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1. Introduction 

The generalized modulus of continuity a~( f i  t) for a function f on R" with 
respect to a measure a on R" is defined as 

~ ( f ,  t) = sup {[[at,)~f][; O ~  u ~ t}, 

where ]]-]] is some norm, e.g. supremum norm, , denotes convolution, and ar 
is the so-called "dilation" of a, which is defined by a(,)(x)=u-"a(x/u), or more 
precisely, f q~(x)da(,)(x)-=f ~o(ux)da(x) for all continuous functions ~0 with com- 
pact support. The interesting case is when f da=O; in this case limt_~ 0 co~(f, t )=O 
for every bounded and uniformly continuous function f .  The problem is to compare 
the order of magnitude of co~(f, t) and cot(f, t) as t~O for given pairs a, -c. In 
this paper we study this problem in detail. Specifically we study for which pairs a, 

the inequality 

(1.1) cot( f ,  t) ~= Cr Bt) 

holds with constants C and B independent o f f  Inequalities of this kind have applica- 
tions to approximation theory. For instance the well-known Jackson and Bernstein 
theorems concerning trigonometric approximation can easily be deduced from such 
inequalities. 

Our results are formulated in terms of the "order" of the zero at the origin 
of the Fourier transforms 8(4) and t (4) of the measures involved. With each o- 
there will be associated an ideal J0(a) in the ring of germs at the origin of Fourier 
transforms of measures. More exactly J0(a) is the ideal generated by all the elements 
{#(u~); u>0}. Our main result states that, provided a satisfies certain a priori 
conditions, then (1,1) holds if and only if 

(1.2) JoG) c Jo(a). 

In simple cases this condition means that # divides t locally at the origin. 
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The problem of comparing generalized moduli of continuity has been studied 
by H. S. Shapiro [14]. A typical result of Shapiro states that the estimate 

(1.3) o~(f, t) <-_ c f B' ao r176 t > 0  

holds if a and z satisfy (1.2) and tr satisfies the Tauberian condition (2.11). Thus 
one of the objects of the present study was to replace (1.3) by the stronger (1.1). 
A specific motivation for this came from approximation theory. In fact the results 
on degree of approximation that can be deduced from Shapiro's theorems are some- 
what weaker than what is actually known to hold in specific cases. See Section 7 
below for details. 

As a further application we study the r th order moduli of continuity to,(f, t), 
r = l ,  2 . . . . .  and more generally the LP-moduli r t) for functions of  several 
variables. From our main theorem one can easily deduce results concerning the 
equivalence of various possible definitions of the moduli of continuity tO,,p(f, t). 
On this point the cases l < p <  ~ and p =  1, co lead to different results (Theorems 6.2 
and 6.3). 

The method of proof of our main result seems to be of independent interest. 
An important step is the application of a theorem of Varopoulos on (global) division 
in certain measure algebras [21]. 

The plan of the paper is as follows. In Section 2 we give definitions and for- 
mulate our results. In Section 3 we prove an estimate for trigonometrical sums in 
several variables, which is needed in connection with the application of Varopoulos' 
theorem to  our problem. In Section 4 we prove the special case of Varopoulos' 
theorem which is of interest here. The proof of the main estimate (1.1) is completed 
in Section 5. In the remaining sections we treat various applications of our results. 
Higher order moduli of continuity are studied in Section 6, applications to degree 
of approximation in Section 7, and a couple of other applications are briefly men- 
tioned in Section 8. 

I wish to thank professor Jaak Peetre for valuable criticism leading to improve- 
ment of the exposition. 

2. Comparison theorems for generalized moduli of continuity 

Denote by M(R n) the set of all complex-valued bounded Borel measures in 
R n and by ~(R n) the set of complex-valued, bounded, uniformly continuous func- 
tions on R ". The supremum norm in (~(R ~) is denoted II �9 II, and the usual norm 
in M(R ~) is denoted II �9 I IM. The Fourier transform of tr~M(R n) is denoted ~ and 
is defined by ~ ( O = f  exp ( - i ( x ,  ~))da(x), ~R" .  Here ( - ,  . )  denotes the inner 
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product in R". M(R") is made into a Banach algebra under convolution, and LI(R ") 
is identified with a subalgebra of M(R"). 

Here are some simple properties of  the generalized modulus of continuity. 
(See also [15], chapter 9.) I f  a, zEM(R"), then 

(2.1) og,+~(f, t) <---- c%(f, t )+m~(f ,  t). 

Writing /~ = a .  z we have 

(2.2) og,(f, t) <_- II~IIM a~(f ,  t). 

Obviously, for any a > 0  

(2.3) c%,.,(f, t) = o),(f,  at). 

I f  2; is a finite family of elements of  M(R") we define w~(f, t) to be 
sup {og,(f, t);  trE2;}: 

We denote by j(X)I) the ideal in M(R") which is generated by all the dilates 
a(,), u:~O, trES,. If  2; consists of  one element 2~={tr}, we write J(a)  instead of  
J(Z). Denoting the elements of X by tr ~ . . . . .  a s, each element of  J(~)  can be written 
by means of a finite sum 

(2.4) ~ = •k,j a~.~j) * v 1'j 

for some measures vkJEM(R"). We will now introduce an ideal K(~), which is 
larger than J(2;), by replacing the sum in (2.4) by an integral. To make this precise 
we introduce the group G=R"•  as the (semi-direct)product of  the additive 
group R" and the multiplicative group R+ of  the positive real numbers. The group G 
acts on M(R") in the following way. Denoting the action of  (h, u)ER"•  
on oEM(R") by a(h,. ) we have 

1 ~rfx+h] 
a(h'u)(X) = -U; t-'-"ff--l' or #(n,u)(~) = e~(h'~>#(ur �9 

Let M(G) be the algebra of all bounded measures ~ on G whose support is contained 
in Rn• B] for some B. Now we define K(Z) I) as the set of  all z~M(R  ~) which 
can be written 

J (2.5) "r = Zj= f (h, u) 

for #~M(G) .  The integral is to be interpreted in the weak sense, so that for instance 
if J =  1, (2.5) means the same as 

f f a. = f o f  . . f  u) for all y~C(R"). 

1) This notation differs from the one used in [6]. 
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Note that (2.5) reduces to (2.4) if each #J is a product of an element of M(R") and a 
Dirac measure on R+, o r a  sum of such products. Clearly K(22) is an M(G)-module, 
and in particular an ideal in M(R"). 

It follows from (2.5) that if zEK(I;), then 

(2.6) ~o~(f, t) <= Cco~(f, Bt). 

(This shows incidentally that co~ depends only on the M(G)-module K(Z) and not 
on the finite generating family 22.) However, the converse statement is also true, 
at least if 6 (0 )=0  for all o-~7 (which is the only interesting case). 

Theorem 2.1. Let the finite subset 22cM(R") be given, let zEM(R'), and 
assume 
(2.7) 6(0) = 0 for every aE~. 

Then (2.6) holds for some constants C and B i f  and only i f  z belongs to the M(G)- 
module K(22). Similarly, i f  ~" and 22 are finite subsets of  M(R"), ~ satisfying (2.7), 
then the inequafity COz,(f, t)<=Ccnz(f, CT) holds if  and only if K(U)cK(Z) .  

Proof. For technical reasons we will work with the space C0(R") of functions 
tending to zero at infinity rather than the space C(R"). The space M(R") can be 
identified with the space of all continuous linear forms on Co(R"). 

Let 0 4, j = l ,  ..., J, be the elements of I7. For  each fCCo(R") and e a c h j  con- 
sider the function 

(2.8) ~o~(h, u) = f f ( -x )  da{h, . ) (x)  = a{.) *f(h), (h, u)q G. 

Clearly ~oj is continuous. In fact ~oj is uniformly continuous for u in bounded sets, 
since limlhi~ ~ g0j(h, u )=0  and lim,-.o ~oj(h, u)=0.  The last assertion follows from 
the fact that 6J(0)=0 for all j .  Set I = { u ;  0 < u N B }  and denote by Co(R"XI) 
the Banach space of all complex-valued uniformly continuous functions on R" X I 
which tend to zero as u-~0 and as [h[-+~, equipped with the supremum norm. 
Denote by L z the set of all functions ~o=(~01 . . . .  , q)j)ECo(R"XI) s with ~0 i of  the 
form (2.8) and fE Co(R"). Assume that (2.6) holds and consider the linear mapping 
~P0 from Lx to the complex numbers defined by 

(2.9) 7J0 (q~) = �9 *f(0) = f f(- x) dz (x). 

From (2.6) with t = l  it follows that ~o is continuous. By the Hahn--Banach  
theorem we can extend 7% to a continuous linear form 7 j defined on all of  Co(R" • I) s. 
But ~ can be represented by a J-tuple of  bounded measures (#~ . . . . .  #J) on R" • I c  G. 
Combining (2.8) and (2.9) we easily conclude that (2.5) holds, i.e. ~ K ( I ; ) .  

Our main goal is to give conditions for (2.6) in terms of  the behaviour at ~ = 0  
of the Fourier transforms of  the measures involved. The strongest possible condi- 
tions on z of this sort is of course that ~ vanish in a neighbourhood of the origin. 
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Hence it is natural to begin by asking for which 27 it is true that (2.6) holds for all 
such that t ( ~ ) = 0  in some neighbourhood of the origin. Let 17 be such a set of 
measures. It follows from Theorem 2.1 that there must exist pJEM(G) such that 

(2.10) 1 = Z ] = l f  8J(u~)e'(~'n) dl~J(h, u) 

for ~ outside some compact set. By virtue of Lebesgue's theorem on dominated 
convergence (2.10) cannot hold if all #J(~) tend to zero as ]4[-~~176 That is to say, 
(2.10) cannot hold if all the o -j are absolutely continuous, i.e. belong to LI(R"). 
We can in fact say more: (2.10) cannot hold if there exists ~ER"\{0} such that 
limu_~ 0 #J(u~)--0 for all j .  These observations motivate the following assumption: 

(T) the set of  functions {eo(U~), u>0 ,  aC27} has no common zero on R"~{0}; here 
~o denotes the discrete part of e. 

A bounded measure is called discrete if it has the form ~k=l  C~6~, where {ak} 
is an arbitrary sequence of points of R" and ~ [CkI< oo. The condition 

(2.11) {~(u~); u > 0, o-EZ} has no common zero on R"\{0}  

was introduced by H. S. Shapiro in [14] and was called the Tauberian condition. 
We shall also need a structural assumption: 

(S) i f  n>=2, each ~E27 can be written a--~o+o' l ,  where ao is a discrete measure 
and O'lE L1 (Rn). 

We can now formulate our main result. 

Theorem 2.2. Let Z be a finite subset of M ( R  n) satisfying (S) and (T), and let 
z be an element of  M(R") such that ~(~)=0 /n some neighbourhood of the origin. 
Then TEK(27), and hence ~o~(f, t)<=Co)~(f, Ct) for some C. 

The proof  of this theorem will be given in Section 5. It depends heavily on the 
contents of  Sections 3 and 4. 

Note that the condition (S) is void if n--1. 
The Fourier transform of  a discrete measure on R cannot vanish on a half- 

line without vanishing identically. I f  n = 1 the condition (T) therefore means simply 
that the discrete parts of the elements of  27 do not all vanish. This suggests the follow- 
ing reformulation of  the condition (T). For  simplicity consider the case when 27 
has only one element. The measure o- satisfies (T) if and only if for each  ~ER"\{0} 
there exists at least one hyperplane K c R " ,  orthogonal to 4, such that o-(K)#0. 
In other words, for each (n-D-dimensional  subspace H ~ R "  the measure o- H, 
which is defined on the factorspace R"/H by integrating ~ over all hyperplanes 
parallel to H, must have a non-vanishing discrete part. 
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Remark. Theorem 2.2 is applicable in the more general case when the supremum 
norm is replaced by LP-norm (1 <-p< oo) in the definition of  the generalized modulus 
of  continuity; denote the object so obtained by r p(f,  t). In fact it is easily seen 
that if ~EK(2~), then 

o)~,p(f, t) ~_ Co)~,p(f, Bt), yELP(R"), 

with B = s u p  {u; (h, u)Esupp #J} and C = ~ j  II~Jll~(~. 
Using Theorem 2.2 it is easy to strengthen the comparison theorems of H. S. Sha- 

piro as indicated in the introduction. Let p,~r(R") and J(2:) be the set of  Fourier trans- 
forms of  elements of  M(R n) and J(2~) respectively, and let ~to(R") be the ring of  
germs at the origin of elements of  3~t(R~). Denote by J0(2:) the image of  J(2~) under 
the natural homomorphism l~l(R~)--~lo(Rn). 

Corollary 2.3. Assume that Y, satisfies (S) and (T) and that 

eEJo(r). 
Then zEK(,~), hence 

og~(f, t) <-- Co)~(f, Ct), t > 0, fE(~(R"), 
for some C. 

Proof. Take f fEC~(R ~) such that ~k(~)=l for [~[<_-~ and t#(~)=O for 
[r The assumption ~EJo(Z) implies that ~b~=r if 8 is small 
enough. But ~-~o=r vanishes in a neighbourhood of  the origin, and therefore 
Theorem2.2 implies zlEK(Z). Hence "C=Zo+zlEK(Z). 

Shapiro gives in [14] also an estimate of  co, in terms of  co~ without assuming 
that {#; aEZ} divides ~ at the origin but assuming only that ~ is small at the origin. 
The smallness property is expressed in terms of  homogeneity of  a certain degree close 
to the origin. We shall give a strengthened estimate in this situation, but we prefer 
to formulate the condition on z in terms of  a certain Besov space. Following Peetre 
[13] (see also [1], ch. 6) we take a function q~EL~(R n) such that ~EC ~, the support 
of  t~ is contained in 1/2< 1 1<2, and 

2'~=0~(~2 j) = 1 for 0 < Ir < 1. 

We shall assume that for some ~ > 0  and some C 

(2.12) Ile(r <= C2 -~e, k = 1, 2 . . . . .  

For zEM(R n) (2.12) means precisely that z belongs to the Besov space/~[~; see 
[1], ch. 6.3. The set of  zEM(R ~) satisfying (2.12) clearly forms an ideal. Of  course 
(~.12) is really a property only of  the germ of ~ at the origin. Note that if r is 
positive-homogeneous of degree ~ > 0  in some neighbourhood of  the origin, then 
(2.12) holds. 
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Corollary 2.4. Assume that ~ satisfies (S) and (T) and that z satisfies (2.12) 
for some ~>0.  Then 

(2.13) co~(f, t)<= ct~ f~  cox(t, u)u-}'-ldu, t > O ,  fE(g(R"). 

Since cox( f ,  t) is increasing, it is obvious that (2.6) implies (2.13) with possibly 
a larger C. We note also that the right hand side of (2.13) can be estimated by 2) 

ct~ f ]  cox(f, u)u-r-Xdu+CltrIlfll ,  0 <  t <  1. 

Proof of  Corollary 2.4. Writing z--z0+Zl as in the proof of  Corollary 2.3 we 
have z~EK(~,) by the Theorem 2.2, so we need only estimate co,0" We may assume 
that r  for 14[>1. Then, for I l l#0,  

eo (~) = (z~s*=o 0 ( 2j ~))~o (0  = Z•=o ~ ( 2j ~) ~,d+j-2 0 ( 2k ~) $o ( 0  

= z~7=o 2i~4~(2J~)~0(~) ~- -+) -12-J~(ZkO �9 

Replace ~ by t~, take inverse Fourier transform of both members and form con- 
volutions with fE~(R"). Using (2.2), (2.3) and (2.12) we easily get 

co,o(f, t) <= C ~=o2-J~ co,( f ,  2Jt). 

Since co, is increasing the last sum can be estimated by a constant times 

f ~  co, ff, ut)u-r-~ du. 

Since $ = 0  in a neighbourhood of  the origin we have co,(f,  t)<-Cco~(f, Ct). 
Using this fact and making a change of variable in the integral we obtain the result. 

In some situations one wants the conclusion of Corollary 2.3 to be strengthened 
to co,(f, t)<-Ccoz(f, t). The next theorem gives general conditions for this to be 
possible. 

We need the following local variant of the Tauberian condition: 

(T1o~) the family o f  functions {~(t~)}0<,<l,~z has no common zero on R"\{0}. 

This condition means that the restriction of  {#(~); aE~} to an arbitrarily small 
neighbourhood of the origin satisfies (T). The condition is of course satisfied by 
2;= {a}, if #(~) is different from zero in some pointed neighbourhood of the origin. 

1) There is an error in the formulation of Theorem 2 and Theorem 4 in [5]; in the expression 
t r fx t u-rtaa(f, u)u-adu the integral should be taken from t to infinity. The same remark applies 
to formula (4.8) page 43 in [6]. 
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Corollary 2.5. Assume that 2; satisfies (S), (T), (Tloc) and that the ideal J0(2;) 
has a finite set of  generators. Then, for any B > 0  there exists a constant C~ such that 

(2.14) coz(f, Bt) <= Cno~z(f, t), t > O, fEC(R").  

Proof. To simplify the notation we prove the corollary only in the case when 
1; consists of one element a. Take OEC=(_R ") such that r  for 141<I/2, 

(4)=0 for 141> 1, let 6 be a (small) positive number to be chosen later, and define 
the measures al, i=0 ,  1, 2, by 

(4) = ~ (4) r (416) + 6 (~) (1 -- r (64)) 

+ ~ (4)(q, (a4)- 41 (4/6)) = ~o(4) +,~1(4) + ~2(4). 

It will be enough to prove 

(2.15) c%,(f, Bt) <- CBc%(f, t), t > O, fEC(Rn), 

for i=O, 1, 2. Let #(bj~), j = l  . . . .  , N, bj>O, be a set of generators for J0(o). It 
is obviously possible to choose all bj~ 1. Then, for an arbitrary B>0 ,  there exists 
5 > 0  and hjC~I(R n) such that 

(2.16) ~(B~) n ^ = Zs=,hj(4)a(bj~),  for 141<6. 

Multiplying this identity by ~(4/6) we see that (2.15) holds for i - 0 .  
Let z be the measure defined by r162 Then ~o,(f, t)~C~o~(f, Ct) 

by Theorem 2.2, hence 
~o,,,~,(L t) ~= c~o~(L t). 

Now "?(1/c)(r for ]4[>C, hence if 5<1/2C we have #1=~ar which 
gives (2.15) for i=  1. 

The measure a2, finally, satisfies #2(4)=0 outside the set 6/2< f~l< 1/3, hence 
62(B4)=0 outside the set K={r  B6/2<]41<B/6}. The condition (T~oc) implies 
that the family of functions {#(t4)}o<t<~ has no common zero on the set K. Using 
Wiener~Levy's  theorem and a partition of unity it is then easy to prove that #2(B~) 
has a representation of the form (2.16) in all of R" with bj<= 1. This shows that 
(2.15) holds for i=2 .  The proof is complete. 

Combining Corollaries 2.3 and 2.5 we get for instance the following result. 
Assume that 2; satisfies (S), (T) and (Tlo~) and that ~EJ0(2;)- Then co,(f, t ) ~  
Cc%(f, t) for some C. 

The assumptions of Corollary 2.5 are usually very easy to verify for specific 
choices of 2;. For instance, if aEM(R)  and ~ is real analytic in some neighbourhood 
of the origin - -  this is of course the case if a has compact support - -  then #(4) 
has a zero at the origin of some definite order, say k, and then J0(a) is generated 
by the single function (more precisely the germ) 4 k. More generally, assume that 
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aCM(R") and that ~ is real analytic in a neighbourhood of the origin. Since the 
ring O0 of real analytic germs in n variables is Noetherian, the ideal generated in O0 
by all the germs 8(t~), t>0 ,  must be finitely generated. Using this fact it is immedi- 
ately seen that J0(a) is finitely generated. 

The assumption that ]0(a) is finitely generated cannot be omitted from Corol- 
lary 2.5. To see this take aEM(R) such that ~C C ~, ~(~)=exp ( -  1/I~l) for 0 <  14t< 
1/2 and #(~)=1 for [~[>1. Then a=6o+al ,  where 81is infinitely differentiable 
and has compact support, hence alELI(R"). Thus all hypotheses of Corollary 2.5 
are satisfied except the assumption that J0(a) be finitely generated. On the other 
hand, it follows from the proof  of  Theorem 2.1 (see (2.17) below) that the estimate 

a~(f ,  2t) = r t) <= C~o~(f, t) 

cannot hold, since 8(2)(~)/8(~) = 8(2~)/8(~) is unbounded near the origin. 
We finally consider the question of finding useful necessary conditions for 

the estimate (1.1). First of all it follows immediately from Theorem 2.1 that (1.1) 
implies 

(2.17) ]'t({)] <- C~ sup I#J(u )l, ~ER". 
O<u<:B 
l<~j<=J 

In fact it is easily seen from the proof  of Theorem 2.1 that (2.17) must hold with 
the same B as in (1.1). The fact that (1.1) implies (2.17) was proved in [7] (Theorem 2) 
with different methods. The result in [7], however, is somewhat stronger, the constant 
C being allowed to depend on f in the hypothesis. 

Next we shall prove that if the Fourier transforms 8, aE Z, are assumed to 
have some regularity property at the origin, then zCK(Z) implies ~E]0(Z). This 
will give us a partial converse of  Corollary 2.3. Assume first that each 8 i is locally 
homogeneous of  some positive degree, say qy" Then for small ~ we have #~h,,)(~)= 
uq~#Y(~)e i(~'h). Thus (2.5) gives for small 

T(r = Z ~ - I  ~J(~) f blqJei(~'h) d#J(  h, u). 
-- .i G 

This shows that /(($) is locally generated (as an )14(R")-ideal) by 81 . . . .  , #s. Or, 
stated in another way, /((Z) and J(Z)  have the same image in .~r0(R" ) under the 
mapping 291(R")~Io(R"). The same conclusion holds of course under the more 
general assumption that ]o(2;) is generated by a finite number of homogeneous 
functions. Combining this fact with Corollary 2.3 we get the following result. 

Corollary 2.6. Assume that Z satisfies (S) and (T) and that Jo(Z) is generated 
by a finite number of  elements that are positive-homogeneous functions of  some posi- 
tive degree. Then 

o~,(f ,  t) <-- Cruz(f, Ct) 
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i f  and only i f  J0(z ' )cJ0(s) .  Assume in addition that Z satisfies (Tlo~). Then 

~oz,(f, t) ~ Cogz(f, t) 
i f  and only i f  Jo(Z')CJo(Z). 

Let us call the two moduli of continuity ~o, and w~ equivalent, if og,(f, t )~  
Co~(f, Ct) and vice versa. 

We wish to point out that the two statements 

cn~,(f, t) ~ Ct ~ for some C, 

i= 1, 2, may be equivalent even if the co,,, i=  1, 2, are inequivalent. For instance, 
this situation occurs if aiCM(R ) and #i(~) vanishes at ~ =0 precisely of the order 
fli, where ?<fll<fl2. 

For verification that the hypotheses of Corollary 2.6 are fulfilled the following 
fact is often useful. 

Proposition 2.7. I f  #(~) is real analytic in some neighbourhood of  the origin, 
then Jo(a) is generated by a finite number of homogeneous polynomials. 

Proof. This statement can be proved with wellknown methods, so we will only 
briefly scetch the proof. Let O0 be the ring of power series in n variables that are 
convergent in some neighbourhood of the origin, and let .~' be the unique maximal 
ideal in Oo. The essential point in the proof is Krull's theorem (Corollary 1 of Theo- 
rem 12, ch. IV in [23]), which implies the following: i fL is an ideal in Oo and vEL+~r k 
for every k, then vEL. Let f~ Oo and let Gy be the ideal in Oo generated by all 
the dilates off .  We will prove that G: is generated by a finite number of homogene- 
ous polynomials; the assertion easily follows from this. Let f=~'~'=l  qm, where 
qm is homogeneous of degree m. Since Oo is Noetherian, GI is generated by a finite 
number of the dilates 

(2. l 8) f(t~) = ~ = 1  t m qm(t~)" 

Forming suitable linear combinations we find that q,,EG:+dg ~ for every m and 
k, hence qm~Gy by Krull's theorem. On the other hand, it is obvious from (2.18) 
that G: is generated modulo vr by q~ . . . .  , qk" Since the polynomial ring P is 
Noetherian, the sequence of ideals Lk=(ql . . . . .  qk) in P is finite, i.e. LN=LN+~ . . . .  
for some N. Krull's theorem therefore implies that Gr is generated by qa, ..., qN- 
This completes the proof. 
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3. An est imate for the average of trigonometrical sums 

We shall consider trigonometrical sums of the form 

(3.1) P(4) = ~f=xCj exp ( i(aj ,  4)), ~ER", 

where aj are arbitrary points of R", cj are complex numbers, and ~'~~ ]Cs]<Oo. 
Set for o)CS"-I={~ER"; [4[=1} and T > 0  

1 T 
Fl(09, T) = Ip(~ot)[ dt. 

The main purpose of this section is to prove the following lemma. 

L e m m a  3.1. Assume that for  no mC S "-1 the function R )  t-~p(tm) is identically 
zero. Then there exists number a>O such that 

FI(r , T) ~ a, toES "-1, T >  1. 

In the case n = 1 the situation is quite simple. In this case there exists a num- 
ber L such that the mean of ]P(O[ over any interval of length at least L is greater 
than some positive number a. This follows easily from the fact that P(O is almost 
periodic in the sense of Bohr. On the other hand, let 

P(4) = P(~I, 42) = e/r -ir = 2 cos 41. 

Then p ( O = 0  on the line ~1=n/2, and it is easily seen that there are arbitrarily 
large intervals I lying on some ray through the origin such that the mean of [P(O[ 
over I i s  arbitrarily small. Note also that the period of t-~p(~ot) becomes unbounded 
as ~o tends to (0, 1). 

Proof o f  Lemma 3.1. We will prove that the function Fa defined by 

(3.2) F2(o9, T) = l f r  [p(ogt)12d t 
2T - r  

is bounded away from zero for large T. This obviously implies the assertion of the 
lemma, since p(r is bounded. We first find a convenient expression for F2(o9, T). 
The function q(r  [p(~)[~ can be written 

q(4) = d0 +~3'~'=~ dk exp (i(bk, 4)). 

where bk~O for all k, ~,'~' [dk]<~o and do=~)[cj[2>O, since p(~)r Integra- 
ting the expression for q(O we get 

F2(o , r )  = d0+27=1 dkX(T(b , co)), 
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where K( t )=(s in  t)/t. Hence, for each fixed 09 

(3.3) lim F=(m, T) = do+~k~i(,~) dk 
Z~ 

where 
I(o 0 = {k; <b,, co} = 0}. 

The proof  of  the lemma will be carried out by induction over n. I f  n =  1 the 
sum in the right member of  (3.3) disappears, so that limr_ ~ F=(a~, T ) = d 0 > 0 ,  
which implies the assertion for this case. Assume next that n =>2 and that the asser- 
tion of  the lemma is proved for trigonometric sums of the form (3.1) defined in Rn-L 
Choose N so large that ~k>N ]dkl<do/4, and set 

E = {r <bk, ~> = 0 for some k, 1 ~ k < N}. 

Denote by d(o~,E) the Euclidean distance from 09 to E. I f  we set f l=  
min {Ib~l; l<-k<=N}, we have 

I(bk, co}[ = [bk[ 1o91 ICOS (bk, co)[ => rid(o), E), 

Choose A so that 

Assume that 

Hence, 

~oES "-1, k = l  . . . . .  N. 

Ig(t)l N ~k=l [dR[ < do/4 for l t [>A .  

ogE S " \ E  and that T>A/(fld(~o, E)). Then 

[2ff=a dkK(T(b,, o9)) I < do~4. 

do do do if T >  A/(fld(o~, E)). (3.4) F~(o), T)  --> d o 4 4 = -2-" 

Next we consider ~oCE. E is a finite union of hyperplanes in R". I f  we con- 
sider the restriction of p(r to each of those hyperplanes and use the induction 
assumption, we conclude that there exists ~o>0 such that 

(3.5) F2(m,T)=>ao, o~ES'-lc~E, T> 1. 

Finally we will consider 09 in a small neighbourhood of E. Since q(O is uniformly 
continuous we can choose 6 > 0  such that 

Iq(o~ot)- q(ogt)l < ~0/2 

whenever co, COoES "-1 and I(~o-tOo)t[<6. Hence 

(3.6) IF2(~oo, T)--F~(co, T) [ < ~0/2, if I~o--coolT< a. 
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It follows from (3.5) and (3.6) that 

(3.7) F2(o9, T)  => ao/2 if 1 < T < 6/(2d(~o, E)). 

For arbitrary B ~ I  we have F~(og, BT)>=(I/B)F2(o~, T). Hence we get from (3.7) 

(3.8) F~(co, T)  => ~0/(2B) if 1 < T < 6B/(2d(o~, E)). 

I f  we choose B so large that 6B/2>A/fl ,  we may combine (3.4) and (3.8) to obtain 

F2(o), T) => min (do/2, a0/(2B)) if T > 1, 

Thus the proof  is complete. 

Corollary 3.2. Under the assumptions of  the lemma limr_ = FI(T, o9) is bounded 
away from zero for toe S "-1, i.e. the expression in the right member of(3.3) is bounded 
away from zero. 

Note that the last statement is an immediate consequence of (3.3) if p(  0 is a 
trigonometric polynomial, i.e. the sum (3.1) is finite. 

Actually we shall need below an estimate for the mean of ]P(0[ on a more 
general set of  line segments. If  p (O is a trigonometrical sum of the form (3.1) and 
A => 1 we set 

c a ( i )  = ]p(r CER". 

Lemma3.3.  Assume that for no ogE S "-~ the function t~p(t~o) is identically 
zero. Then, as A - ~  Ga(~) tends tO infinity uniformly for I~[ >- 1, hence in particular 
there exists an A such that 

Ga(O>= 1 for [r --> 1. 

Proof. Applying Lemma3.1 to the function r ( O = p ( O p ( - ~ )  we obtain, if 
sup ]p(O]<- C, 

1 T 
0 < ~ <-- 2 - T f - r  IP(ta))P(--tog)Idt 

C T C o C T 
<= Ip(tog)[ dt +--ff f _rlp(-to))l dt = T f o Ip(t~ 

Hence, if [~[=>1 and T > I ,  

1 / ,A I~1 . 1 rt~l  
GA(O = A .--j-~l~ J o ]p(tU[r c t t - - ~ [ j o  lp(t~/]~[)[ dt => A(a/C)- -C.  

Taking A sufficiently large we obtain the desired result. 
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4. Wiener algebras of measures 

For  the proof  of Theorem 2.2 we need to know that a certain closed subalgebra 
B of  M(R") has the following property: every aEB, whose Fourier transform is 
bounded away from zero is invertible as an element of  B. The well-known example 
of  Wiener and Pitt [22] shows that the full algebra M(R") does not have this property 
(see [10], w 32). However, here we will consider a somewhat stronger property, which 
is more natural from ring-theoretic point of view. Denote by (o-1 . . . .  , a,) the ideal 
in B generated by al ,  ..., or. We will always assume that B is a closed subalgebra 
of  M(R") with unit. We shall say that B is a Wiener algebra, if the following condi- 
tion is satisfied 

(4.1) if ajEB, j = l  . . . . .  r, and ~ = l l ~ j ( ~ ) l = > e > 0  for all ~ER", then (o'x . . . . .  a~)=B. 

I f  V is an affine subspace of  R" we denote by L~. the set of elements of M(R") 
which are supported by V and are absolutely continuous with respect to the surface 
measure on V. Let Ao=Ao(R") be the set of  all finite sums of elements of any of  
the sets L~,, VcR"(0_<-dim (V)<=n), and let A=A(R") be the smallest closed 
algebra containing A0. Note that A0 is a (non-closed) subalgebra of  A. 

The result which we need can be formulated as follows. 

Theorem 4.1. (Varopoulos [21]). A is a Wiener algebra. 

Varopoulos proves in fact a result about general locally compact groups, which 
contains Theorem 4.1 as a special case. An extension of Theorem 4.1 in a different 
direction was obtained by Bj6rk [2], who proved that if A,n is the set of  all finite 
sums of absolutely continuous measures with respect to surface measures on arbitrary 
real analytic manifolds, then the closed algebra .4,, is a Wiener algebra. 

Since Varopoulos' paper is not  very easy to read, we have included a proof  of 
Theorem 4.1 here. 

Let us recall some basic notions from the theory of Banach algebras. We denote 
the maximal ideal space of  a Banach algebra B by ~'B. The elements of J/n may 
be considered as multiplicative linear forms on B. Considering ~4/~ as a subset of 
B*, the dual space of  B, we may provide Jgn with the topology induced by the weak- 
star topology on B*. I f  B is a subalgebra of M(R") there is a natural mapping 
zc: R"-~c//B induced by the Fourier transform: for ~ER", zr(~) is the linear form 
.-~(~). 

We shall use the well known fact that B is a Wiener algebra if and only if zc (R") 
is dense in JgB. For  the proof  one observes that (4.1) can be formulated 

ajEB, Z~=I l#J(r => ~ > 0 =~ Z~=112(~ > 0 for every )~E~',. 

We refer the reader to [10] for details. 
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Let B be any closed subalgebra of  M(R") containing L 1 (R"). Then the follow- 
ing holds: 

(4.2) i f  7E Jgn does not annihilate La(R"), then there exists OE R" such that 7(p)= 
~(0) for all pEB. 

To prove the statement consider first the restriction 7o of  7 to L~(R"). By a well- 
known theorem Vo(f)=f(O),fELX(Rn), for some OER ~. Next let #EB and choose 
fELI(R ~) such that f(O)r Then, since g - - # . f E L I ( R  ~) we have both v (g )=  
~,(O)=~(o)f(o) and 7(g)=7(#)f(O), which proves the statement. 

Finally we shall need the following lemma. 

Lemma4.2.  Let a S  R", j = l ,  . . . , s  be linearly independent over the set Q of  
rational numbers. Then the set of  all ~IE R ~, such that the numbers 

(q, aj}, j =  1 . . . .  ,s ,  

are linearly independent over Q, forms a dense subset of  R ~. 

Proof. For each non-zero q=(ql . . . . .  qs)EQ s, let Fq be the set of  all qER" 
which are orthogonal to ~ = a  qjaj. Since the latter vector is different from zero 
by the assumption, Fq must be a hyperplane. Since QS is denumerable, the set 

F---- u {Fq; qEQ~\0} 

has no interior point by the Baire category theorem. But the set of t/ mentioned 
in the lemma is equal to the complement of  F, hence the proof  is complete. 

Proof of  Theorem 4.1. It  is enough to prove that n(R ") is dense in ~A.  Let 
7 be an arbitrary element of  ~'A, let /fi, ...,/~,EA, and let e>0 .  Our task is to 
find ~ER" such that 

(4.3) iT(pj)-/~j(~)l < e, j = 1 . . . . .  r. 

We may assume that all #jEA0. It is even enough to prove (4.3) for arbitrary e > 0  
and arbitrary/~j of the form 

pj = f j . f , j ,  

where fjEL~:j, Kj some linear subspace of  R", and ajER'. 
Let P~ be the set of all subspaces K c R "  such that 7 does not annihilate all 

of  L~. We claim that P~ contains a largest element. In fact, let H~EPv, i=1 ,  2, 
L ~ a and let v~E H,, V(Vi) ~0" Then v=va.v2EL~+z~,, and 7(v)~0.  Hence Pv is 

closed under the operation of  forming linear hull of subspaces. To construct the 
largest element of P~ we need now only take any element of  P~ with largest dimension. 

Denote by H the largest element of P~. Assume that Kj = H for j =  1 . . . .  , s 
and K j e H  for s<j~=r. Then by (4.2) there exists 0ER" such that 

]' (Pi) --- fJ (0) 7 (6,j) for 1 -<_- j <_- s, 
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Furthermore 7(/t3)=0 for j > s  by the choice of H. Set ~ = 0 + q  where t/ is a 
vector orthogonal to H, which will be chosen later. Then fj(O+tl)=fj(O) for j<-s, 
hence 

fij(~) = f j ( 0 )  exp( - - i (0+t / ,  aj)), j <-- s. 

Hence it is enough to find t/ such that 

(4.4) 17(6 , ) - -exp( - i<0+t / ,  aj))] < ~, j <= s, 
and 
(4.5) Ifj(0+t/)[ < e, j > s. 

Multiplying (4.4) by exp (i(O, aj)) we get 

(4.6) [71 (6,)  - exp (-- i<t 1, aj))l < ~, 

where 71(3.) is defined by 
71(6,) = ei<O'a>7(3a), aCR". 

But 71(3,)=1 for all aEH by (4.2) and the choice of H. Hence the expression 
on the left hand side of  (4.6) depends only on the residue class ~j of  aj in R"/H. 

Since both ~7" (6 , )  and ~ e x p  (-i<q, a)) are group homomorphisms from 
R"/H into the circle, it is easy to see that it is enough to prove (4.6) for arbitrary 
e > 0  and for arbitrary aj such that ~3, J =  1 . . . .  , s are linearly independent over Q. 
Next we note that, by an obvious modification of Lemma 4.2, the set E of all t/EH • 
( =  orthogonal complement of  H)  such that <t/, a j), j =  1 . . . .  , s, are linearly inde- 
pendent over Q forms a dense subset of  H • (Note that the canonical isomorphism 
between R" and its dual identifies H • with the dual of R"/H.) Hence we may choose 
qoCH • c~E such that 

t/oeK~-, s<j<=r.  

Indeed, since K j e H  for j > s ,  we have K~-~bH • i.e. H •  is a proper 
subspace o f H  • for each suchj.  Set <t/o , aj)=c~j,j<s, and let cj be arbitrary com- 
plex numbers such that [cj]= 1. Since the aj are linearly independent over Q, it 
is well known that we can choose tER such that 

Ici--e-it'J] < ~, j <- s 

(cf. [11], p. 60). There exists in fact arbitrarily large t with this property. Taking 
c j=71(3 , )  and t/=tqo we obtain (4.6). Moreover, since tlo~K ~, j>s ,  we have 

lim f j  (0 + tt/0) = 0, j > s. 

Hence (4.5) is satisfied if t is sufficiently large. This completes the proof  of Theo- 
rem 4.1. 
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5. Proof  of Theorem 2.2. 

In this section we complete the proof  of Theorem 2.2 using the results of  Sec- 
tions 3 and 4. 

Assume that 27 satisfies (S) and (T). Since K(27) is an ideal and K(2~) is invariant 
under dilation, it is enough to prove that K(I~) contains a measure rr such that ~(~) = 1 
outside some compact set. It is even enough to prove that/~(2;) contains an element 
which is invertible outside some compact set. 

Assume first that all the elements of  ,~ are discrete measures and that n_->2. 
By (T) K(Z) must contain a discrete measure tr such that ~(~)=>0 and 

(5.1) {8(u~); u > 0} has no common zero on R"\{0};  

we may for instance take # ( r  #J(~)~i(r Define ~ by 

(5.2) ~(r = f ~  #(ur du. 

Clearly ~EK(2;). By Lemma 3.3 0(4) is bounded away from zero outside some 
compact set if B is large enough, Moreover, we claim that Q belongs to the algebra 
A considered in Section 4. To see this it is enough to consider the case when a is a 
Dirac measure 6, for some aER". But in this case QEL~ where V is the line 
{ta; t(R}, which proves the assertion. By Theorem 4.1 A is a Wiener algebra. Thus 
~(r is invertible outside a compact set. This completes the proof  of Theorem 2.2 
in the case when all the elements of  2; are discrete. 

Next we consider the case when 22 is arbitrary satisfying (S) and (T) and n_->2. 
Then /((Z) must contain a measure of  the form o-=ao+a l ,  where al(L](R"), 
#o=>0 and ao satisfies (5.1). For  instance the measure a defined by 

(5.3/ 

is easily seen to have these properties. Again defining Q by (5.2) and choosing B 
large we get ~ =  00+ ~1 where ~o is invertible outside a compact set and QaC LI(R"). 
Hence ~ is also invertible outside a compact set. 

Finally we consider the case n = 1; in this case we have no structural assump- 
tion (S). Again we write aJ=tr~+tr{, where o-~ is the discrete part of a "i, and define tr 
by (5.3). The only problem is that ~{ and t h may not belong to La(R). But (T) is 
easily seen to imply that o-=c60+2, where c r  and 2 is free from mass at the 
origin. This in turn implies that ~, defined by (5.2), will have the form ~o=b60+Px , 
where b e 0  and plELI(R). This completes the proof. 
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6. Applications to moduli of continuity of higher order 

The  r ta order  modulus  o f  continuity cot( f ,  t) m a y  be defined as follows. Fo r  
zER"\{O}, let A z be the measure  6~-6o, and for  r posi t ive integer set A ~ = A , ,  ... 
�9 A~ (r factors). Then  set for  f ~ ( R " )  

~ r ( f , t )  = sup {llA~z*fJl; zER", [z I <= t}, t > 0 .  

The  following propert ies  of  (o ,(f ,  t) are well-known. F o r  any  B there exists a con- 
stant CB such tha t  

(6.1) co,(f, Bt) <= C, og~(f, t), t > O. 
Moreover ,  if r<s 

(6.2) e)r(f, t) =~ Ctr(f~u-r-lCOs,~,tr u) du+[Ifll), 0 <  t <  1. 

The  constants  are independent  o f f ,  but  depend on r and n. Fo r  r>s  there is the 
trivial est imate co~(f, t)-<_2"-~e)s(f, t). The  inequalities (6.1) and  (6.2) for  n > l  
are immedia te  consequences o f  the same inequalities for  n - -1 .  Fo r  the latter case 
proofs  are given in [19], Section 3.3.2. I t  m a y  be noted  that  for  n =  1 (6.1) is a special 
case o f  Corol la ry  2.5, and (6.2) is a special case o f  Corol la ry  2.4. 

We will now consider some al ternative definitions o f  og~(f, t). Let  Aj be the 
difference measure  with respect to t h e j  th variable,  i.e. Aj = 6 e j -  r where  el . . . . .  e, 
is the natural  basis in R", and set A ~ = A ~ . . . . . A ~ .  for  any mult i index ~=(~1 . . . .  , ~,)- 
F o r  any positive integer r set 

= = 

Then  S, is a finite subset o f  M(R") and we m a y  consider the generalized modulus  o f  
continuity o9~ ( f ,  t). 

Theorem 6.1. The moduli of continuity o~ and oJs, are equivalent in the sense that 

(6.3) C - ~ o ) , ( f ,  t) ~ e)z,(f,  t) ~ Co),(f ,  t), t > 0, 

for some constant C, depending only on r and n. 

Before we prove  this theorem we shall consider still ano ther  way  of  defining 
ogr(f, t). This t ime we want  to use a finite n u m b e r  o f  directional derivatives of  order  
r. Let  E be a finite subset o f  the unit  sphere S " - ~ c R "  and set F , ( E ) =  {A~; zEE}. 
We shall prove  the following statement.  

Theorem 6.2. The moduli of  continuity r and o~z (e ) are equivalent in the 
sense that 

(6.4) C-l(or(f ,  t) ~ ~Or,(~)(f, t) <= Cogr(f, t), t > O, 

i f  and only i f  the set of  homogeneous polynomials in ~1 . . . . .  ~,, 

(6.5) {(z, ~)~; zE E} spans the vector space of all homogeneouspolynomials of  degree r. 
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Proof of Theorem 6.1. Let us first compare Ogr,(E ) and ~o~. It is easily seen 
that •, satisfies the condition (T) of Section 2, and that F,(E) satisfies the same 
condition if and only if 

(6.6) E spans R" as a vector space. 

It is also clear that J0 (Z,) and J0 (F, (E)) are generated by a finite number of homogene- 
ous elements. Hence Corollary 2.6 implies that 

(6.7) C-lcozr(f, t) <= Ogrr(E)(f, t) <= Cog~r(f, t) 
if and only if 

(6.8) J0(Z,) = Jo(F,(E)). 

The set of monomials {~; la[=r} forms a set of generators for Jo(Sr), and simi- 
larly {(z, r z~E} forms a set of generators for Jo(F,(E)) (cf. (6.9) and (6.10) 
below). Thus it is obvious that (6.5) implies (6.8). Conversely, if (6.8) holds, then 
for any zEE there exists h~EiQo(R") such that (z, ~)r= ~1~ I=, ~h~(r Since h~ 
are continuous this implies (z, ~ ) ' = ~  ~'h~(0), i.e. (6.5) holds. 

To prove the second inequality in (6.3) we now choose any finite set E such 
that (6.7) holds and then observe that the second inequality of (6.4) is trivial. To 
study the first inequality we take an arbitrary zE S n-1 and set z=A~; we need to 
prove that 

og~(f, t) _--< Cogx,(f, t) 

for some C independent of z. Partition z in ~ the usual fashion ~ : t O+ ~ l  where r 
for I~l>l and r for 1~]<1/2. By Corollary2.6 (or Corollary2.3 combined 
with Corollary 2.5 if you prefer) we have r t)<:Cwx~(f, t). To verify that C 
may be chosen independent of z we choose ~u such that /~=0 near the origin and 
/~ :  1 for 141 >1,  estimate t% in terms of r and observe that t~=tl/~. It remains 
to estimate r where 

~o(~) = q/(~)2~(~) = ~(~)(e -'(~,r 1) ~ 

and ~ is infinitely differentiable and vanishes for 1r It will be enough to 
show that 

(6.9) e0(r = ZI,I=,  ~,(~)z~(r , 

for some measures ~ whose norms are bounded with respect to z6 S n-a. That 
this is possible is rather obvious for continuity and compactness reasons, but we 
prefer to give an explicit estimate as follows. First observe that we can easily con- 
struct measures ~. such that []zr~llM<_--C and 

(6.10) (z, ~)' = ZI,I=,  ~,(r162 

In fact we can take ~,(~) as constant functions. Finally, to pass from (6.10) to (6.9) 
we observe that the,function h(v)=(exp ( - iv ) - l ) /v  is infinitely differentiable on 
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R and h(v)r for Iv]<_-l, hence ip(~)~/z]~(~) is infinitely differentiable, and 

similarly 
~o(Ol(z, ,~>" = 4, (~) h ((z, ~>)" 

is infinitely differentiable and has bound 2~t(R")-norm. This completes the proof  
of Theorem 6.1. 

Proof of  Theorem 6.2. We have already seen that (6.5) is a necessary and suffi- 
cient condition for (6.8). Hence the assertion follows from Theorem 6.1 together 
with Corollary 2.6. 

As a natural generalization of the higher order moduli of  continuity o2, one may 
consider o2~, where cr is an arbitrary finite sum 

(6.11) a -- ~'k=l r Obk, 

O~k~R , bk~R", ~ '~k=0 .  Using the reformulation of the condition (T) given after 
Theorem 2.2 it is easy to check whether a given a satisfies (T). To describe J0(cr) write 
8 = ~ 1  qJ, where qj is homogeneous of degree j.  By the proof  of  Proposition 2.7 
]0(tr) is generated by ql . . . . .  qN for some N. Let us give one example of  the appli- 
cations of  Corollary 2.6 to this situation. We claim that if a is an arbitrary measure 
of the form (6.11) satisfying (T), then 

o2,(L t) <- co2~(f, t) 

for r sufficiently large. To prove this we need only check that J0(~ , )cJ0(o  ). It is 
enough to prove the corresponding inclusion between ideals in the ring P of poly- 
nomials. Let I ,  be the ideal in P generated by ql, q2 . . . . .  and let L be the ideal of 
all polynomials vanishing at the origin. We have to prove that L~cI~, if r is large 
enough. But this follows from Hilbert's Nullstellensatz, because the assumption (T) 
means that the ideal I ,  has no common zero other than the origin. 

I f  n =  1 we can easily analyze a more general situation than the preceding 
one. Let tr be an arbitrary element of M(R) with compact support and non-vanishing 
discrete part. Then # is real analytic, so that J0(t0 must be generated by ~", where 
r is the order of  the zero of #(r at r  hence w~ is equivalent to o2,. 

We will now consider LP-moduli of continuity of  higher order. Define for 
fELP(R ") ( l<_p< ~o) 

o2r,,(f, t) = sup {IIA~*fIILP; lzl <- 1}. 

We wish to compare o2,,p with the generalized moduli of  continuity o2r,,p and o2r, cE).p. 
We note first that Theorem 6.1 is valid for 1 <=p< oo as well. This is an immediate 
consequence of  the remark after Theorem 2.2 and the arguments in the proof  of 
Theorem 6.1. However, concerning o2r,(E).p the situation changes radically as we 
turn to the case p <  oo. In fact we have the following theorem 
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Theorem 6.3. Assume l < p < ~ .  Then r and COr (E),p are equivalent in the 
sense that 
(6.12) C-l~or, p(f, t) <= Ogr,(~)(f, t) <= Cog~,p(f, t) 

i f  and only i f  E spans Rn as a vector space. 

Proof. The necessity of  the condition is obvious. The second inequality is 
trivial (for any E). To consider the first inequality assume E spans R". Working as 
in the proof  of Theorem 6.1 we define ~, Zo, and Zl and estimate ~,~,p using Corol- 
lary 2.6 and the remark after Theorem 2.2 (this remark applies of  course also to 
Corollary 2.5). It  remains to estimate co,0,p. In doing this we may assume that 
E =  {A~ . . . . .  A,}. Let rap(R") denote the set of  multipliers on LP(R"). It is enough 
to prove that there exist functions hiEmp(R") such that 

~o(4) = Z ? ~  hi(4)3f(~). 

Reasoning as in the proof  of  Theorem 6.1 we see that it is sufficient to find hie mp (R") 
such that 

(Z, ~)r = Z;=I  hi(r (6.13) 

Let us choose 
hi(i) = (z, y~rCr/~n 42, 2 /  i t ~ - a i = l  i " 

Then (6.13) holds. To see that hiCmp(R") for l < p < ~  we observe that hl are 
infinitely differentiable outside the origin and positive-homogeneous of  degree zero 
(see e.g. Theorem 6.1.6 in [1]). Noting that the mp(R")-norm of  h can be estimated 
in terms of 

sup{[D'h(4)[; [4[ : 1, I~l <- n + l }  

we conclude that in fact C can be taken independent of  z for tzl----1. This com- 
pletes the proof. 

7. Applications to degree of approximation 

In this section we study the approximation process f -~l~(o,  f where p is a 
kernel in M(R") with integral equal to 1. We want to compare the order of  mag- 
nitude of I l f - p ( o * f l ]  as t ~ 0  with that of the moduli of continuity co,(f, t). 

We first formulate a so-called direct theorem. 

Theorem 7.1. Let ItE LI(R"), f d#= 1, 
the estimate 

(7.1) II~(o*f-f[I ~ Cr t), 

and let r be a positive integer. Then 

t > O ,  fEC(R"),  
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holds i f  and only if 
(7.2) 1 --/~E Jo(2~,). 

Furthermore, if  1-fz  satisfies (2.12)for some real ~, O<~/<r, then 

(7.3) Illz~o.f-fll<=ctv f ~ u - V - l o ~ ( f , u ) d u ,  t > 0 ,  fEC(Rn). 

Proof. The direct part of  the first statement follows from Corollary 2.3, the 
second statement from Corollary 2.4. The converse part of the first statement 
follows from Corollary 2.6. Note that J0(Z,) is generated by the set of  homogene- 
ous polynomials {~; I~l--r}. 

The condition (7.2) is usually very easy to verify in specific cases. If/~ is ( r -  1)- 
times continuously differentiable near the origin, then it is obviously necessary for 
the validity of(7.2) that all derivatives of  1 - /~  of  order < - r -  1 vanish at the origin. 
If /~ is s-times continuously differentiable, where s>r+(n/2), then this condition 
is also sufficient. 

In formulating the inverse theorem it is convenient to introduce the "modulus 
of  approximation" Ek(f,  t) for kELa(R ") and f k(x)dx= 1 

Ek(f, t) : 09Oo_k(f, t) 

= sup {llk<,)*f-fll; 0 < u < t}, t > 0. 

Theorem 7.2. Let kELI(Rn), f kdx=l ,  and let r be a positive integer. Then 
there exists a constant C, such that 

o~,(f, t) <= ct" f~ . , - ' - lEk  tj,rr u)du, t > 0 ,  fE  r (7.4) 

Moreover, if 

(7.5) Yo(S,) c Yo(~o-~, 

i.e. i f  the ideal in )91o(R") which is generated by the set of functions {1 -k(t~)}t> 0 
contains all homogeneous polynomials of degree r, then 

(7.6) co,(f, t) <: CEk(f  t), t > 0, fE  r 

Proof. Let 2 ; = { 6 0 - k  } and let z be any of  the measures A~E27r, [~I--r. The 
measure 6o-k  obviously satisfies (S) and (T), and A" satisfies (2.12) with ~,=r. 
Thus we obtain (7.4) from Corollary 2.4. Similarly, the second statement of  the 
theorem follows from Corollary 2.3 together with (6.1). 

Remark. I f  ]o(Oo-k) is generated by a finite number of  positive-homogene- 
ous functions, then Corollary 2.6 shows that (7.5) is in fact also necessary for the 
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validity of (7.6). We can also state, without any extra condition on k, that 

sup I1 -k:(ur f 
O < u < l  

must be bounded in some neighbourhood of the origin if (7.6) holds (cf. (2.17)). 
We wish to point out that it is much easier to prove Theorems 7.1 and 7.2 

directly than to prove the more general Theorem 2.2. This is so because the hardest 
part of Theorem 2.2 is the inversion outside a compact set of a measure ~ of the 
form (5.2) under the conditions given in Theorem 2.2. And this step is quite easy 
if 27 = 2;, or Z = {6 o -  k}. 

In most applications the ideal J0(60-P) is easy to describe. In fact, assume that 

(7.7) /i(4) = 1 + q(~)h(~) 

near the origin, where q(r is a positive-homogeneous function in 3~r0(R" ) and 
hE37Io(R" ), h(0)#0.  Then J0(60-#) is generated by the single element q. The fol- 
lowing lemma is often useful. 

/.,emma 7.3. Assume that the measure Iz6 M(R") is positive, radial (i.e. depend- 
ing only on Ix[), that f d#=t ,  11#6o, and that f Ix[("I2)+3dp<~. Then the ideal 
J0(60-p) is generated by the single element I~] 2. 

Proof. The last assumption implies that /~C C t"m+3 (here C k denotes the set 
of k-times continuously differentiable functions). For symmetry reasons all first 
derivatives of/~ vanish at the origin. The same is true of all mixed second order 
derivatives. Positivity together with p #6o implies 0~(0)/0r - f x~dp<O, and 
by symmetry this quantity is independent o f j .  This shows that /2 near the origin 
has the form 

fi(~) : 1 --a [~[~(1 +r(~)), 

where a > 0  and r(0)=0.  Since OCC t"m+3 we have rCC t"lz]+a. This is known 
to imply that r(~) belongs locally to LI(R"). Thus we have shown that j2 satisfies 
(7.7) with q(~)_[~[2, which implies the statement of the lemma. 

Several kernels considered in the literature satisfy the conditions of the lemma. 
Let us mention for instance the kernels (appropriate normalizing constants are 
denoted by c,) c, exp (-]x[~), c, exp (-Ixl), the mean value kernels c, gB, and 
C, Xs,-1 (here XB- and gs,-1 denote the characteristic functions of the unit ball and 
the unit sphere, respectively). 

Let k be any kernel in LI(R n) satisfying the conditions of Lemma 7.3. Then 
first of all 3o(6o-k)=3o(Z2) if the dimension n = l ,  and ]o(3o-k)=]o(Z2) for 
any n. On the other hand, the converse inclusion is not valid if n > l ,  since for 
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instance the function ~14~ is contained in J0(Iz) but not in the ideal generated by 
[412. Thus for instance 

(7.8) oo2(f, t) <- CEk(f, t) 

holds for n =  1, but due to the remark following Theorem 7.2 this estimate does 
not hold for n >  1. Finally we note that the inclusion 

L(S . )  c L ( 6 0 -  k) 

holds for arbitrary n, since p(4)/]4{ 2 belongs to -Mo(R") for any homogeneous 
polynomial p in n variables of  degree 3. 

The assumptions of Lemma 7.3 also imply saturation of  order 2 and a charac- 
terization of the saturation class (see [4]). 

The Cauchy--Poisson kernel in n dimensions is defined by 

(7.9) k(x) = c,/(1 +x2) 1+"/2, 

where c, is chosen so that the integral of  k is 1. This kernel does not satisfy the last 
assumption of Lemma 7.3. Its Fourier transform is k ( r  (-14I), so that the 
ideal ]o(6o-k) is generated by the function I~[. Hence none of  the ideals J0(60-k)  
and J0(2;1) contains the other, and therefore none of Ek(f,  t) and oo(f, t) dominates 
the other. However, since Jo(,~)C]o(6o-k) we have 

oo2(L t) <- C fk ( f ,  t) 

and hence (or by Theorem 7.2) (7.4) holds with r =  1. Also, by Theorem 7.1 we 
have (7.3) for ? =  1 and any r. On the other hand, considering LP-norms, 1 < p <  ~ ,  
instead of supremum norms we get a different situation. In fact we have for 1 < p <  
with obvious notation and k(x) defined by (7.9) 

C-loo,(f ,  t) <-- Ek,,(f,  t) <= COop(f, t), t > O, TEL"(Rn). 

The reason for this is that the ideal in the ring of germs at the origin of elements of 
mp(R") generated by [41 coincides with the ideal generated by ~j, j = l ,  2, ..., n 
(cf. the proof  of  Theorem 6.3). 

Numerous estimates closely related to those of  Theorems 7.1 and 7.2 have 
been given in the literature for specific kernels and sometimes for various classes of  
kernels. In one dimension results of this kind can be found for instance in the book 
by Butzer and Nessel [9], where many references to earlier literature are given. As 
an example of  a text treating the several variable case we mention Nikol'skii's 
book [12]. 

Sharp results on trigonometric approximation of periodic functions are also 
easy to deduce from our general theorems. Denote by C* (R ") the set of  continuous 
functions on R", 2re-periodic in each variable. Let T,, be the set of trigonometric 
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polynomials in n variables of  total degree =<m, and set 

E * 0  e, m) = inf {[l/-pH; pET,.}. 

Then we have the following well-known result (see e.g. [19]). 

Theorem 7.4. (Jackson's theorem.) There exists a constant C depending only on 
r and the dimension n, such that 

(7.10) E * ( f , m )  <= Coot(f, l/m), m = 1,2, . . . ,  fEC*(R") .  

A strong inverse theorem for trigonometric approximation is SteEkin's theo- 
rem [17]. A several variable version of SteEkin's theorem is given in Timan's book. 
This result can be formulated as follows. 

Theorem 7.5. There exists a constant C depending only on r and the dimension, 
such that 

o9r(f, l /m)  <- C-~-7 ~ . '=o j r - lE*( f , j ) ,  fEC*(R"),  m = 1,2 . . . . .  

Proof o f  Theorems 7.4 and 7.5. Let K, be the cube in R" consisting of  all points 
such that l~ll+...+l~nl<--a. Take a function ~gELI(R ") such that ~EC =, t~= l  

in Kl/2 and ~ = 0  outside/s and set 2 = 0 o -  0. We claim that c~a(f, 1/m) has the 
same order of magnitude as E * ( f ,  m); more exactly 

(7.11) C-l~oa(f,  1/2m) _-< E*(f ,  m) <= o~z(f, 1/m), m = 1, 2, ... , fEC*(R"),  

for some C. To prove this note first that the function p,,=f*O(I/ , ,)  is 2~-periodic 
in each variable and that the Fourier transform in the sense of the theory of  distribu- 
tions of Pm satisfies /~m=f~(1/m), hence fi,,,=0 in the complement of Kin, since 
~(a/,o(~)=~(~/m) vanishes in that set. This shows that p~E T,,. Since f . 2 ( 1 / ~ ) =  
f -Pro the second part of (7.11) now follows. Let pETz  and set gt=2( t ) .p .  Then 
~, must vanish in the interior of Ka/2, since ).(t) vanishes in that set. But gt is also an 
element of  T,,, hence gt vanishes outside Kin. This shows that gt must be identically 
zero if 1/2t>m. Hence, if t < l / 2 m  and pETm 

ll2(,)*/If = 112(o * ( f  - p)]l <= ll2tlMilf - p[l, 

which proves the first inequality in (7.11). 
To complete the proof  of Theorem 7.4 we now invoke Corollary 2.3 with 

z = 2  and Z=2; , .  The basic assumption J0(2)cJ0(Z,)  is trivially fulfilled since 

J0 = {0}. 
To deduce Theorem 7.5 we use Corollary 2.4 with 2;= {2} and z equal to any 

one of  the elements of 2:,. From the estimate of % in terms of o~ z so obtained it is 
easy to deduce the desired inequality. 
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Intimately connected with (7.11) is a well-known estimate for Peetre's K-func- 
tional. Let us briefly describe the problem. For further information we refer the 
reader to [20] or [1] (Theorem 6.7.3). Letting Jl" II denote the supremum norm as 
above we define the norm 

[If tim = Ilf[t + sup IlO~fll 
l~l=m 

(we write D~=-D~x...D~ ., Dj=O/Oxi), and let A and B be the corresponding Banach 
spaces of continuous and C"-functions, respectively. The K-functional is defined 
for fEA by 

g ( f ,  t) = K(f ,  t; A, B) = inf{l[follWtllfllim; fo+f l  = f } ,  t >- 0. 

The estimate that we have in mind is 

C-~K(f,  t) ~ m,,(f, tx/m)+tllfll <= CK(f,  t), 0 < t < 1. 

It is quite easy to prove the second inequality. The first inequality, however, is 
usually proved by means of a rather complicated formula which defines a particular 
decomposition f= fo+Jl  (cf. [20] p. 78). We will give a simple proof of this 
estimate here. 

As in the proof of Theorem 7.5 take ~PEL~(R n) such that ~EC =, ~ = 1  for 
141<1, ~b=0 for  141>2, and set 2=60-~k. Set s = t  llrn and choose 

f0 = 2~s) *f;  f l  = f - f o  = r *f" 
Since ~. vanishes near the origin we have 

TIf0ll <-- og~(f, s) <= C%.(f,  s). 

To estimate IIf~lIm we take any multi-index ~, I~[=m, and observe that 

(7.12) D~fx = (D~ 4/(s)) * f  = s-mqg(,) *f, 

where ~0=D~.  Since ~(~)=(i~) '~(~) we have ~EJo(Z,,), and hence o9~Co9,,, 
Letting ~ vary we get from (7.12) 

t[IAIl~, <= ts-mc%(f, s)+tllfxll 

C~o,,(f, s)+Ct Ilfll, 
which completes the proof. 

8. Some further applications 

We will conclude by mentioning two more applications of the results and methods 
of this paper. 

In [16] an application to a problem on the modulus of continuity of holomorphic 
functions is described. Consider functions f continuous on the closed unit disc and 
holomorphic in the open disc. It was proved by Tamrazov [18] that the modulus of 



Equivalence of generalized moduli of continuity 99 

continuity of  f can be estimated in terms of  the modulus of  continuity of  its restric- 
tion fo to the boundary of the unit disc as follows 

~ ( f ,  t) <: Cog(fo, t). 

By contrast, it has long been known that for harmonic functions in the unit disc there 
is no better estimate than 

og(f, t) ~ c t  u-2og(fo,  u) du. 

Shapiro gives a new proof  of  Tamrazov 's  result using some of  the ideas of  this 
paper. This proof  shows that - -  after a transformation to a half-plane - -  the phe- 
nomena in question can be understood in terms of the behaviour at the origin of  
the Fourier transform of the kernel k(x)=(7c(1 +x2)) -1 associated with the Poisson 
kernel P ( x ,  y ) = ( 1 / y ) k ( x / y ) ,  y > 0 ,  xE R. 

Finally we wish to mention the extension of Theorem 2.2 to vector-valued 
measures, which is given in [6]. The purpose of  this extension was to obtain a new 
proof  and a new understanding of  a theorem on directional moduli of  continuity 
of  vector-valued functions given earlier by the author [3]. 

By making appropriate definitions it was possible to give the extension to the 
vector-valued case a formulation very similar to Corollary 2.3. For  instance, the 
condition that r belongs to the ideal J0(2;) in the ring ~r0(R" ) is replaced by the 
condition that the (germ at the origin of  the) vector-valued function ~ belongs to 
a certain submodule of the module 21~0(R") ~" over the ring )~r0(R" ). The submodule 
in question is constructed from the set Z of vector-valued measures in an analogous 
fashion as the ideal 30(Z ) is constructed above. 
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