Computing 2 -summing norm with few vectors

Nicole Tomczak-Jaegermann

Recall that if $u: X \rightarrow Y$ is a linear operator (X, Y-normed spaces) then $\pi_{2}(u)$, the 2 -absolutely summing norm of u, is defined by

$$
\pi_{2}(u)^{2}=\sup \sum_{x \in F}\|u x\|^{2}
$$

where the supremum is taken over all finite subsets $F \subset X$ such that $\sum_{x \in F}\left|\left(x^{*}, x\right)\right|^{2} \leqq$ $\left\|x^{*}\right\|^{2}$ for every $x^{*} \in X^{*}$.

In the present paper we show that if u is an operator of rank n then $\pi_{2}(u)$ is essentially determined by the subsets F of cardinality $\leqq n$. "Essentially" means up to a universal factor T with $\frac{1}{2} \leqq T \leqq \cos \pi / 12$. This answers a question of T. Figiel [6] and enables to obtain as corollaries analogous facts for the type 2 and cotype 2 constants of n-dimensional normed spaces (cf. [1] p. 85).

I wish to acknowledge the support of the Royal Swedish Academy of Sciences. The result of this paper was obtained during my visit in the Mittag-Leffler Institute. I am indebted to Peter Ørno for stimulating discussions.

We use standard notation and terminology (cf. [4] and [5]).
Let X, Y be Banach spaces and let $u: X \rightarrow Y$ be a linear operator. For each positive integer k we define $\pi_{2}^{(k)}(u)$ as the smallest number satisfying the inequality

$$
\left(\sum_{j=1}^{k}\left\|u x_{j}\right\|^{2}\right)^{1 / 2} \leqq \pi_{2}^{(k)}(u) \sup \left\{\left(\sum_{j=1}^{k}\left|\left(x^{*}, x_{j}\right)\right|^{2}\right)^{1 / 2} \mid x^{*} \in X^{*},\left\|x^{*}\right\| \leqq 1\right\}
$$

for every sequence $x_{1}, \ldots, x_{k} \in X$.
Obviously one has $\pi_{2}(u)=\sup _{k} \pi_{2}^{(k)}(u)$.
Theorem 1. Let X, Y be Banach spaces and let $u: X \rightarrow Y$ be a linear operator of rank n. Then

$$
\pi_{2}^{(n)}(u) \leqq \pi_{2}(u) \leqq 2 \pi_{2}^{(n)}(u)
$$

Proof. We consider first the case $X=l_{2}^{n}$. Without loss of generality we may assume $\pi_{2}(u)=1$. Then there exist operators $v: l_{2}^{n} \rightarrow l_{2}^{n}$ with $\pi_{2}(v)=1$ and $w: l_{2}^{n} \rightarrow Y$ with $\|w\|=1$ such that $u=w v$. This follows from Pietsch's factorisation theo-
rem for 2 -absolutely summing operators (cf. [5]). We will construct an orthonormal basis $\left(e_{j}\right)$ in l_{2}^{n} such that

$$
\left(\sum_{j=1}^{n}\left\|u e_{j}\right\|^{2}\right)^{1 / 2} \geqq \frac{1}{2}
$$

The $e_{j}^{\prime} s$ are chosen inductively so that for $j=1, \ldots, n$

$$
\begin{gathered}
\left\|e_{j}\right\|=1, \quad e_{j} \in E_{j} \quad \text { where } \quad E_{1}=l_{2}^{n}, \quad E_{k}=\left[e_{1}, \ldots, e_{k-1}\right]^{\perp} \text { for } k>1 \\
\left\|w v e_{j}\right\|=\left\|v e_{j}\right\|\left\|w_{\mid v\left(E_{j}\right)}\right\| .
\end{gathered}
$$

Let $m \leqq n$ be the positive integer such that

$$
\left\|w_{\mid v\left(E_{m+1}\right)}\right\|<\sqrt{\frac{1}{2}} \leqq\left\|w_{\mid v\left(E_{m}\right)}\right\| .
$$

It suffices to prove that $\sum_{j=1}^{m}\left\|v e_{j}\right\|^{2} \geqq \frac{1}{2}$, because this yields

$$
\begin{gathered}
\pi_{2}^{(n)}(u) \geqq\left(\sum_{j=1}^{n}\left\|u e_{j}\right\|^{2}\right)^{1 / 2} \geqq\left(\sum_{j=1}^{m}\left\|w v e_{j}\right\|^{2}\right)^{1 / 2} \\
=\left(\sum_{j=1}^{m}\left\|w_{l v\left(E_{j}\right)}\right\|^{2}\left\|v e_{j}\right\|^{2}\right)^{1 / 2} \geqq \sqrt{\frac{1}{2}}\left(\sum_{j=1}^{m}\left\|v e_{j}\right\|^{2}\right)^{1 / 2} \geqq \frac{1}{2} .
\end{gathered}
$$

Let $P: l_{2}^{n} \rightarrow l_{2}^{n}$ be the orthogonal projection onto E_{m+1}, let $Q=I-P$ and let $\alpha=\sum_{j=1}^{m}\left\|v e_{j}\right\|^{2}$.

Since for an operator acting in a Hilbert space its 2-absolutely summing norm equals to its Hilbert-Schmidt norm, we have

$$
\begin{gathered}
\alpha=\pi_{2}(v Q)^{2}, \quad \pi_{2}(v P)^{2}=\pi_{2}(v)^{2}-\pi_{2}(v Q)^{2}=1-\alpha, \\
\pi_{2}(v Q+\beta v P)=\left[\pi_{2}(v Q)^{2}+\beta^{2} \pi_{2}(v P)^{2}\right]^{1 / 2}, \quad \text { for any real } \beta
\end{gathered}
$$

Thus, for each $b \in(0,1]$ we get

$$
\begin{aligned}
& 1=\pi_{2}(w v) \leqq \pi_{2}(b w v P)+\pi_{2}(w v-b w v P) \\
& \leqq b\left\|w_{\mid v\left(E_{m+1}\right)}\right\| \pi_{2}(v P)+\|w\| \pi_{2}(v Q+(1-b) v P) \\
&< b \sqrt{\frac{1}{2}} \pi_{2}(v P)+\left[\pi_{2}(v Q)^{2}+(1-b)^{2} \pi_{2}(v P)^{2}\right]^{1 / 2} \\
&= b \sqrt{\frac{1}{2}(1-\alpha)}+\left[\alpha+(1-b)^{2}(1-\alpha)\right]^{1 / 2} \\
&= b \sqrt{\frac{1}{2}(1-\alpha)}+\left[(1-(1-\alpha) b)^{2}+(1-\alpha) \alpha b^{2}\right]^{1 / 2} \\
& \leqq b \sqrt{\frac{1}{2}(1-\alpha)}+1-(1-\alpha) b+b^{2} .
\end{aligned}
$$

For the last inequality observe that $\left(s^{2}+t^{2}\right)^{1 / 2} \leqq s+t^{2} / 2 s$, for $s>0$.
It follows that for every $b \in(0,1]$ we have

$$
0<b \sqrt{1-\alpha}\left[\sqrt{\frac{1}{2}}-\sqrt{1-\alpha}\right]+b^{2}
$$

This implies that $1-\alpha \leqq \frac{1}{2}$ and hence $\alpha \geqq \frac{1}{2}$. This proves the special case of Theorem 1.

Now let $u: X \rightarrow Y$ be an arbitrary operator of rank n. Let $x_{1}, \ldots, x_{m} \in X$ satisfy

$$
\sum_{j=1}^{m}\left|\left(x^{*}, x_{j}\right)\right|^{2} \leqq\left\|x^{*}\right\|^{2} \quad \text { for every } \quad x^{*} \in X^{*}
$$

We shall prove that

$$
\left(\sum_{j=1}^{m}\left\|u x_{j}\right\|^{2}\right)^{1 / 2} \leqq 2 \pi_{2}^{(n)}(u)
$$

Let us define $U: l_{2}^{m} \rightarrow X$ by $U e_{j}=x_{j} \quad(j=1, \ldots, m)$, where $\left(e_{j}\right)$ is the unit vector basis in l_{2}^{m}. Our assumption yields $\|U\| \leqq 1$. Let E be the orthogonal complement of the kernel of $u U$. Then $\operatorname{dim} E=\operatorname{rank} u U \leqq n$. We apply the special case of the theorem to the operator $u U_{I E}$. This yields

$$
\begin{gathered}
\left(\sum_{j=1}^{m}\left\|u x_{j}\right\|^{2}\right)^{1 / 2}=\left(\sum_{j=1}^{m}\left\|u U e_{j}\right\|^{2}\right)^{1 / 2} \leqq \pi_{2}(u U)=\pi_{2}\left(u U_{\mid E}\right) \\
\leqq 2 \pi_{2}^{(n)}\left(u U_{\mid E}\right) \leqq 2 \pi_{2}^{(n)}(u)\left\|U_{\mid E}\right\| \leqq 2 \pi_{2}^{(n)}(u)
\end{gathered}
$$

This completes the proof of Theorem 1.
Remark. The computations in the proof can be made slightly simpler by setting $b=1$. The final constant becomes then $3 \sqrt{2}$ (or 4 , if $\sqrt{\frac{1}{2}}$ is replaced by $\frac{1}{2}$).

Let X be a Banach space. Let $\gamma_{1}, \gamma_{2}, \ldots$ be a sequence of independent normalized Gaussian random variables on a probability space (Ω, μ). Following Maurey and Pisier, for each positive integer k we define the type 2 and cotype 2 constants of X (cf. e.g. [1]). These are the smallest positive numbers $\alpha_{k}(X)$ and $\beta_{k}(X)$ such that the following inequality

$$
\beta_{k}(X)^{-1}\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{2}\right)^{1 / 2} \leqq\left(\int_{\Omega}\left\|\sum_{j=1}^{k} \gamma_{j} x_{j}\right\|^{2} d \mu\right)^{1 / 2} \leqq \alpha_{k}(X)\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{2}\right)^{1 / 2}
$$

holds for every sequence x_{1}, \ldots, x_{k} in X.
Theorem 2. Let X be an n-dimensional normed space. Then for every integer $k \geqq n$ one has

$$
\begin{aligned}
& \alpha_{n}(X) \leqq \alpha_{k}(X) \leqq \sqrt{2 \pi} \alpha_{n}(X), \\
& \beta_{n}(X) \leqq \beta_{k}(X) \leqq 2 \beta_{n}(X) .
\end{aligned}
$$

Proof. The inequalities for the cotype 2 constants of X are formal consequences of Theorem 1 and the following obvious formula valid for $k=1,2, \ldots$

$$
\beta_{k}(X)=\sup \left\{\pi_{2}^{(k)}(u) \mid u: l_{2}^{k} \rightarrow X, \int_{\Omega}\left\|\sum_{j=1}^{k} \gamma_{j} u e_{j}\right\|^{2} d \mu=1\right\} .
$$

The latter formula is implicit in [3] (cf. Proposition 5 and Theorem 4).

The case of the type 2 constants is slightly more difficult. We need the dual form of Theorem 1 which can be stated as follows.

Given a positive integer k let B be a set of operators $v: l_{2}^{k} \rightarrow X$ which admit a factorisation

$$
l_{k}^{2} \xrightarrow[v_{1}]{\longrightarrow} l_{2}^{n} \xrightarrow[\Delta]{\longrightarrow} l_{1}^{n} \underset{v_{2}}{ } X,
$$

where Δ is a diagonal map and $\left\|v_{1}\right\|,\|A\|,\left\|v_{2}\right\| \leqq 1$. Then every $w: l_{2}^{k} \rightarrow X$ with $\pi_{2}^{*}\left(w^{*}\right) \leqq \frac{1}{2}$ belongs to the convex hull \widetilde{B} of the set B.

Observe also that for each $j=1,2, \ldots$ the formula

$$
l(u)=\left(\int_{\Omega}\left\|\sum_{i=1}^{j} \gamma_{i} u e_{i}\right\|^{2} d \mu\right)^{1 / 2}
$$

defines an operator ideal norm on the space of linear operators $L\left(l_{2}^{j}, X\right)$ (cf. [2], [3]). In particular one has

$$
l\left(v_{2} \Delta v_{1}\right) \leqq l\left(v_{2} \Delta\right)\left\|v_{1}\right\| \leqq l\left(v_{2} \Delta\right)
$$

Now, if $k \geqq n$, there is an operator $u: l_{2}^{k} \rightarrow X$ such that $\sum_{j=1}^{k}\left\|u e_{j}\right\|^{2}=1$ and $\alpha_{k}(X)=l(u)$. Clearly $\pi_{2}^{*}\left(u^{*}\right) \leqq 1$ and hence $\frac{1}{2} u \in \widetilde{B}$. It follows that

$$
\begin{aligned}
& \quad \frac{1}{2} l(u) \leqq \sup \left\{l\left(v_{2} \Delta v_{1}\right) \mid v_{2} \Delta v_{1} \in B\right\} \\
& \leqq \sup \left\{l\left(v_{2} \Delta\right) \mid \Delta: l_{2}^{n} \rightarrow l_{1}^{n}, v_{2}: l_{1}^{n} \rightarrow X,\|\Delta\| \leqq 1,\left\|v_{2}\right\| \leqq 1\right\} \\
& \leqq \alpha_{n}(X),
\end{aligned}
$$

because $\sum_{j=1}^{n}\left\|v_{2} \Delta e_{j}\right\|^{2} \leqq 1$. This completes the proof.
Remarks. 1°. Theorem 1 and 2 enable one to simplify some arguments and obtain sharper versions of several recent results. We can only mention Theorems 6.2, 6.3, 6.5 and 6.7 in [1], Section 10 of [2], Theorems 3 and 4 and Corollary 7 in [3]. Let us formulate a sample result of this kind. The definitions of the type p and cotype q constants of a space X, in symbols $K^{(p)}(X)$ and $K_{(q)}(X)$, and of the Banach-Mazur distance $d\left(X, l_{2}^{\operatorname{dim} X}\right)$ can be found in each of the papers we refer to.

Corollary. Let X be an n-dimensional normed space. Then

$$
d\left(X, l_{2}^{n}\right) \leqq 4 K^{(p)}(X) K_{(q)}(X) n^{1 / p-1 / q}
$$

2° Easy examples show that in general $\pi_{2}^{(k)}(u)>\pi_{2}^{(n)}(u)$, if $k>n=\operatorname{rank} u$. On the other hand the method used in [1] Lemma 6.1 yields that $\pi_{2}^{(k)}(u) \leqq \pi_{2}^{\left(n^{2}\right)}(u)$ for $k=1,2, \ldots$.
3° There is an obvious extension of Theorem 2 to the case of the type 2 and cotype 2 constants of operators of rank n (cf. e.g. [2] Section 10).

References

1. Figiel, T., Lindenstrauss, J., Milman, V., The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977) 53-94.
2. Figiel, T., Tomczak-Jaegermann, N., Projections onto Hilbertian subspaces of Banach spaces, Isreal J. Math., to appear
3. König, H., Retherford, J. R., Tomczak-Jaegermann, N., On the eigenvalues of ($p, 2$)-summing operators and constants associated with normed spaces, Preprint SFB 72 no. 243.
4. Lindenstrauss, J., Tzafriri, L., Classical Banach spaces, Volume II, Springer Verlag, Berlin-Heidelberg-New York 1978.
5. Pietsch, A., Operator ideals, Berlin 1979.
6. Problems of the Functional Analysis Winter School, Nowy Sacz 1978, Coll. Math.; to appear
