except a finite number of  H i it follows that E =  I.J n (-]m~-n H i  m ---- ('~n En" This is 
impossible and completes the proof. 
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W e  r e m a r k  t h a t  one  can  also use a resu l t  f r o m  (2) ins t ead  o f  C o r o l l a r y  4. 

C o r o l l a r y  11. l f  E is a Frechet space, then there exists a dense hyperplane H in 

E such that every holomorphic function on H can be extended to a holomorphic 

function on E. 

Proo f  I f  H is a dense  h y p e r p l a n e  t h e n  we  h a v e  e i the r  H =  11o or  E---= 14o. 

A n  appI i ca t i0n  o f  T h e o r e m  10 n o w  c o m p l e t e s  the  p roo f .  

W e  t h a n k  the  re fe ree  f o r  s o m e  i m p r o v e m e n t  a n d  s impl i f i ca t ion  o f  the  proofs .  
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