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Introduction 

Let {a,} be a sequence of numbers and let k be a function in 5~ Assume that 

(1) F(x) =.~ a.f~_= k(y)dy, x~R, 

converges uniformly on every set {xER; x<x0} and defines a bounded function 
on R. Let {it,} be a given sequence of  positive numbers, which are well separated, i.e. 

(2) 2, + 1- i t ,  => c > 0. 
I f  

(3) l im  F(x) exists, 

what can then be sa id  about the convergence of 2;a,? 
For k (y )=exp  ( y - e x p  (y)) in  (1), the well known high indices theorem by 

Hardy and Litflewood [3] (see also Ingham [4]) implies that Za, is convergent if 
(3) is true. This result was later generalized, by Levinson [7], to a wide class of 
kernels. 

One restriction in Levinson's theorem is that the Fourier transform k, of the 
kernel k, has an analytic continuation into the upper halfplane and is free from 
zeros there. Therefore, the question whether there is a high indices theorem or not 
for the series 

xPn 
(4) ~ a ,  l+xP" , p.+l/p,>=6> 1, xE[0, 1), 

cannot be decided by that result, because if (4) is transformed to the form (1), then 

/c (u) = F (1 -- iu) ~ (-- iu) (1 - 2* + i=). 
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In  1959 R6nyi [11] conjectured tha t  there is a high indices theorem if p . = 2 "  
in the case (4). This conjecture was proved  by Halfisz [2] in 1967. In 1969 Korevaa r  
[6] observed tha t  there is no high indices theorem for  the series (4) for  a certain 
H a d a m a r d  sequences o f  exponents .  But  wha t  is t rue for  m o r e  general sequences 
{p,} and  even for  other  kernels? We  will give a general result  in this direction and  
it will be seen tha t  there is an interplay between the sequence {p,} or  {2,} and  the 
zeros o f  the extension o f  k. 

Let  us first give a sequence {p.}, where there is no  high indices theorem in the 
Rdnyi-case. 

Example. Let  xE(0, 1). Then  

xgn+l / 
2 ~ x ~ "  l im ~ 2  ~ x2" 2 

(5) ~ -  ~ 1 + x 2" -- N - -  ~ 1 -- X 2" 1 -- X 2~ +~ ) 

X 2~r 1 
= lim 2 N ~  - ~  

~ w -  ~ 1 - -  x ~N = l o g  x "  

I f  x is replaced by  x l~  in (5), it follows tha t  

x(l~)2. + 1 1 2 ~ + 1  = _ _ _  
(6) Z -  = (1/2-) 1 + x (I/g)'"+ 1 log x"  

A combina t ion  o f  (5) and (6) gives 

x(r 
2_== ( -  Vi)" 1 = 0. 

Hence,  

x(V~)" x(r 
(7) ~ o  (-t/2-)" 1 + x  (lq)" - , ~ o  ( _  1).+1(1/~)-.  1 +x( lq) -"  " 

The series to  the r ight  in (7) has a limit as x increases monoton ica l ly  to 1, and  there- 
fore this also holds  for  the series to the left, bu t  2"[2§ as n - ~ .  

I wish to express m y  sincere grat i tude to  Professor  To rd  Ganelius for  suggesting 
the topic  o f  this pape r  and  for  his suppor t  and  interest in m y  work.  



A general high indices theorem with an application to a conjecture by R6nyi 281 

1. Preliminaries 

We start to give some definitions. The notation of maximal density is due to 
P61ya (see [10], p. 559). 

Definition. Let {2,} be a sequence of positive numbers satisfying 

(1.1) lim i n f ( 2 , + l - 2 , )  = c > 0. 

Let 
U(r) = ~ {2,: 2, =< r}. 

Then 

(1.2) D = lira lira sup N(r)--N(rr 
~tl  r ~  r - - r ~  

is called the maximal density of the sequence {2,}. 
A sequence fulfilling (1.1) and (1.2) is said to be of class A(D, e). 

Remark. D~_ 1/e. 

Using the notation k~ for the function defined by k,(x)=k(x)  exp (~x) (xER), 
we will next define a special class of  functions. 

Definition. Suppose that k is a function such that k~EL I(R), and that its Fourier 
transform k~ has an extension, which is analytic in the open upper halfplane and 
continuous in the closed upper halfplane, and that k~(u) exists, uER. Let f l>0  
and ~ be real, and suppose further that 

(1.3) max ~ exp (O(u)) I~L~ k~(u) 

s 
(1.4) maxlr ~ -<Cexp(CIwl),. Imw_->0 (C i s  a constant) 

k;(u) 
(1.5) k~(u) _-< exp (O(u)), 

where O(u) is a positive even function of  u, monotonely increasing for u>O and 

f l= o(u) u2 du < ~. 

Then we say that kELZ~. 
Furthermore, we use the customary notations in distribution theory. (Cf. 

Rudin [12] or Schwartz [13]). Also, ]M] is used for the Lebesgue measure of the 
measurable set M and unspecified signs of  integration will always denote integration 
over the whole real line. All sums are taken from 1 to ~ .  
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2. The main resuR 

We start  by stating a general high indices theorem. It can be formulated as 
follows: 

Theorem 1. Let {2,} be a sequence o f  class A (D, c). Suppose that there exists 

an c~>=O such that 

(2.1) exp (--~x).~Y a. f=_x~ . .  k(y)  dy 

converges uniformly on every set 

tion on R. Suppose further that 

(2.2) 

{x: x<xo}, Xo<~,  and defines a baunded func- 

(2.3) It(.  +iv)EL2(R), 0 < v < Vo, for  some Vo > ~, 

(2.4) on every line Im w = G  0<=tr-<c~, there exists a closed interval I such that 

~c(u+io)~O for  uE1, where {II=2rcD / f  0 < a < ~  and 1ll=2zc/c i f  a = 0 ,  

(2.5) 

Then 

(2.6) 

implies that 

(2.7) 

If, moreover, 

(2.8) 

then 

(2.9) 

k(0) ~ 0. 

Z a . f ~ _  x k(y) dy = 0(1), 

X.~_x a. = 0(~) 

xER, 

lim z~ a, f 2 _ x k ( y ) d y =  O 
X ~ o o  

z ~ a . = 0 .  

This theorem will follow by a combination of the Theorems 2 and 4. 

Remark. If  2,=nc,  c:~0, n =  1, 2, . , . ,  then instead of (2.4) it is enough that 
there is no line parallel to the real axis, where the extension of the Fourier transform 
k has zeros separated exactly by the distance 27rm/c, m =  1, 2 . . . . .  Furthermore, 
if there exists a line, where ~ has zeros separated by the distance 2rrm/c, m ~- 1, 2 . . . .  , 

then the coefficients {a,} can be chosen in such a way that (2.8) is true but (2.9) 
is false. 
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3. Two Tauberian theorems 

In this section we state and prove a somewhat different and, in a way, weaker 
result than Theorem 1. This is: 

Theorem 2. Suppose that the coefficients {a,} satisfy 

a, = O(exp (A2,)), 

where A is a constant and {2,} is of  class A (D, c). Let the kernel kE 5r and suppose 
that its Fourier transform ~, with /c(0)r  can be analytically continued into the 
strip 0 < I r a  W<Vo, vo>A, and that 

[c(. + iv)E L2OR), 0 < v < Vo. 

Moreover, suppose that on every line Im w = a ,  O~=a<=A, there exists a closed in- 
terval I such that 

[c(u+ia) r 0 for uEL 

where IIt=2zcD i f  0<a<=A and [II=2rc/c i f  a = 0 .  Let 

(3.1) F ( x ) =  ~ a , f ~ _  k(y) dy, xER, 

and suppose that 

(3.2) lim F(x) = O. 

Then 

(3.3) Z a,  = O. 

Remark. Like in Theorem 1, boundedness of  F implies boundedness of  the 
sum ~Z.~_x a. .  

In order to prove Theorem 2, we need several auxiliary results. We start  with 
an interpolation lemma, which in a weaker form can be found in Levinson [7]. 
We have: 

Lemma 1. Let {2,} be a sequence o f  real numbers satisfying 

2 . + 1 - 2  . ~ c > 0 ,  nEZ. 

Then, for each integer n and each e > 0  there exists a function H, E 5 e such that 

(3.4) H,(~,)  = 1; H,(~,k) = 0, k r n, 

and 

q 
I f  

(3.6) G.(u) = fI.(u)ei"~., 
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then 
(3.7) tlG.IIN = max IIDmd.ll~ ~ CN < ~  (independent of n). 

Proof. Keep n fixed and let kCZ-{0}.  Define a sequence {Xk} by 

[kc, if Ikc-2m+2.1>c/2 for all m 
Xk=~kc, if kc--2m+2.=c[2 for some m 

[ 2.,--2., for some m, if 

This determines the sequence 

(3.8) 

(3.9) 
Consider the function 
(3.101 
and estimate 

-- c/2 ~ k c -  2m + 2,, < C/2 

{Xk} uniquely. Moreover, 

X k + l - - X  k ~ c/2 

lxk--kc I ~ c/2. 

r . ( z )  = (1 - z/x )(1 - z / x _ , )  

(3.11) 
T.(z) c ~ 1--Z/Xk I--Z/X-k 

sin rtz/c ~[zl l I '  [ l -  z/kc [ = -fX-U  

Inserting (3.12) and (3.13) in (3.11), we get 

T.(z) <_ A.iz[, [ I--Z/XN I 'Z/X-~ I 
(3.14) sin~rz/c 1--z/N~ l~)-]-N-c " 

The inequality (3.14) is obviously true in the whole annulus Nc-c /2~ [zl~Ne+c[2, 
and therefore the inequality 

,T.(z)[ ~ A(1 + IzIg) exp (---~ {Im zl) 

A term in the infinite product (3.11) can be estimated by 

(3.12/ i -z- - -~  14 ]x,]lz-kc] ~ lq ]klIz-kc) -<_exp [kllz_kcll 

where (3.8) and (3.9) have been used. 
Let Re z ~ 0  and Nc--c/2~lzl<Nc+c/2, N->-.5. Then we find that 

1 1 - - - ~ - 1  1 1 ~ - 1  1 
(3.131 Zk.O,• [ktlz_kc f ~ c •'-= -~+-~  2d-N+I--~T 

+ 3__3_ ~,[N/2l l 2 ~ N - 1  1 1 ~ 2 N  1 
Izl ~-~'  k + ~ c c  Z'tu/2]+` N - k - l / 2  ~-~c s+, k - N - l ~ 2  

1 1 21  10  log [zl I0 log c 

C l-.aSN+l ( k - N -  1/2) 2 Izl Izl Izl 
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holds for all zE C. By a generalization of  a well known theorem by Paley and Wiener 
(Rudin [12], theorem 7.23), we have 

supp (]Vn) C [--n/e, n/c]. 

Let ~o be a function in 5 p with s u p p ~ b c [ - e ,  e] and q~(0)=l. Putting G,=cp .  T,,, 
we get, for each n, a function in 5 e with Fourier  transform 

Gn = 5V, * ~b and supp (~,)  c [ -  n / e -  e, rile + e]. 

These functions satisfy (3.7), and if H ,  is defined by 

H.(z)  = G.(z- ,~.) ,  zCC, 

then the condition (3.4) follows f rom (3.10) and the condition (3.5) is easily seen 
to be valid. 

The preceding interpolation result will be used to get global information from 
local behavior of a Dirichlet series on the axis of  convergence. More precisely: 

Lemma 2. Let f be defined by the Diriehlet series 

f (w)  = ~ ~ne iwz., Im w > 0. 

where {2,} is o f  class A(D,  e). Suppose that 

(3.15) f ( . + i v ) ~ f  in ~ ' ( I )  as v+O, 

for  some open interval I with II1 >2rc/c. Then there exist a finite constant N and 
a discrete measure IzE 5P" of  the form 

such that 
~ = y  i n 5  a'. 

(6 is the Dirac measure). 

Proof. There is no loss in generality to assume that  the interval I is symmetric 
around the origin and that  2,+1-2,_->e. Then we can choose an e:>0 such that 
the functions {Hk}, f rom Lemma 1, have supp ( / I D o l - r e / e - - e ,  zc/e+e]cL 

Since f is a bounded functional on ~ ( I ) ,  we have 

(3.16) tf(Jqk)[ <= C][/qk[I u, k = 1, 2 . . . .  

for some finite N and some constant C. 
Applying (3.15) t o / t k ,  we get 

(3.17) f(lZIk) = l i ra / (  �9 + iv)(121k) = lim.~0 . , f f (u + iv)121k(U) du 

: liom Z ~n e-v)'" f I2Ik(U) eiuakdu = 1jm Z ane-Va"2~ZHk(2,) = 2~z~k" 
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If  (3.16) and (3.17) are combined with (3.6) and (3.7), we see that 

12==~l <= CIIHkIIN = O(,~) 
and the lemma is proved. 

Next we prove a distributional variant of  a theorem by Paley and Wiener. It  is 

Lemma 3. Let OE5 a' and suppose that supp ( 0 ) c ( - ~ o ,  0). Then the Fourier 
transform 0 has an analytic extension into the upper halfplane, i.e. there exists a 
function ~b analytic in u+iv, v>0,  such that limv~0~O(. + iv)=O in ~ ' .  

Proof Let <p be a C=-function such that tp= 1 on supp 0 and supp ~0c 
(_  oo, 0]. I f  v>0,  then 

(eVX0) ̂  = (e'X~00) ̂  = 0 . 0 ~ ,  
since ~ovE 5 p, and 

(eo~O)^(u) = O . ~ ( u ) =  O(z,(~3 v) = O(O(u+iv-  . ) )= O(u+iv). 

To prove that O(u +iv) is analytic in w=u+iv,  v>0,  we use Morera's theorem. 
Let F be a regular closed curve in the upper halfplane. The map 

r ? w  -+ (o(w- .)E5r 

is easily seen to be continuous and therefore 

(3.18) H ---- f r r ( w - -  . ) dw 

is a well defined 5r integral (see for instance Rudin [12], chapter 3.) Hence, 
since evaluation is a tempered distribution, it follows that 

H( t )=  f r ~ ( W - t ) d w .  

But ~(w) is analytic for Im w > 0  and we get H = 0 .  Therefore, if 0 is applied 
to H, then by the representation (3.18) 

o = 0(tt) = f , .  dw = f dw, 

i.e. 0 is analytic irt the upper halfplane. 
It is readily seen that 

O( .+ iv )+O i n S e ' a s  v~0, 

and the proof  is completed. 
We also need a theorem of  P61ya (see P61ya [9]; Levinson [8], theorem XXIX). 

This result is stated in the following lemma. 

Lemma 4. Let 
f(w) = .~ a,e iw~. 
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be a Dirichlet series with the axis of  convergence Im w=a.  Suppose {2n} is of class 
A(D, e). Then every closed interval of  length 2reD on the line Im w = a  contains 
at least one singular point of  the function f .  

Next we treat a Tauberian result for a very special class of tempered distribu- 
tions. We formulate the result as: 

Theorem 3. Let {2,} be of class A (D, c) and suppose that the coefficients {an} 
satisfy 

a,  = O (2if) for  some finite constant N. 

Suppose further that kE 50 and that there exists a closed interval I of  length 2~/c 
such that 

k [ t # 0  and k ( 0 ) # 0 .  
/ f  
(3.19) • a , f ~ _ x k ( y  ) dy = O(1), xER, 

then 

(3.20) X,<=x an = O(1) 

and i f  

f; (3.21) 7__, a, k (y)dy  = o(1), x - ~ ,  
n - - x  

then 

(3.22) X,~_xa, = o(1), x ~ .  

Proof. Let 

(3.23) F(x) = Z a. f~_~ k(y) dy. 

Then we have 
F'(x)  = #*k ( - - x ) ,  

where /~=273.z_~ 6 is in 5 ~ Without loss of  generality we can assume that 
2. +1-- 2. => c and that k ( u ) # 0  for uE[-fl ,  fi], fl>~/c. Thus there exists a function 
0 ~ 5  ~ satisfying 

1 
O(u)- k(u)' uc[-f l ,  fl]. 

Let {Hk} be the functions given in Lemma 1 with s u p p B k c ( - f l ,  fl). We get 

((F')V * o * ISfk) ̂  = ~ . I2Iko ~ ft = (lt * Hk) ̂  in 50', 
and hence, 

# .  H, = (F ' )**O* H k =--F*O" ~ Hk. 

It follows from (3.19) and (3.23) that F is bounded, thus 

(3.24) [a~] = [#.Hk(0)] = fF(y)(O'.Hk)(y)dy] ~ [IFIIL-IICHL111H~IIL1 
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If (3.21) holds, we get a better estimate than (3.24) by 

!ak} <= ( sup }r(y)}) f r>~k/~ ]~b" * Hk(y)l dy+( sup IF(y)]) f ,<~k/z I~0'*Hk(y)l dy. 
y > 2k/2 Y < ~k/2 

The second integral to the right can be estimated by 

= f lq"(t)ldt f~<-~k/2-,IGk(y)ldY<= f ,  > - ak/, lO'(')ldtL<-ak/4[Gk(y)fdY+ 

+L<-~k/a  I~/(t)ldt f IGk(y)I dy <= }IO'I}L1L~__z~/,IGk(y)IaY+IIGklIL1 ~ , _ ~ , ,  ]O'(t)[dt, 

where Gk is the function in Lemma 1. 
Hence we see that 

(3.25) ak ----- 0(1), k -~ ~ .  

In order to get (3.20) and (3.22) respectively, let xu=(2n+2N+l) /2  and suppose 
that k(0)--1.  Then 

(3.26) ~ an -- F(xN) N a.J_="~"- x~ = k(y)ay- Lla.fj _   k(y) y. 

Now (3.20) follows readily from (3.24) and (3.26). The conclusion (3.22) follows 
from (3.25) and (3.26), because 

I~Na On--F(xN)I <= z~,~ ~/~] la.lf~_"2 " "  ik(Y)l dy 

+ Zt~/zj+l tan] Ik(y)l dy + ~ + ,  lanl f~.-X,  [k(y)[ dy 

<- C1 max lan[ ~N/e j  1 § max la,1 ~ N  1 
- -  1 § ~ n~_tN/2I [N/~]+I 1 __(~, __XN)2 

+Clmax /a , t  Z ~ + I  1 1 
< Ia"l~ru/~J I § e n~_[lv/21 .~S 1 + (2,--Xu) 2 = C1 max n - -  § C2 max ta,], 

where 6"1 and C2 are constants. 

Proof of Theorem 2. Let G be the function defined by 

0, x >  0 
G(x)= 1, x < 0 .  

Let A<v<vo. We can rewrite (3.1) as 

(3.27) F(x) = 2 . .  f k (y) G (2n - x - y) dy 

= e"X X a,e-"~~ k~.(y)G,(2n-x-y) dy 

= e~X ~ a,e-~Z"fs d~,(u)ei"(~"-~')du, 

where the last equality is Parseval's formula. 
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By Fubini's theorem, the order of  summation and integration can be changed 
in (3.27) to get 

(3.28) F(x) = f k(u+iv)d(u+iv)(Za.ei("+iv)~-)e-~("+iv)~du. 

I f  we define a function h by the Dirichlet series 

h(w) = .~ a.ei'X., Imw > A, 
then 
(3.29) ~, (.  + iv) = k ( .  + iv) h (.  + iv) E L 2 (R). 

Thus, there exists a function g such that 

(3.30) (g (y) e vy) ̂  (u) = ~, (u + iv). 

Using (3.30) in (3.28), it gives 

F(x) = f (g (y)e "y) ̂  (u) G~ (u) e- i(, + i~)~ du = f ? x  g (y) dy. 

Since F~SP', we have that gE5 e' and g has a Fourier transform. 
Let cp 1 be a C=-function with supp~01c( -~o ,0)  and ~ol(x)=l if x < - l .  

Take q~.~= 1 - q h .  From Lemma 3 we get 

(3.31) (qhg)^(w) is analytic for I m w > 0 .  

Moreover, by a combination of  (3.29) and (3.30), we see that 

f[(g(t)eV'12dt <co for A < v < v0. 
Hence, 

f l (~o~g)(t)e~' t2dt<~ for V<Vo, 
and this implies that 

(3.32) (~p2g)^(w) is analytic for Imw < Vo. 

Putting (3.31) and (3.32) together, we get 

g(w) = (((~01 + (D2) g)^ (w) = ((Plg)^ (w) ~- ((/0 2 g)^ (w) 

is analytic in the strip 0 < I m  W<Vo, i.e. 

(3.33) ~(w) = k(w)h(w) is analytic for 0 <: Imw < Vo. 

Suppose that the axis of convergence for the Dirichlet series h(w) is Im w =  
a > 0 .  Then, on the line Im w = a  the function h(w) has at least one singular point 
in each closed interval of length 2reD. The formula (3.33 / shows that h(w) has 
a meromorphic extension into the halfplane Im w>0,  and therefore these sin- 
gularities must be poles. Moreover, the product k(w)h(w) is analytic for 
0 < I r a  W<Vo, but this contradicts the hypothese on k(w). Thus, the series defining 

h converges not only for Im w>A,  but 

(3.34) h(w) = ~ a, ei~, ,  Im w > 0. 
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The assumptions on the Fourier transform f: imply that there exist a dosed 
interval L with [I[>2zc/c, and an e > 0  such that 

(3.35) f~(u+iv) ~ O, when uCI and 0 <~ v < e 
and 
(3.36) D'fc(. +iv) --,- Dnfc in uniform norm on L v~0, n = 0, 1 . . . . .  

Since 

(3.37) ~,(. +iv) -,-~, in Se', v~0, 

the combination of  (3.35), (3.36) and (3.37) (see Rudin [11], Theorem 6.18) gives 

(3.38) h ( . + i v ) ~ f ~  i n ~ ' ( I n t I ) ,  as v~0. 

From (3.34) and (3.38) it follows, by Lemma 2, that there exists a finite constant 
N such that 

(3.39) an = O(2~). 

Recalling (3.1) and (3.2), we see that 

Z a . f ~ _  k (y)dy=o(1) ,  x 

where the coefficients {a,} satisfy (3.39). Now we can use Theorem 3 to get the 
conclusion (3.3) and Theorem 2 is proved. 

4. Estimation of the coefficients 

The second step in proving Theorem 1 will be accomplished by the next theorem. 

Theorem 4. Let the sequence {~,} be of class A (D, c) and let kE ~ .  Suppose 
that there exists an a>:O such that 

k(y) dy (4. I) exp ( -  ex) .  ~ '  a n a,-  ~ 

converges uniformly on every set {x: x<xo}, x0 < ~ ,  and defines a bounded func- 
tion on R. Then 

an = O(exp (e)~n))" 

In proving this theorem we first state a lemma, which is almost identical to 
a result of  Levinson. For  a proof  see Johansson [5] or Levinson [7]. 

Lemma g. There exists a function O, analytic in the upper halfplane, with 

(4.2) [~(u+iv) I <= Cexp(Cv), (C is a constant) 

(4.3) I~b(u)l is even 
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and 
(4.4) [~k(u)l ~ CN(1 + lUtN) -~ exp {--0(u)}, U -= 1, 2, . . . ,  

where {CN} are finite constants and O(u) is a positive function of  u, monotonely in- 
creasing for u>0 ,  and with 

fS- au< o. 
Moreover, 
(4.5) = 1 .  

The next lemma is crucial to the proof of Theorem 4. The proof of this result 
follows by a slight modification of  a method used by Levinson [7]. 

L e m m a  6. Suppose that the hypotheses in Theorem 4 are satisfied. Then there 
exista a sequence {B,}~ of functions, defined on R •  [2, co), such that 

(4.6) f lB.(x, a)l dx <_- C, 

(4.7) B,(x, A) = 0 for x >-_ C2A 

(4.8) f B,(x,A)e'(a,,-x) f ?  k ( y ) d y d x =  O, m r  n, 
ra--x  

and 

(4.9) lim f B.(x, A)e'(X.-x) f ~ k(y) dy dx = k~(O), 
A~-- d 2n- -X  

where C, and C2 are constants. 

Proof. Define 

(4.10) /~,(u, A) = i(u +i~) - ~,(u) (k~'~Oa)*~"(u)' n = l ,  2 . . . . .  

where the functions {~,} are given in Lemma 1 with supp ITI, c ( - f l ,  fl), fl>n/e. 
The function ffA is defined by ~a(u)=A~(Au), where ~b is the function in Lemma 
5 except that we instead of  O(u) here use 20(u). 

By (1.3) and 0.7), we get 

[Bn(u, A)I <= c~ [ule ~ fu+tJ [~pA(t)i dt 
~ U - - p  

O(U) '*A(u+ll) 
= C3lule JA(.-p) l~(t)Idt" 

If  LuI>2/L then it follows from (4.3) and (4.4) that 

( 4 . 1 1 )  lib.(u, A)I ~= C31uleO(") f" V(t)1 dt <= C4 
I.1 1 + u 2 " 
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For  [u[~=2fi the inequality is obvious. In a similar manner, by using (1.3), (1.5), 
(3.7), (4.3) and (4.4), we can make an estimate of  

i(u + ia) f fc,(t)Oa(t)eUX.G~(u_t ) dt ff---u (ei"~"~"(u' - k,(u) A)} 

where Gn(t)=/]r,(t) exp (it2,), to get 

] d {ei,,a.~,(u,A)}l ~ C5 
- l + u  2 -  

Thus, by Carlson's inequality, 

We have that 

~. (w, A) = 

is analytic for 
we find that 
(4.12) 

f lB.(x, A)l,tx <- c~.  

i(w+i~) f k , (w_t)Oa(w_t)f i , ( t )d t 
k~(w) 

Im w > 0  and continuous for Im w=~0. Using (1.4), (3.7) and (4.2), 

[/~,(w, A)I ~ CvlwlAeCsa" eC"lwl <= CTe cloalwl. 

By a Phragm6n--Lindel6f argument, (4.11) and (4.12) imply that 

Cn ]B,(w,A)e~2qo awl ~ l+lwl~,  Imw ~ 0 .  

Hence, applying Paley--Wiener's theorem, we get 

B,(x,A)=O for x=>2C~0A. 

Parseval's formula gives 

I f B.(u, A)k,(u)e "t du = f B.(x, A)k,(t-x)dx = f B.(x, A)e =`'-x, k ( t - x )dx  

and this can be rewritten as 

(4,13) A)k,(u)e'("+")'du = f s.(x, A)e-'Xk(t-x)dx. 

Integrating (4.13) with respect to t, we get 

eff"+i~)r--ei("+i')~ 
(4.14) B,(u, A)~c~(u) i(u + io 0 du 

= f B.(x, A)e-'*f; k ( t - x )d t  dx, 
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We have 

l im f an(u, e i ( .+ i= , r  d u = O, 
~ i (u + i~) 

which is obvious if a > 0  and follows from Riemann--Lebesgue's lemma for 
Thus, if T - * ~  in (4.14), 

1 Bn(u , A)[c~(u) ei,Sdu f Bn(X'A)e~('-~) fs k(y) dydx- 2~f i(u+i~) 

Together with (4.10) this implies that 

f Bn(x,A)e "('-~) fs  d x :  Hn(s)(k~.OA)^(--S). 
Hence, 

0~=0. 

f Bn(x, A)e'(X.,-x) f ~ k(y) dy dx = O if m ~ n 
J A m - - X  

and 

lim f Bn(x,A)e~(~-x) f ~ k(y)dydx = lim (k~.~kA)^(--)~n) 
~ 2 n - - x  A ~  

= laimfk,(t)~p((t--2n)/A ) d t= fc,(O), 

where the last equality is given by the theorem of  dominated convergence and (4.5). 

Proof of Theorem 4. From (4.1) and (4.6) it follows that 

(4.15) f gn(x, A) e - ' X X  amf~,_~ k(y) dy dx = O(1). 

Because of  (4.7) and since the convergence is uniform, the order of integration 
and summation can be changed in (4.15). 

Thus, 

(4.16) ~, ame-~'*,.f B,,(x, A)e ~(a,--*) ff,_  k(y) dy dx = O(1). 

By the properties (4.8) and (4.9), we find that (4.16) implies that 

a,e-~Z.k~(O) = 0(1) 
and this proves the theorem. 

5. Best possible results and some applications 

It can be seen by an example that the hypothesis (1.3) is essential in Theorem 1 
(see Levinson [8] or Johansson [5]). 

The question whether the separation (2) of  the sequence {2n} is necessary, will 
be answered by the next theorem. 
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and 

Define 

T h e o r e m  5. Let kE LI(R)  and let the sequence {2,} satisfy 

0 < 2 1 < 2 3 < . . . < 2 , - - , ~ ,  n ~  
and 

lira inf (2 ,+1-2,)  = 0. 

Then there exist coefficients {a,} such that 

F(x) = Z a. f~._ ~ k (y) dy 

converges uniformly on every set {x: x<x0}, x 0 < ~ ,  and 

lira F(x) = 0 
2r  

but 
a n--~O, n - - ~ ,  

Proof Let {~.} and {ft.} be two disjoint subsequences of  {2.} satisfying 

~1 < fll < c~ < f12 < . . .  

( / ~ . -  ~.)  < ~ .  

where 

Thus we have 

F(x) = ~ a , f ~ _ x  k(y) dy, 

i if )~kE{~.} 
ak = -- if 2kE{fl.} 

elsewhere. 

Let e>O and choose N such that ~--~+1 ( f l , -~ , )<e .  We now see that 

lim~_~sup [F(x)l <-- lim~,_~sup Z7 Ik (y)l dy 

�9 f i n  
+ h m s u p ~ + ~ f  I k ( y - x ) l d y  <= max f [k(y)[dy 

x ~  " ~n I M l = e ' /  M 

i.e. 
lira F(x) = O. 

We shall now see that the kernel in (4), studied by R6nyi, is just a special 
case of a class of functions, where Theorem 1 may be applicable. These functions 
are of the form (1), 
(5.1) f ( x )  = log ff~x ~m xm, xE(0, 1 ) , / 'EL(0 ,  1), 

with ~,, = O (m r) for some finite V. 
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Suppose that 

(5.2) 1)m z~, a~ f ( x  e") = O, P,+I/P~ >= 0 > 1. 

If (5.2) is transformed to the form (1), i.e. 

Z, a , f ~ _ t k ( y ) d y  = O, 

by letting x = e x p ( - - e x p ( - t ) )  and 2,=lOgpn, then 

k (u) = - i u r  ( f l -  iu)z(fl-- iu). 

The function Z is, for Re w > 7 + l ,  defined by the Dirichlet series 

z(w) -- Z ~  mw 

and has an analytic extension into Re w>fl  (if f l<2:+l) .  
It is easily seen that for each kernel k there exists an a->0 such that kEZ#,. 

For this a it also holds that 

converges uniformly on every set {x: x<x,} ,  x0<l ,  and defines a bounded func- 
tion on [0, 1], i.e. (2.1) is satisfied. Thus, in the case of the series (5.2), the existence 
of a high indices theorem depends solely on the location of the zeros of  the function 
Z as Theorem 1 shows. 

In the R~nyi case we have 

/c(u) = F(1 --iu)~(-- iu)(1 --2'+'~), 

which is in ,90 and 2,=n log 2. From the knowledge of the ~-function, we know 
that there exists a closed interval I with lI[=2zc/log2, where ; ( ( - i u + a ) =  
~ ( a - i u ) ( 1 - 2 1 - ' + / u ) # 0  for uCI and a=>0 (see for instance Widder [14]). Since 
all hypotheses in Theorem 1 are satisfied the desired conclusion (2.9) follows and 
R~nyi's conjecture is proved. 

A direct consequence of  Theorem 4 is the following: let y->0 and let {p,} 
be a Hadamard sequence (p,>0).  Then 

(5.3) ~ a , e - p , t =  O(t - ' ) ,  t - ~ + 0  

implies that 

(5.4) a. = O(p]). 

This problem has been studied by Gaier [1], who gives an estimate less precise 
than ours. The estimate (5.4) is in fact best possible, as we can readily see if (5.3) 
is applied to the real line by letting t=exp  ( - x ) .  Let a ,=exp  (V logp~), 7>0.  
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Then  
exp ( - 7 x ) - ~  a ,  exp ( - e x p  (log p , - x ) )  

= Z exp (-- y (x -- log p.) - exp (-- (x -- log p.))) = 0 (1), 

where the last equa l i ty  is obvious,  since k ( x ) = e x p  ( - v x - e x p  ( - x ) )  is in  Se. 
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