The additive groups of local rings

Shalom Feigelstock

1. Introduction

All groups considered in this paper are abelian, with addition as the group operation. A ring R is said to be local if R is a ring with unity, and if R possesses a unique maximal ideal, i.e., the ideal of non-units in R.

Necessary and sufficient conditions will be obtained for a torsion group G to be the additive group of a local ring. Necessary conditions will be given for a non-torsion free group to be the additive group of a local ring.

Notations

 \mathbf{Z} = the ring of integers.

Z(n) = a cyclic group of order n, n a positive integer.

Q = the additive group of the field of rational numbers.

$$Q^* = Q - \{0\}.$$

 $Q_p = \{a/b|a, b \in \mathbb{Z}, p \nmid a, p \nmid b\}, p \text{ a prime.}$

- \mathbf{F}_p = a field of order p, p a prime.
- G = a group
- G_t = the torsion part of G.
- G_p = the *p*-primary component of G, p a prime.

 $G[n] = \{x \in G | nx = 0\}, n \text{ a positive integer.}$

$$R = a ring.$$

 R^+ = the additive group of R.

Definition. A group G is said to be local if there exists a local ring R with $R^+=G$.

2. The main results

Lemma 2.1. G is the additive group of a simple ring if and only if either:

1) $G \cong \bigoplus_{\alpha} Q$ or

2) $G = \bigoplus_{\alpha} \mathbb{Z}(p)$, α an arbitrary cardinal, p a fixed prime.

Proof. Let R be a simple ring with $R^+=G$. For every prime p, pR is an ideal in R. If pR=0 for some prime p, then $G=\bigoplus_{\alpha} \mathbb{Z}(p)$, [1, Theorem 8.5]. If pR=Rfor every prime p, then G is divisible, and so G is nil [1, Theorem 120.3]. Hence every subgroup of G_t is an ideal in R, and so $G_t=0$. Therefore $G \simeq \bigoplus_{\alpha} Q$, [1, Theorem 23.1].

Conversely, any group G of the form 1) or 2) is the additive group of a field.

Lemma 2.2. Let R be a local ring with maximal ideal M, and set of units U.

- 1) If R^+ is not a torsion group, and if $(R/M)^+ \simeq \bigoplus_{\alpha} Q$, then $Q^* \subseteq U$.
- 2) If R^+ is not a torsion group, and if $(R/M)^+ = \bigoplus_{\alpha} \mathbb{Z}(p)$, then $Q^p \subseteq U$.
- 3) If R^+ is a torsion group, then $\mathbf{F}_p \subseteq U$.

Proof 1) 1+M is torsion free in $(R/M)^+$, and so $n=n\cdot 1 \notin M$ for every nonzero integer *n*. Hence *n* and $\frac{1}{n}$ belong to *U*, and so $\frac{n}{m}=n(\frac{1}{m})\in U$ for arbitrary nonzero integers *n*, *m*.

2) Follows from the same argument as above, assuming n and m to be relatively prime to p.

3) Again follows from the same argument, plus the fact that p(1+M)=M, i.e., $p \in M$.

Lemma 2.3. Let R be a local ring with maximal ideal M, and $R^+=G$.

1) If $(R/M)^+ \simeq \bigoplus_{\alpha} Q$, then G is torsion free.

2) If $(R/M)^+ = \bigoplus_{\alpha} \mathbb{Z}(p)$, then G_t is a *p*-primary group.

Proof 1) Suppose that $(R/M)^+ \simeq \bigoplus_{\alpha} Q$. It suffices to show that $G_q=0$ for every prime q. Let $x \in G_q$, $|x| = q^k$. By Lemma 2.2, $q^k, q^{-k} \in R$, and so $x = q^{-k} \cdot q^k x = 0$.

2) Suppose that $(R/M)^+ = \bigoplus_{\alpha} \mathbb{Z}(p)$. Let q be a prime $q \neq p$, and let $x \in G_q$, $|x| = q^k$. By Lemma 2.2, q^k , $q^{-k} \in R$, and so $x = q^{-k} \cdot q^k x = 0$.

Theorem 2.4. Let G be a torsion group. G is local if and only if $G = \bigoplus_{k=1}^{n} \bigoplus_{\alpha_k} \mathbb{Z}(p^k)$, p a prime, n a positive integer, α_k an arbitrary cardinal, k = 1, ..., n.

Proof 1) Let R be a local ring with $R^+=G$. Let |1|=n. Clearly nx=0 for all $x \in G$. Hence G is bounded, and so G is a direct sum of cyclic groups [1, Theorem 17.2]. By Lemma 2.3, G is p-primary, and so $G = \bigoplus_{k=1}^{n} \bigoplus_{\alpha_k} \mathbb{Z}(p^k)$.

2) Let $G = \bigoplus_{k=1}^{n} \bigoplus_{\alpha_n} \mathbb{Z}(p^k)$. Put $H = \bigoplus_{\alpha_n} \mathbb{Z}(p^n)$. If α_n is infinite, there exists a local ring T, with $T^+ = H$, [1, Lemma 122.3].

If $\alpha_n = r < \infty$, then $H = (a_1) + \ldots + (a_r)$, $|a_i| = p^n$, $i = 1, \ldots, M$. Let T be the ring with additive group H determined by the products $a_1 a_j = a_j a_1 = a_j$, and $a_i a_j = a_j a_i = pa_1$ for $i \neq 1, j \neq 1; i, j = 1, \ldots, r$. Then T is a local ring with unique maximal ideal $(pa_1) \oplus a_2 \oplus \ldots \oplus (a_r)$.

In either case the unity $e \in T$ is an element of a basis for H, i.e. $H=(e) \bigoplus_{i \in I} (a_i)$. Let $L = \bigoplus_{k=1}^{n-1} \bigoplus_{a_k} \mathbb{Z}(p^k)$, and let $\{b_j | j \in J\}$ be a basis for L. Define $eb_j = b_j e = b_j$, and $b_j b_k = b_k b_j = a_i b_j = b_j a_i = 0$ for all $i \in I$; $j, k \in J$. Define the product of elements in H in accordance with the multiplication in T. These products determine a ring structure R with additive group G, and unity e. Let N be the maximal ideal in T. Then $M = N \oplus L$ is the unique maximal ideal in R.

Theorem 2.5. G is the additive group of a local ring R with maximal ideal M such that $(R/M)^+ = \bigoplus_{\alpha} Q$, α an arbitrary cardinal, if and only if $G \cong \bigoplus Q$.

Proof. Let R be a local ring with maximal ideal M, and $(R/M)^+ \cong \bigoplus_{\alpha} Q$. Let $x \in G$ and let n be a positive integer. By Lemma 2.2, n is a unit in R. Hence $x = n(\frac{1}{n}x)$. Therefore G is divisible. G is torsion free by Lemma 2.3, and so $G \cong \bigoplus Q$, [1, Theorem 23.1].

Conversely, if $G \cong \bigoplus Q$, then G is the additive group of a field.

Theorem 2.6. Let R be a local ring with maximal ideal M. If $(R/M)^+ = \bigoplus_{\alpha} \mathbb{Z}(p)$, and if R^+ is not a torsion group, then $R^+ = H \oplus K$, H a divisible group, and K homogeneous of type $(\infty, ..., 1, \infty, ...)$ with 1 at the p-th component.

Proof. Let q be a prime, $q \neq p$. By Lemma 2.2, $q, q^{-1} \in R$. Hence for every $x \in R^+$, $x = q(q^{-1}x)$, and so R^+ is q-divisible. Let H be the maximal divisible subgroup of G. Then $G = H \oplus K$, K homogeneous of type $(\infty, ..., 1, \infty, ...)$ with 1 at the p-th component.

Theorem 2.7. Let R be a Noetherian local ring. Then $R^+ = H \oplus \bigoplus_{k=1}^{n} \bigoplus_{\alpha_k} \mathbb{Z}(p^k)$ n a positive integer, p a prime, α_k an arbitrary cardinal k=1, ..., n, and H torsion, free. If R^+ is mixed, then $pH \neq H$.

Proof. R_t^+ is *p*-primary for some prime *p* by Lemma 2.3. Now $R^+[p] \subseteq R^+[p^2] \subseteq ...$ is an ascending chain of ideals in *R*. Hence $R_t^+ = G[p^n]$ for some positive integer *n*. Therefore $R^+ = H \bigoplus_{k=1}^n \bigoplus_{\alpha_k} \mathbb{Z}(p^n)$, α_k an arbitrary cardinal, k=1, ..., n, and *H* torsion free [1, Theorem 17.2 and Theorem 27.5].

Let *M* be the maximal ideal in *R*. If R^+ is a mixed group, then R_t^+ and $p^n R = p^n H$ are proper ideals in *R*. Hence $p^n H \subseteq M$, and $R_t^+ \subseteq M$. If $p^n H = H$, then $H \oplus R_t^+ = R^+ \subseteq M$, a contradiction. Hence $pH \neq H$.

References

FUCHS, I. L., Infinite Abelian Groups, Academic Press, New York—London, vol. 1 (1970), vol. 2 (1973).

Received, July 9, 1979

Shalom Feigelstock Bar-Ilan University Ramat Gan, Israel