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O. Introduction 

The ma in  result o f  the present  pape r  is 

Theorem A. Let ( S, 8 ,  m) be aprobability space. Let ( f , ,  g,)~=t be a biorthogonal 
system of  measurable functions on S such that 

1 ~ sup,  fl g,  ll ~ < oo 

2 ~ the functions fn are equffntegrable. 
Then 

LLIz" sup ,=xA(s)g,(t m(ds) m(dt) =co. 

As corollaries f r o m  Theo rem A we obtain  

Corollary B. No normalized basis of  L 1 (0, 1) consists of  equiintegrable func- 
tions; equivalently, every normalized basis of  L 1 (0, 1) contains a subsequence, which 
is equivalent to the unit vector basis of 11. 

Corollary C. I f  (g,) is a normalized basis of  C(O, 1), then, for some increasing 
sequence (nk) of  positive integers, the map ~z.,Cng,~(C,k)~=l takes C(O, l) onto co. 

Corollaries B and C answer  the questions stated in [11], Ch. II ,  p. 296, P rob lem 
7.1 (see also [9], p. 36, p rob l em (v)). 

Remark O. Part icular  cases o f  the Corollar ies  are the known results on non-  
existence o f  

1 ~ a un i formly  bounded  o r thonorma l  system, which is a basis o f  U or  C 
(Olevskff, [9], Ch. I,  w 2, Theorems  2 and  9) 
2 ~ a normal ized  basis o f  L I, which is bounded  in order  ([4], Th.  1) 
3 ~ a Besselian basis o f  C or  a Hi lber t ian  basis o f  L 1 ([12], Th.  A and  Th. B); 
evenp-Bessel ian  basis o f  C for  any  p < co and  q-Hilbert ian basis o f  L 1 for  any 
q > l .  
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The paper consists of four sections. 
In section 1 we prove our main results. We start with the proof of Proposition 

1.A, which is a stronger, 'local' version of Theorem A. The main idea of the proof, 
especially the inductive construction at the end of  it, is due to Olevskff (cf. the proof 
of Theorem 1, Ch. I, w 1, [9]). We derive also Corollaries B and C from Theorem A. 
Finally we sketch briefly, how the facts stated in Remark 0 follow from the Cor- 
ollaries. 

In the next two sections we give some generalizations and strengthenings of 
the main results. Corollaries 2.B and 2.C of Section 2 generalize Corollaries B 
and C to the case of ~1_ and ~ - s p a c e s  respectively. Section 3 contains Theorem 
3.C, which is a 'pointwise' analogue of Corollary C. It generalizes Olevskfi"s result: 

Given uniformly bounded orthonormal system on [0, 1] there exists a con- 
tinuous function on [0, 1], whose Fourier series with respect to this system di- 
verges at some point 

(see Theorem 3, [9], Ch. I, w 2). 
Finally, Section 4 contains a number of remarks and open problems. 
Terminology and notation for classical Banach spaces used in this paper is 

standard (see e.g. [7]). All facts, which admit real and complex versions, hold in 
both cases together with their proofs. 

The author would like to thank Professor A. Petczyfiski for suggesting the 
problem; him and also Professor L. Tzafriri for helpful discussions. In particular 
Lemmas 2,1 and 2.2 together with their proofs were communicated to the author 
by Professor A. Petczyfiski. 

1. Proof of the main results 

We start with some definitions. Let (S, N, m) be a measure space. Let Z be 
a set of measurable functions on S. We define the modulus of integrability of the 
set Z as the smallest concave function ~ (Z, .) :  O, ~o)-~(0, oo) such that 

f A If] dm ~: rl(Z, re(A)) 

for all f E Z  and for all AEOL If Z = { f } ,  we write r/(f, .) instead of ~/({f}, .). 
By definition, a set Z is equiintegrable iff r/(Z, 0+)=0.  

Now we are ready to state 

Proposition 1.A. Let q: R+-~R + be a function satisfying 
0 ~ q(O+)=O, q is increasing and continuous. 
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Then there exists a sequence of  positive numbers cNt~, depending only on q, 
such that i f  ( S, ~ ,  m) is a probability space and ( fi ,  N - -  g,),=l a biorthogonal system 
of measurable functions on S (i.e. f s f g i  dm=bij) satisfying 

1~ 11 gill oo <- 1 for i = 1, 2 . . . . .  N 

2 ~ tl( fi, .)<-t l for i = 1 , 2  . . . .  , N  

then 
m a x  ; IZ"=ji(s)g,(t) I m(d ) m(dt) >= cN. 

l ~ _ n ~ _ N J  S 

Clearly Theorem A follows from Proposition 1.A. 

Proof of  Prop. 1.A. In the sequel we shall denote by (T, ~ ,  v) the measure 
space ( S X S , ~ | 1 7 4  k+. S t ~ i = k + l f ( ) g i ( )  by Fk, . (s , t )  and F o .  by F.. In 
this notation the conclusion of Prop. 1.A may be expressed as 

(1) max f IF, I dv => eN. 
l ~ _ n ~ _ N  d T  

We start with several lemmas. 

Lemma 1.1. Under assumptions 0o--2 ~ of Prop. 1.A there exists 7>0,  de- 
pending only on ~, such that 

(2) Ilgi-gjlll >= 7 

(3) Ilgil], --> ? 
for all i, j, l<=iCj<=N. 

Proof. Choose ? > 0  so small that q(2?q(1))<=4 -1 (it is possible by 0~ Fix 
i, j and denote r={lfd>(2?)-q. Then we have 

(4) f rlfil dm<= q(fl, re(F)) <= q(m(F)) (by 2 ~ 

(5) lfiI dm >= (2?) -1 re(r). 

Combining (4) and (5) and applying the fact that t/is increasing we obtain 

(6) re(F) <= 2?~/(m(F)) <= 27~/(1). 

Now, using successively (4), (6), the fact that t/ is increasing and the choice of ?, 
we get 

(7) Ifil dm <= . ( re (F))  <- t/ (27t/ (1)) ~ 4 -1. 
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Finally 

1 = f s ( g i - g j ) f i d m  <= fs ]gi--gJ]" ]fiI dm = fr [gi--gjt" ]fil dm 

+ f s \ r l g , - & l  " ]f;I dm <= 2 f r [fll dm+(2y)-* f s\r[g,-g~l dm 

<=, by (7), 2+(2?)- l l tg~-gj l l l ,  

whence (2) follows. Proof of (3) is similar: we replace everywhere gi -g j  by g~. 

Lemma 1.2. Let fiE(O, 1). Let T: L2~L 2 be a Hilbert--Schmidt operator 
(i.e. hs(T)=(trT*T)a/~<oo), Denote by B the unit ball of  L 2. Then T(B) admits 
a &net of  cardinality not exceeding c(6) h~(r)~, where c(6)---4 ~-2. 

Proof of Lemma 1.2 is standard and we omit it. 
The following lemma is crucial. 

Lemma 1.3. Under assumptions 0o--2 ~ of Proposition 1.A there exist e, f l>0  
(depending only on q) such that, for any integers k, n with 0 = k  k + n =N, 

f. IF~,.I dv > ~, 
1 

where H=H(k ,  n) is defined by H={]Fk,,]> fl (In n)~}. 
1 

Proof. We prove Lemma 1.3 with a = ? / 4  and fl=(21n c(?/4))--~, where 
and c(-)  are the same as in Lemma 1.1 and Lemma 1.2 respectively. Since the 

case n = l  follows immediately from (3) and the fact that I[fk+l[]l~l, we can 
assume n~2 ,  Fix k ,n  and denote F+=Fk, nZH, F-=Fk,,ZcH. Then the con- 
clusion of Lemma 1.3 may be expressed as 

(8) f r  [F+[ dv ~ ~/4. 

Denote operators g ~  f s F+ (s, . )g(s)m(ds) and g ~  f s F -  (s, . )g(s)m(ds) by 
P+ and P -  respectively (we do not specify function spaces, which are domain and 
range of P+ and P -  as far). Clearly 

(9) (P++P-)gi = gl for i = k + l  . . . . .  k+n. 
1 

Since IF-l<-fl (In n)~, the Hilbert--Schmidt norm of P -  (considered as an 
1 

operator on L2(m))does not exceed f l ( lnn)~ (more precisely, hs(P-)= 
1 

( f r  ]F-[2dv)-~) �9 Hence, by Lemma 1.2, P-(B)  (B is the unit ball in L2(m)) admits 
2 1 

a ?/4-net of cardinality at most c(?/4) a lnn=n~ < n  (remember that n=>2). Corn- 
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bining this with the estimate 
integers i, jE {k+ 1, . . . ,  k+n} 

(113) 

In other words 

Itgill2<=llgill~<=l we get that there exist two distinct 
such that, when we denote g = & - g j ,  then 

LLP-glh <= IIP-gll~ = IIP-g~-P-g~ll~ <= ~/2. 

Now (2), (9) and the preceding inequality show that 

IIP+glf~ ~ llgIll-ltP-gll~ >= 7}2. 

f s f s F+(s' t)g(s)m(ds)l m(dt) ~ 7/2. 

Hence 

v/2 <= f~ f~ F+(s, t) g (s) ~ (as) ~(at)  <- f~  ( f s  IF+(s, t)l re(as), llgll~) re(at) 

<= 2 f IF+td~. 
T 

whence (8) and therefore Lemma 1.3 follow. 

Lemma 1.4. Let L>O. Then, under assumptions 00--2 ~ of  Proposition 1.A, 
we have, for any integers k, n with O<=k<k+n<=N, 

f ~  I&..l dv ~ n , (n , (OL-1) ,  

where V= V(k, n, L) is defined by V= {[Fk,.I >L}. 

Proof. Denote Vt= {s: (s, t)E V} for tES. Then we have, by 1 ~ and 2 ~ for 
each tE S, 

[F~,.(s, t)lm(ds ) ~- +1 s) I re(as) ~- ~,=k+l  ~/(fi, m(V,)) ~ nq(m(V,)). 
t t 

Hence, for all tE S, 

m(Vt) ~- ml(m(VO)L -1 ~- nq(1)L -1, 

because q is increasing. By the same reason, combining two preceding inequalities, 
we get for all tE S 

fv, IF~..(s, t)[ m(ds) ~- n~/(m/(1)L-x). 

Integrating the above inequality with respect to m over tE S we obtain the 
desired estimate. 

Now we return to the proof of  Proposition 1.A. We deduce (1) from Lemmas 
1.3 and 1.4, using the assumption 0 ~ of the proposition only. In other words, if ~/ 
satisfies 0 ~ then there exists e~ctoo such that if, for some N and for some sequence 
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of measurable function N (F,),= 0, F0=0,  on some measure space (T, ~ ,  v), a corre- 
sponding family of  functions Fk,, defined by 

Fk, n = F k + n - F  k for 0<= k <= k+n <= N 

satisfies the conclusions of  Lemmas 1.3 and 1.4, then (1) holds. 
We define by induction two sequences of  nonnegative real numbers (A j), (B j) 

and a sequence of  positive integers (dj) (all for j =  1, 2, ...). These sequences will 
depend on the function t/only. 

Put d~= 1. Suppose that for  some r we have defined Aj and By for  j<=r--1 
and dj for j-<_ r. Then we put 

1 

A, = fl (In dr) ~- 

B, = min{L > 0: d,.q(d, tl(1)L -~) <= 2-3c~}, 

where ~ and fl are the same as in Lemma 1.3. Since q is continuous and ~ (0 +)=0  
(by 0~ the set in the definition of  B r is nonempty, closed and therefore this defini- 
tion is correct. Since dr>--l, the definition of  A, is also correct. 

Now put 
dr  +1 = [exp ((I 8rB/fl)2)] + i. 

Clearly all three sequences increase to infinity and 

(11) Aj+~>-ISjBj and B j > A j  for j = l , 2 , . . . .  

Given N we set 

(12) q =  qN max r: z.,j=l y = �9 

Observe that we have, by Lemmas 1.3 and 1.4, 

(14) f (tFk, djI>Bj} ]Fk, d,I dv <= 2 -3 e  

for j =  1, 2, . . . ,  2q and k<=N-dj. 
We shall prove Proposition 1.A with (CN) defined by 

(15) c N = 2 - 3 e q s  for N = l , 2  . . . . .  

Clearly CN't~. 

We define by induction a sequence of integers Nj: N0=0, Ni+I=N j or Nj+I= 
Nj+d2~_y (for j = 0 ,  1, 2 . . . .  , q) and a sequence of  measurable functions Gj on T, 
Go = 0, such that if we set 

Ej=~[GjI>IA2q_j+I]  for j = 0 , 1 , 2  . . . . .  q, 
t z J 
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then 

(16)j 

(17)j 

for j = 0 ,  1,2, . . . ,q .  
Suppose we have 

f~. IG~I dv- f TIGj-F~I d~ ~ 2-=~j 

f ~. !Gj-F,,,ldv <= 2-~j 

done this. Then (16)q and (15) imply 

f ~ [FN~l dv ~ 2-%~q = cN. 

Since, by (12), Nq~_.~.~q+l dj<-N, this proves Proposition 1.A. 

The inductive construction 

(16)0 and (17)0 hold trivially. 
Suppose that for some j < q  we have defined Ni and Gi to satisfy (16)i and 

(17)i for all i<=j. Set 

vj  = &~- j  < Icjl <--~ A2~-j+I 

and consider separately two cases. 

Case 1. 

re, [G[d f r I G j -  > 1) ucr, i v -  FNj]dv 2 - z ~ ( j +  

We define Nj+x=Nj, Gj+I=Gj. Then E~§ (16)j+ 1 and (17)j+1 
are clearly satisfied. 

Case 2. We have the converse inequality. Combining it with (16)j we obtain 

(18) f~, [Gjl dv < 2-act; 

combining with (17)j - -  

3 
fE, {a,/dv < 2-3~(j+ 1)~ 2 - %  < -~ ~(j + 1). 

Since, by definition, ]Gj[ >1 A~a_i+ 1 on Ej,  the preceding estimate implies 

(19) v(Ej) = f ~ dv <- 2 f E iG~i d v < 3 ~ ( j + l )  
J A2~-i+1 4A2q_j+l" 

We define Nj+I=Nj+d~a_j and Gj+I=GjZcvj+FN~,%_jZcvj, where Vj= 
{IFNj, d2~_jl > B2q-j  }. 

Observe now that if x6E~ (and hence x(~ Uj), then 

[Gj+x(x)] = IGj(x)+ FNj, a,,_flX)Zcvflx)l >= [Gj(x)I--B~-j 

1 1 
=> -~ A2q-j+l--B2q-j > --~A2g-i 
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(the latest inequality follows from (11)). This shows that 

(20) Ej+I ~ Ej. 
Similarly 

L (21) 16j+11 dv ~ f ~ (Iaj[--B.q.j)dv = rE. Iajl dv--B.q_jv(Ej). 

Set Wj={4q_j<IFN.,,~ Then WjcCV~. 
Let xC W j \ E j .  Then, similarly as in the proof of  (20), 

IGj+l(x)[ = [Gj(x)Zc%(x)+ FNj, a,q_j(x)zcvj(x)] ~ IFNj, a~._~(X)I 

1 1 1 
2 A2q-J ~ "-2 ]F&~'d"~-'J(X)l > -'2 A2q-j" 

Hence x6Ej+~. Combining this with (20) we obtain 

(22) ej+ 1 D EjwWj. 

Similarly we get, using (13) and (14), 

>• 1 (23) f~,\~ lG~+,ldv= 2 w,\~,lFN"d"o-'ldv>--s IFN''~=o-'ldv 

1 v ( w j \ e j )  B2~_ ~ > 7 1 2 = T 6 ~  v(Ej)B2~-j" 

Now, using (22), (21), (23) and (19) consecutively, we obtain 

f .j+l ]Gj+l] d" ~ f E [Gj+l] dV ~- f w.,Ej ]Gj+ll d1~ ~ f E IGj] d'-~ ~-~" 

3 > d v + 7  9 B ,q_ j ( j+  1) 
-i-g 0~---~0~ A2q-j+l 

Since j<=q- 1 we have, by (11), 

B2q_j ( j+l )< j + l  < 1 
A2q-j+x = 18(2q--j) = 1--8-' 

which combined with the previous estimate gives 

(24) f F~j+x 1GJ+ 1] dv >= f -Jz~ IGjf dv+-~ot.3 

On the other hand 

f. IG,+I-F.,+.I a~ <= I.I~,-F.,[dv+ f., IG, Idv+ f. l&,,,,._,lav 

<f Ic 1 " = s--FN dr+ T J "4' 
by (t8) and (14). 



Bases and biorthogonal systems in the spaces C and L 1 263 

Now to get (16)j+ 1 or (17)i+1 it suffices to combine the above inequality with 
(24) and (16)i or (17)i respectively. Thus the induction is completed. 

This ends the proof  of Proposition 1.A and completes the proof  of Theorem A. 
Now we derive Corollaries B and C from Theorem A. 
Let us recall two basic facts on equiintegrable sets. The first of them is well- 

known, the second one is due to Kadec and Petczyfiski (cf. [3], Theorem 6). Let 
(S, M, m) be a measure space. 

1) I f  m is finite, then a set Z o f  m-measurable functions is equiintegrable iff 
Z c  Li(m) and Z is relatively weakly compact in Ll(m). 

2) A bounded set Z c L l ( m )  is relatively weakly compact iff no sequence of  
elements of  Z is equivalent to the unit vector basis of  l 1. 

Recall that two  sequences (x.) and (y.) of elements of Banach spaces X and 
Y respectively are said to be equivalent if, for some c~(0, ~), 

c - l l l ~  t.x.llx <= I[Z t.y.llr <= cllZ t.x.llx 

for every sequence of scalars (t.) with finite number of  nonzero elements. 
The above facts explain, in particular, equivalence of  the two statements con- 

tained in Corollary B. 

Proof of  Corollary B. Let us assume the converse. Let (f.)~=i be a normalized 
basis of LI(0, 1) such that the functions f .  are equiintegrable. Denote by (g.), 
g.~L=(O, 1), a corresponding sequence of basis functionals. Since (f . )  is a normalized 
basis, sup. I[g.[l~<~. Thus (f.,g.)~'=i satisfy the assumptions of Theorem A 
and hence 

(25) sup ] Z ,= l f , ( s )  g,(t)[ ds dt = co. 

On the other hand, since (f , )  is a basis, the norms of  the partia ! sums operators 
P,: LI~L1, P , ( ~ i  cJ,)=~YT=l cif,, are uniformly bounded (say, by K <  o~). 
It is a wellknown fact that each P,, may be written as 

1 n 
(P . f )  (s) = fs (Z,=l fl  (s) g, ( t ) ) f ( t )  dt 

and hence, for any positive integer n, 

" > [I[II " s K_-> tlP.II = s u p e s s f s  [Zi=lf i (s)gi( t ) l  ds = a oa o, Z i = i f i (  )gi(t)l  ds dt 
t E ( 0 , 1 )  

which contradicts (25). This proves Corollary B. 

Proof of  Corollary C. Denote by (f , )  the sequence of  basis functionals corre- 
sponding to the basis (g,). Then there exists some regular Borel probability measure 
m such that all f ,  belong to D ( m ) c C  (0, 1)*. The same argument as in the proof  
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of  Corollary B shows that the functions f .  are not  equiintegrable and consequently, 
by the Kadec--Pelezyfiski result, some subsequence (f.~)k=l of  (f . )  is equivalent 
to the unit vector basis of  l 1. 

Let us consider two operators: 

T: C ~ Co defined by T ( ~  t.g.) = (t.~)T=l and 

S: 11 -~ C* defined by S[(tk)] = ~ tkf.~. 

Clearly S=T* and S is a isomorphic embedding. Hence T is onto. This 
proves Corollary C. 

Now we show, how the facts stated in Remark 0 follow from Corollaries B 
and C. 

3 ~ Recall that a sequence (x.) of elements of a Banach space is said to be 
q-Hilbertian (resp. p-Besselian) iff there exists a constant c such that, for any se- 
quence of  scalars (t.), 

IIZ t.x.ll q <- cq Z It.lqIIx.ll ~ 

(resp. c V l l Z  t.x.II v >= Z lt.lVlIx~llV) �9 

Let ( f . )  (resp. (g.)) be a q-Hilbertian sequence in L ~ for some q > l  (resp. 
a p-Besselian sequence in C for some p <  oo), which is a basis of L ~ (resp. C). We 
can assume that (f . )  (resp. (g.)) is normalized. 

By Corollary B, some subsequence (f.~) of  (f . )  is equivalent to the unit vector 
basis of  l l ;  in other words, there exists a constant c' such that 

I1~ tkfnk]ll ~ C'~a ]tk[ 

for all (tk)El 1. On the other hand, since (f . )  is q-Hilbertian, we have 

IIZ tkfnJh <-- c ( Z  Itkl~) ~/~, 

which contradicts the previous estimate. 
Similarly, by Corollary C, there exists a function g = ~ t . g . E C  such that 

(t.)~co\l p. On the other hand, since (g.) is p-Besselian, we have 

It .f  ~ cv[IZ t.g.llv = cvllgllV < 0% 
a contradiction. 

2 ~ Every subset of L x, which is bounded in order, is equiintegrable and hence, 
by facts 1) and 2), no sequence of  its elements is equivalent to the unit vector basis 
of  IL Now we obtain the desired conclusion from Corollary B, 

1 ~ It is easy to see that any uniformly bounded orthonormal system is 2-Bes- 
selian in C and 2-Hilbertian in L a. Therefore, by 3 ~ it is no a basis of any of  
these spaces. 
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2. The AeP-spaces 

In this section we generalize Corollaries B and C to the cases of ~O-spaces 
and s respectively (for definitions and basic properties see [5] and [6]). 
More precisely, we prove 

Corollary 2.B. Let X be a ~l-space. Let (f,)~=l be a normalized basis of  X. 
Then some subsequence of (~)  is equivalent to the unit vector basis of  l 1. 

Corollary 2.C. Let Y be a 5q=-space. Let (gn)n=l be a normalized basis of  Y. 
Then, for some increasing sequence of  positive integers (rig)k=1, the map ~ c ,g ,~  
(C,k)k= 1 takes Y onto Co. 

Proof of Corollary 2.B. Let Z be a Banach space, Z 0 its subspace. We shall 
say that Z0 is locally complemented in Z iff, for some constant c, every finite di- 
mensional subspace E of Z0 is contained in another finite dimensional subspace 
F of  Z0 such that there exists a projection PF from Z onto F with IIe~ll<_-c. We 
have the following 

Lemma 2.1. Let X be a .Lal-space. Then X is isomorphic to a locally complemented 
subspace of  some L 1 (m)-space. 

Proof. By [6], Theorem III (c), X is locally complemented in itself. Since each 
P ;*  (see the definition above) is then a projection from X** onto F with 11P~-'11 = 
Iler[I ~_c, x is locally complemented in X**. By [6], Theorem III(a), X** is a s 
space. Hence, by [5], Corollary 1 to Theorem 7.1, X** is isomorphic to a comple- 
mented subspace of  a Ll(m)-space. This proves Lemma 2.1. 

We return to the proof  of  Corollary 2.B. 
We know, by Lemma 2.1, that X may be considered as a locally complemented 

subspace of a Ll(m)-space. Since X has a basis, and hence is separable, we can 
assume that m is a probability measure. Similarly as in the proof of  Corollary B, 
it is enough to show that f~, considered as elements of  L 1 (m), are not equiintegrable. 

Let us assume the converse. Denote by (ft,) the seqence of corresponding 
basis functionals (~,CX). Set M----sup, I1~11 (<~) .  Given positive integer N put 
E ~ = s p a n  {fl ,  f 2 , - . . ,  fN}- Then there exist F N, E N c F N c X ,  and a projection 

ON: ZKm) ~176 IIQNII<=c. Denote g,= Q~r(g,l~N)6 L= (m) for n = l ,  2 . . . . .  N, 
then [[ g, ff~<= Mc. 

Now we proceed similarly as in the proof  of  Corollary B. First we observe that 
the norms of the operators P, OQN, where P,:  X ~ X  is defined by P , ( ~ I  t~f)= 
ff.,7=l t~fi, are uniformly bounded for N =  1, 2 . . . .  and n =  1, 2, . . . ,  N. Then, 
applying Proposition 1.A to the biorthogonal system (Mcf,, (Mc)-~g,)U=z and 
rl=rl(Mcf ,  .), we obtain that at least one of the numbers IIP, oQNI l, n =  1, 2 . . . . .  N, 
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is not less than CN, where the sequence cut ~ depends only on c, M and (f,), a con- 
tradiction for large N. This proves Corollary 2.B. 

Proof of  Corollary 2.C. We start with the following 

Lemma 2.2. Let Y be a Xe~-space. Let (g,) be a basis of  Y, (fn) - -  the sequence 
of  corresponding basis functionals. Denote X=span  {fn}c Y*. Then X is a 5Yl-space. 

Proof Set Yk:span {gl . . . . .  gk}, Yg=span {gk+l, gk+2 . . . .  }, Xk=sP an {f~, . . . ,A} 
and Xk=span {fk+a, fk+2, ...}. To prove Lemma 2.2, it is enough to show that, 
for some constant 2, each Xk is contained in a finite dimensional subspace F k of 
X with 
(26) d(F ~, ll(k)) <= 2 (n(k) = dimVk), 

where d is the Banach--Mazur distance. 
Denote by K the basis constant of (g,). Fix k and denote by Pk the natural 

projection from Y onto Yk. Then we have 

(27) llPkll ~ K, IIId~--Pkll ~ g + l  
and consequently 
(28) d(X,,  Y~) <= K, d(X k, yk*) <= K+ 1. 

Since Y is a s for some #, Irk is contained in some finite dimensional 
subspace E k of Y with 
(29) d (E k, l~k)) ~ # (n (k) = dim Ek). 

Denote Ek=(Idr--Pk)E k. Then, remembering that Yk=PkEk, we obtain, by (27) 
and (29), 

d(l'~k), (Yk@Ek)2) <= 2(K+ 1)/~. 
Hence, by (28), 
(30) d(1.~(u), (Xkff~s <-- 2K(K+ 1)#. 

By (29), there exists a projection Qk from Y onto E k with [Iak[]~# (one can 
also use Theorem III(c), [6]). Therefore (Id r -Pk)  Qk is a projection from yk onto 
/Vk and hence yk* contains a subspace, whose Banach Mazur distance from if k* 
does not exceed H(Idr-ek)Okl[<=(g+l)p. This shows, by (28), that some sub- 
space ffk of X k satisfies d(ff k, ff)*)<=K(K+ 1)p. 

Since the basis constant of (f,) is at most K, we have 

d(Xk + ff  k, (Ykoffk)z) ~ 2(K + 1), 
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which combined with the previous estimate and (30) proves (26) with F k = X k + F  * 
and 2 = 4 K 2 ( K +  1)3# 3, completing the proof  of  Lemma 2.2. 

Now we return to the proof  of  Corollary 2.C. Since, by Lemma 2.2, (f,,) is 
a basis of  the ~l-space X, some subsequence of (f,/]l f,][) is, by Cor. 2.B, equivalent 
to the unit vector basis of l 1. We have clearly l<=inf. ]E f.ll <= sup. IIf.[l~o~ and 
therefore ( f . )  itself contains a subsequence, which is equivalent to the unit vector 
basis of  l 1. This, similarly as in the proof  of Corollary C, implies the desired con- 
clusion. 

3. The pointwise convergence 

The main result of  this section is the following generalization of Theorem 3, 
[9], Ch. I, w 2. 

Theorem 3.C. Let S be a compact topological space, m - -  a regular Borel measure 
on S. Let ( f , ,  g,)~=l, where g, E C( S) and f~E L l ( m ) c  C( S), be a biorthogonal (with 
respect to m) system of functions satisfying 

1 ~ sup, Iig, l l = < ~  
2 ~ the functions f ,  are equiintegrable. 

Then there exists a Borel set D c  S, m(D):~O, such that i f  sE D then, for some func- 
tion gEC(S), the formal series of  g 

(+) 2;=l(fsS.gdml" g~ 

diverges unboundedly at the point s. 

Remark 3.1. Theorem 3.C strengthens Corollary C. Indeed, Cor. C says that, 
under the assumptions of  Th. 3.C, (g,) is not a basis of  C(S); moreover, the proof  
of  Cor. C shows that, for some gEC(S) the series ( + )  is not uniformly bounded. 

In the sequel the following concept will be useful. In the notation of Theorem 
3.C we say that 

L, = L , ( t )  = f s I Z i " = l L ( s ) g i ( t ) l  m(ds) (tES, n = 1, 2, ...) 

is the n-th Lebesgue function of the system (fn, g,) (not necessarily satisfying the 
conditions 1 ~ and 2~ It is a well-known fact that the series ( + )  is uniformly bounded 

for every gEC(S) (and then uniformly convergent for every gE Y = span {gi}) iff 
there exists a constant K < ~  such that L,<=K for n = l , 2 ,  ... (we used this 
in deducing Cor. C from Th. A). The series ( + )  is bounded at the point t for every 
gEC(S) (and then convergent at t for every gE Y) iff the sequence (Ln(t));= 1 is 
bounded. 
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Proof of  Theorem 3.C. By above, we must show that, when we denote A = 
{t~S: SUpnL,(t)=~}, then m(A)>0.  To do this, we need the following pro- 
position, which generalizes Theorem 1, [9], Ch. I, w 2. 

Proposition 3.A. Under assumptions of Theorem 3.C there exists a sequence 
bNI 0~ and a constant Q > 0  such that 

(31) m({ max Ln(t) => bs}) => Q 
l~_n~_N 

for N =  1, 2, .... Both (blv) and Q depend only on the modulus of  integrability of 
the set {fi}. 

Suppose we have proved this and assume, to get a contradiction, that re(A)=0. 
Denote L(t)=SupnL,( t )  for tES. Since L is finite m - a.e., there exists 2<00 
such that m({L_->2})<~. Choose N to satisfy bN_-->;t. Then, by Proposition 3.A, 

m({ max L.(t) => bN}) <= m({L>= 2})< ~; 
t l~=n~_N 

a contradiction. Thus it remains to prove Prop. 3.A. 

Proof of  Prop. 3.A. We can assume Ilg~[l~l. Then q=t / ({f} ,  .) and 
(L ,  N gn),=l satisfy the assumptions of Prop. A.1 for every N. Hence, by Lemma 1.1, 
there exists V>0, depending on r/({fi}, .) only, such that (2) and (3) hold. We 
prove Prop. 3.A with O=V/8. 

Let D c S  be a B0rel set with m(D)<=O. Denote ~,(t)=g,(t)XcD(t) and 
F,(s, t ) = ~ = l f ( s ) ~ i ( t  ) for n=0 ,  1, 2 . . . .  and s, tES. Our present goal is to 
prove that 

(1') max f f F,(s, t) m(ds) m(dt)  >- aN 
l~_n<=Nd S d  S 

for some sequence aNt~o, depending only on t/({fi}, �9 ). To do this, by the observa- 
tion at the beginning of the proof of Prop. 1.A, it is enough to show that the family 
of functions Fk., defined by 

Fk.,=Fk+,--Fk for k.n>=O 

satisfies the conclusions of Lemmas 1.3 and 1.4 for N = I ,  2 . . . . .  
The case of Lemma 1.4 is immediate. The proof of Lemma 1.3 needs slight 

modifications only. We have, instead of (9), 

(9') (P+ +P-)gi  = g,i = giXcD for i = k + l ,  . . . , k+ n  
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and consequently, instead of  (10), 

(10") IlP+gl]~ =~ [I gZcD[ll--[I P-gll~ >= l[ gill-[1 gXDl[x--]lP-glh 

=> ,,,-- 7/4-- g/2 = ~/4, 

whence the conclusion of  Lemma 1.3 (for our current Fk,,) follows with e=V/8 
instead of  c~= ~/4. This proves (1'). 

We claim that (31) holds with bN=aN/2. Suppose not and apply the above 
procedure to D={maxl~_,_~N L,(t)>=bN}. Observe that (1') may be rewritten as 

f r ( )  (d)> max t m t = aN. 
l ~ _ n ~ N d  C D  n 

On the other hand we have, for n = 1, 2 . . . .  , N, 

L ( t )m(d t )< f max L.(t)m(dt)<= b~m(CD)<2b~ = a  N, 
D n : C D  l _ n < = N  

a contradiction. This proves Prop. 3.A and completes the proof  of  Theorem 3.C. 

4. Remarks and open problems 

Remark 4.1. It  is easy to prove Cor. 2.B in the special case X = l  1. Moreover, 
the conclusion of  Cor. 2.B holds then for every normalized basic sequence (fn)~~ . 
To show this let us assume that, to the contrary, {f,} is a relatively compact set. 
Then f , ,  being a basic sequence, tends weakly to 0. Hence ][ f,l[-~0, because l 1 
has the Schur property; a contradiction. 

Remark 4.2. Cor. 2.B does not hold, if we replace 1 by any p > l ,  p r  In- 
t 2~in~+~ which is a basis of deed, if p E(1, co), then the trigonometric system ~e ~n . . . .  

LP(O, 1), clearly does not  contain subsequences, which are equivalent to the unit 
vector basis of  P for p ~ 2 .  To solve the case p=~o  let us mention that, by [4], 
there exists a basis (g,) of  C(0, 1) such that l<=g,(t)<-2 for all n and alr t .  There- 
fore no subsequence of  (g,) is equivalent to the unit vector basis of  co (contrary 
to the cases of  classical Schauder, Haar  and Franklin bases). On the other hand 
it is a well known fact that we can replace 1 by 2 in Cor. 2.B. 

Remark 4.3. The case of  unconditional bases is much simpler. Indeed, every 
normalized basis of  a s (resp. s is equivalent to the unit vector 
basis of  l ~ (resp. e0) (see e.g. [5], Theorem 6.1). Since, by [2], Theorem 5.1. every 
separable .gaP-space has a basis and hence, by [10], a conditional basis, this is not 
true, if we omit the unconditionality assumption. IfpE(1,  ~o), then, by [3], Theorem 
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4, every normalized unconditional basis of L p contains a subsequence, which is 
equivalent to the unit vector basis of P. 

Remark 4.4. By Remark 0, Corollaries B and C generalize most qualitative 
results of [4] and [12]. On the other hand, in [4] and [12] we always get a logarithmic 
order of growth of Lebesgue functions of investigated systems, while in the present 
paper we obtain much worse estimates. 

In connections with the above remark the following problem seems natural. 

Problem 4.5. What is "the best" correspondence between 1/ and (cN) in Pro- 
position 1.A? 

Problem 4.6. Suppose that the assumptions of Theorem 3.A are satisfied 
a) Let (Lk) be the corresponding sequence of Lebesgue functions. Does 

1 ~ff=l ][Lklll tend to infinity with N? Cf. Lemma 3, [1], and Lemma B, [4]. 
b) Does there exists a function f~L~(m) such that the series • ( f s  g, f d m ) . f ,  

diverges on a set of positive measure m? Cf. [1]. 

Remark 4.7. Let (f ,)  be a normalized basis of L p for some p E [1, ~). It is a well- 
known fact that the Haar system (Z,) (and hence the unit vector basis of l p) is equiv- 
alent to some sequence, whose elements are spanned by disjoint blocks of (f~) 
(see e,g. [9], Ch. III, w 1). Now let p = 1. Normalize (X,) in L 1. In view of Corollary 
B it is natural to ask, whether (Xn) is equivalent to some subsequence of (fn). In 
general the answer is negative: by Cor. 4.6, [13], there exists a basis of L ~, which 
is p-Besselian for every p > l .  Hence (Z~), which is not p-Besselian for any p < ~ , ,  
is not equivalent to any subsequence of (f~). 

Problem 4.8. Does there exists a normalized basis of L ~, say (f,),  such that 
it may be represented as {f~}=Z1uZ2, where Z1 is relatively weakly compact 
and Z2 is equivalent to the set of  unit vectors of P? Of course the Haar basis does 
not posess this property. 

Remark 4.9. Corollary B does not remain true after replacing LI(0, 1) by the 
Hardy space H 1. To see this notice first that H 1 has a basis and, by the Paley's 
theorem, contains a complemented subspace isomorphic to l ~. Hence, by Cor. 3.6, 
[13], H 1 has a normalized basis, which is weakly convergent to 0 (even p-Hilbertian 
for p<2) .  

Problem 4.10. Does Cor. C remain true after replacing C(0, 1) by the space 
of analytic functions A ? 
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