Examples of \mathcal{L}_1 spaces*

W. B. Johnson** and J. Lindenstrauss***

In this note we present a class of new examples of simple but interesting \mathcal{L}_1 spaces. Let us first recall the definition of \mathscr{L}_1 spaces. A Banach space X is said to be an $\mathscr{L}_{1,\lambda}$ space for some $\lambda \ge 1$ if for every finite-dimensional subspace B of X there is a finite-dimensional subspace C of X containing B so that $d(C, l_i^n) \leq \lambda$ where $n = \dim C(d(U, V))$ denotes the Banach—Mazur distance between U and V. See [6] for details and also for the basic facts concerning $\mathscr{L}_{p,\lambda}$ spaces, $1 \leq p \leq \infty$). A Banach space is said to be an \mathscr{L}_1 space if it is an $\mathscr{L}_{1,\lambda}$ space for some $\lambda < \infty$. It is known (cf. [6]) that X is an $\mathscr{L}_{1,1+\varepsilon}$ space for every $\varepsilon > 0$ if and only if X is isometric to the space $L_1(\mu)$ for some measure μ . Consequently, there are up to isomorphism only two examples of separable infinite-dimensional spaces which are $\mathscr{L}_{1,1+\varepsilon}$ spaces for every $\varepsilon > 0$, namely l_1 and $L_1(0, 1)$. (Up to isometry there are countably many such spaces, according to the number of atoms of μ .) It is also known that there are \mathscr{L}_1 spaces which are not isomorphic to $L_1(\mu)$ spaces. In [4] a sequence of mutually non-isomorphic separable infinite-dimensional \mathscr{L}_1 spaces was constructed. It was not known however, till now whether there exist uncountably many different spaces of this type, or even if there are for a given $\lambda < \infty$, infinitely many mutually nonisomorphic separable and infinite-dimensional $\mathscr{L}_{1,\lambda}$ spaces. The examples presented here solve these problems. They also provide the first examples of separable \mathscr{L}_1 spaces which on the one hand do not embed in l_1 and on the other hand do not contain isomorphic copies of $L_1(0, 1)$.

Our construction here was motivated by a paper of McCartney and O'Brien [7]. In this paper the authors produced an example of a separable space which has the Radon—Nikodym property (R. N. property in short, see [2] for a detailed discussion of this property) but which does not embed into a separable conjugate space.

- ** Supported in part by NSF MCS 76-06565 and NSF MCS 79-03042.
- *** Supported in part by NSF MCS 78-02194.

^{*} Part of the research for this paper was conducted while the authors were guests of the Mittag-Leffler Institute, Sweden.

We noticed that a modification (and simplification) of the construction in [7] yields \mathscr{L}_1 spaces. The \mathscr{L}_1 spaces we obtain also have the R. N. property without being subspaces of separable conjugate spaces (such examples were constructed independently of [7] and at about the same time also by Bourgain and Delbaen [1]. The examples in [1] are \mathscr{L}_{∞} spaces).

The basic building blocks of our examples are the following spaces. Let $0 < \alpha < 1$ and let T be a quotient map from l_1 onto $L_1(0, 1)$. Let X_{α} be the graph of $\alpha^{-1}T$; i.e., the subspace $\{(\alpha x, Tx), x \in l_1\}$ of $(l_1 \oplus L_1(0, 1))_1$. The space X_{α} depends of course also on the special choice of T. We did not indicate T explicitly in the notation of X_{α} since the special form of T will be of no importance in the sequel. Moreover, from the isomorphic point of view X_{α} does not really depend on T. It was proved in [5] that there is an absolute constant K so that if T_1 and T_2 are both quotient maps from l_1 onto $L_1(0, 1)$ then there is an automorphism τ of l_1 with $||\tau||, ||\tau^{-1}|| \leq K$ and $T_1 = T_2 \tau$. The map $\varrho: X_{\alpha}(T_1) \to X_{\alpha}(T_2)$ defined by

$$\varrho(\alpha x, T_1 x) = (\alpha \tau x, T_2 \tau x)$$

is thus an isomorphism with $\|\varrho\|, \|\varrho^{-1}\| \leq K$.

We exhibit next some simple properties of the spaces X_{α} .

Proposition 1. a) There is a constant λ (independent of α and T) so that each X_{α} is an $\mathcal{L}_{1,\lambda}$ space.

- b) $d(X_{\alpha}, l_1) \leq (1+\alpha)/\alpha$ for every $\alpha > 0$.
- c) For every subspace Z of l_1 and every $\alpha > 0$, $d(X_{\alpha}, Z) \ge 1/2\alpha(1+\alpha)$.

Proof. a) The annihilator X_{α}^{\perp} of X_{α} in $(l_{\infty}^{\perp} \oplus L_{\infty}(0, 1))_{\infty}$ consists of all the vectors of the form $(-\alpha^{-1}T^*y^*, y^*)$ with $y^* \in L_{\infty}(0, 1)$. Since T^* is an isometry it follows that X_{α}^{\perp} is isometric to $L_{\infty}(0, 1)$. Since $L_{\infty}(0, 1)$ is an injective space (i.e., a P_1 space) there is a projection of norm 1 from $(l_{\infty} \oplus L_{\infty}(0, 1))_{\infty}$ onto X_{α}^{\perp} . Consequently, there is a projection of norm ≤ 2 from $(l_{\infty} \oplus L_{\infty}(0, 1))_{\infty}^*$ (which is an $L_1(\mu)$ space for some μ) onto $X_{\alpha}^{\perp \perp}$ (which is isometric to X_{α}^{**}). The desired result follows now from [6, Theorem II.5.7.]. It can be easily checked from the proof of that theorem that one can take as λ any constant larger than 10. (If one takes as T the "most natural" quotient map; i.e., the operator which maps the unit vectors e_{2^n+i} , $0 \leq i < 2^n$, $n=0, 1, 2, \ldots$ of l_1 to the vectors $2^n \chi_{[i^2-n, (i+1)^2-n]}$ of $L_1(0, 1)$ then a simple direct argument shows that X_{α} is an $\mathscr{L}_{1,2+\epsilon}$ space for every $\epsilon > 0$.)

Assertion b) follows by considering the isomorphism $x \rightarrow (\alpha x, Tx)$ from l_1 onto X_{α} . In order to verify assertion c) we note first that if $\{u_n\}_{n=1}^{\infty}$ is a sequence in the unit ball of $l_1 = c_0^*$ so that $||u_n - u_m|| \ge 2\gamma$ for some $\gamma > 0$ and every $n \ne m$, then every w^* limit point u of $\{u_n\}_{n=1}^{\infty}$ satisfies $||u|| \le 1 - \gamma$. Moreover, for every $\varepsilon > 0$, there is a sequence $\{n_k\}_{k=1}^{\infty}$ of integers so that $u_{n_k} = u + y_k + w_k$ with the $\{y_k\}_{k=1}^{\infty}$

$$\left\|\sum_{k=1}^{\infty}\lambda_{k}(u_{n_{2k}}-u_{n_{2k+1}})\right\| \geq (2\gamma-\varepsilon)\sum_{k=1}^{\infty}|\lambda_{k}|$$

for every choice of scalars $\{\lambda_k\}_{k=1}^{\infty}$.

Let now $r_n(t) = \text{sign sin } 2^n \pi t$, n = 1, 2, ... be the Rademacher functions on [0, 1]. Let $x_n \in l_1$ be such that $Tx_n = r_n$ with $||x_n|| \to 1$ as $n \to \infty$ and consider the vectors $v_n = (\alpha x_n, r_n) \in X_{\alpha}$. Then clearly $||v_n|| = 1 + \alpha + o(1)$ and $||v_n - v_m|| \ge 1$ for every $n \neq m$. Since (by Khintchine's inequality) the sequence $\{r_n\}_{n=1}^{\infty}$ in $L_1(0, 1)$ is equivalent to the unit vector basis in l_2 it follows that if $\{n_k\}_{k=1}^{\infty}$ and ϱ are such that $\sum_{k=1}^{\infty} \lambda_k (v_{n_{2k}} - v_{n_{2k+1}}) || \ge \varrho \sum_{k=1}^{\infty} |\lambda_k|$ for every choice of scalars $\{\lambda_k\}_{k=1}^{\infty}$, then necessarily $\varrho \le 2\alpha$. Assertion c) is an immediate consequence of this fact and the preceding observation.

As an easy consequence of Proposition 1 we get

Theorem 1. Let $1 \ge \alpha_1 > \alpha_2 > \dots$ be a sequence decreasing to 0 and let $Y = Y(\{\alpha_i\}_{i=1}^{\infty}) = (\sum_{i=1}^{\infty} \oplus X_{\alpha_i})_1$. Then

- (i) Y is an \mathscr{L}_1 space.
- (ii) Y has the Radon—Nikodym property.
- (iii) Y has the Schur property (i.e., a sequence in Y tends w to 0 only if it tends in norm to 0).
- (iv) Y is not isomorphic to a subspace of l_1 .
- (v) Y is not isomorphic to a subspace of a separable conjugate space.

Proof. Part (i) follows from Proposition 1a. Parts (ii) and (iii) follow from Proposition 1b and the easy and well-known fact that if $\{Z_n\}_{n=1}^{\infty}$ all have the R. N. property (resp. the Schur property) then the same is true for $(\sum_{n=1}^{\infty} \oplus Z_n)_1$. Part (iv) follows from Proposition 1c. Finally Part (v) is a consequence of (1), and (iv) in view of a result of Lewis and Stegall [3] which asserts that an \mathscr{L}_1 space which embeds in a separable conjugate space already embeds in l_1 .

We are going to prove next that by taking different sequences $\{\alpha_i\}_{i=1}^{\infty}$ in Theorem 1 we can obtain 2^{\aleph_0} many different isomorphism types among the spaces $Y(\{\alpha_i\}_{i=1}^{\infty})$. This is essentially a consequence of the fact that if $0 < \beta < \alpha$ with β much smaller than α , then it is impossible to embed X_{α} in X_{β} in such a way that there is a projection from X_{β} onto the image of X_{α} whose norm is substantially smaller than α^{-1} . A precise statement of this fact in a somewhat stronger form is the content of the following proposition.

Proposition 2. Let $0 < \beta < \alpha \le 1$, let S be an operator of norm $\le \beta$ from l_1 into itself with ker $S = \{0\}$ and let T: $l_1 \rightarrow L_1(0, 1)$ be a quotient map. Let Z be the subspace $\{(Sx, Tx); x \in l_1\}$ of $(l_1 \oplus L_1(0, 1))_1$. Then for every pair of operators U: $X_{\alpha} \rightarrow Z$, V: $Z \rightarrow X_{\alpha}$ such that VU = identity of X_{α} , we have $||U|| ||V|| \ge \alpha/(20\beta + 50\alpha^2)$. (Note that the same operator T is used in the definition of Z and X_{α} . This is done just for notational convenience and is of no significance in the proof.)

Proof. We assume, as we clearly may, that ||V|| = 1. Let $\{r_n\}_{n=1}^{\infty}$ be the Rademacher functions in $L_1(0, 1)$ and let $\{x_n\}_{n=1}^{\infty}$ be elements of norm ≤ 2 in l_1 so that $Tx_n = r_n$ for every *n*. Let $\{u_n\}_{n+1}^{\infty}$ be defined by the relation

$$U(\alpha x_n, Tx_n) = (Su_n, Tu_n).$$

As in the proof of Proposition 1c, we can find a sequence of integers $\{n_k\}_{k=1}^{\infty}$ and a constant σ so that if $v_k = u_{n_{2k}} - u_{n_{2k+1}}$ then $||Sv_k|| \leq 2\sigma$ for every k and $||\sum_{k=1}^{\infty} \lambda_k Sr_k|| \geq \sigma \sum_{k=1}^{\infty} |\lambda_k|$ for every choice of scalars $\{\lambda_k\}_{k=1}^{\infty}$. Putting $y_k = x_{n_{2k}} - x_{n_{2k+1}}$, we have

(1)
$$(\alpha y_k, Ty_k) = V(Sv_k, Tv_k).$$

Note that $||Ty_k|| = 1$ for every k (for future reference, note also that $||Ty_k - Ty_h|| \ge 1$ for every $k \ne h$). Also we have that $||\sum_{k=1}^n Ty_k|| = 0(\sqrt{n})$. Hence

$$n\sigma \leq \left\| \sum_{k=1}^{n} Sv_{k} \right\| \leq \left\| \left(\sum_{k=1}^{n} Sv_{k}, \sum_{k=1}^{n} Tv_{k} \right) \right\| \leq \\ \leq \left\| U \right\| \left(\alpha \sum_{k=1}^{n} \left\| y_{k} \right\| + \left\| \sum_{k=1}^{n} Ty_{k} \right\| \right) \leq \left\| U \right\| \left(4n\alpha + 0(\sqrt{n}) \right)$$

consequently, $\sigma \leq 4 \|U\| \alpha$, i.e.

(2)
$$||Sv_k|| \leq 8 ||U|| \alpha \quad k = 1, 2, ...$$

The sequence $\{Tv_k\}_{k=1}^{\infty}$, as any bounded sequence in $L_1(0, 1)$, can be represented (after passing to a subsequence if necessary) as

$$Tv_k = f_k + h_k$$
 $k = 1, 2, ...$

where $\{f_k\}_{k=1}^{\infty}$ is equi-integrable and even weakly convergent in $L_1(0, 1)$, the $\{h_k\}_{k=1}^{\infty}$ have disjoint supports and $|h_k| \wedge |f_k| = 0$ for every k. By passing to a further subsequence, if necessary, we may assume that the sequence $||h_k||$ is almost constant (up to a factor 2, say). Now it is well-known that $L_1(0, 1)$ has the Banach—Saks property; that is, every weakly convergent sequence in $L_1(0, 1)$ has a subsequence whose Cesaro averages are norm convergent. Thus by passing to a suitable subsequence of the v_k 's, we may assume that

$$\left\|\sum_{k=1}^{n}(-1)^{k}f_{k}\right\| = o(n).$$

By repeating the argument used to prove (2) (using $\sum_{k=1}^{n} (-1)^{k} v_{k}$ instead of $\sum_{k=1}^{n} v_{k}$) we get

(3)
$$||h_k|| \leq 8 ||U|| \alpha \quad k = 1, 2,$$

Since

$$||f_k|| \le ||Tv_k|| \le ||U|| \, ||(\alpha y_k, Ty_k)|| \le ||U|| \, (1+4\alpha) < 5 ||U||$$

and since T is a quotient map there are $\{z_k\}_{k=1}^{\infty}$ in l_1 so that $||z_k|| \leq 5 ||U||$ and $Tz_k = f_k$.

Let now $w_k \in l_1$ be such that

(4)
$$V(Sz_k, f_k) = V(Sz_k, Tz_k) = (\alpha w_k, Tw_k).$$

If the sequence $\{w_k\}_{k=1}^{\infty}$ is not a Cauchy sequence then by passing to a subsequence we may assume without loss of generality that there is a constant $\gamma > 0$ so that $||w_{2k+1} - w_{2k}|| \le 2\gamma$ for every k and $\left\| \sum_{k=1}^{\infty} \lambda_k (w_{2k+1} - w_{2k}) \right\| \ge \gamma \sum_{k=1}^{\infty} |\lambda_k|$ for every choice of scalars $\{\lambda_k\}_{k=1}^{\infty}$. By repeating the argument used to prove (2) and (3) (noting that ||V|| = 1 and $||Sz_k|| \le 5\beta ||U||$) we get that

(5)
$$||w_{2k+1} - w_{2k}|| \leq 20\beta ||U||/\alpha \quad k = 1, 2,$$

Clearly (5) is also valid for large k if $\{w_k\}_{k=1}^{\infty}$ is a Cauchy sequence. We have for every k

(6)
$$\|T(y_{2k+1}-y_{2k}-w_{2k+1}+w_{2k})\| \ge \|T(y_{2k+1}-y_{2k})\| - 20\beta \|U\|/\alpha \ge 1 - 20\beta \|U\|/\alpha.$$

On the other hand, since ||V|| = 1 we get by (1) and (2), (3) that

$$\|T(y_{2k+1} - y_{2k} - w_{2k+1} + w_{k})\|$$

$$\leq \|S(v_{2k+1} - v_{2k} - z_{2k+1} + z_{2k})\| + \|T(v_{2k+1} - v_{2k} - z_{2k+1} + z_{k})\|$$

$$\leq \|Sv_{2k+1}\| + \|Sv_{2k}\| + \|Sz_{2k+1}\| + \|Sz_{2k}\| + \|h_{2k+1}\| + \|h_{2k}\|$$

$$\leq 32\alpha \|U\| + 10\beta \|U\| \leq 42\alpha \|U\|.$$

By combining (6) and (7) we get

$$\|U\| \ge \alpha/(20\beta + 50\alpha^2).$$

Theorem 2. Let $\alpha_n = (1/2)^{2^n}$, n=1, 2, ... and let $\{m_k\}_{k=1}^{\infty}$ and $\{n_k\}_{k=1}^{\infty}$ be two increasing sequences of integers. Then $(\sum_{k=1}^{\infty} \oplus X_{\alpha_{n_k}})_1$ and $(\sum_{k=1}^{\infty} \oplus X_{\alpha_{m_k}})_1$ are isomorphic if and only if the sequences are eventually equal, i.e. if there are integers $k_0 \ge 1$ and i_0 so that $n_k = m_{k+i_0}$ for every $k \ge k_0$. In particular, there are 2^{\aleph_0} many isomorphism types among the spaces of the form $(\sum_{k=1}^{\infty} \oplus X_{\alpha_n})_1$.

Proof. The "if" assertion is obvious. In order to prove the "only if" assertion it is enough to prove that if N_0 is a subset of the integers so that $n_0 \notin N_0$ then for every

$$(*) \qquad U: X_{\alpha_{n_0}} \to \left(\sum_{n \in N_0} \oplus X_{\alpha_n}\right)_1, \quad V: \left(\sum_{n \in N_0} \oplus X_{\alpha_n}\right)_1 \to X_{\alpha_{n_0}}$$

such that VU = identity of $X_{\alpha_{n_0}}$ we have $||U|| ||V|| \ge K/\alpha_{n_0}$ where K is an absolute constant.

Let us decompose N_0 into a union $N'_0 \cup N''_0$ where $N'_0 = \{n \in N_0, n < n_0\}, N''_0 = \{n \in N_0, n > n_0\}$. It follows from Proposition 1b that $d(l_1, (\sum_{n \in N'_0} \oplus X_{\alpha_n})_1) \le 1/\alpha_{n_0-1}$ and hence since $(\sum_{n \in N'_0} \oplus X_{\alpha_n})_1 = Z$ contains a subspace isometric to l_1 onto which there is a projection of norm 1 we deduce that $d(Z, (\sum_{n \in N_0} \oplus X_{\alpha_n})_1) \le 4/\alpha_{n_0-1}$.

Each X_{α_n} can be represented as $\{(\alpha_n x, T_n x); x \in l_1(n)\}$ where $l_1(n)$ is isometric to l_1 and where T_n is a quotient map from $l_1(n)$ onto a space $L_1(0, 1)(n)$ which is

isometric to $L_1(0, 1)$. The space $(\sum_{n \in N_0''} \oplus l_1(n))_1$ is isometric to l_1 , the space $(\sum_{n \in N_0''} \oplus L_1(0, 1)(n))_1$ is isometric to $L_1(0, 1)$ and the map $T: (\sum_{n \in N_0''} \oplus l_1(n))_1 \rightarrow (\sum_{n \in N_0''} \oplus L_1(0, 1)(n))_1$ defined by $T|_{l_1(n)} = T_n$ is a quotient map. Let S be the operator from $(\sum_{n \in N_0''} \oplus l_1(n))_1$ into itself defined by $S|_{l_1(n)} = \alpha_n \cdot \text{identity}$. It is clear that

$$Z = \{ (Sy, Ty); y \in (\sum_{n \in N''_0} \oplus l_1(n))_1 \}$$

and that $||S|| \leq \alpha_{n_0+1}$. Hence, by Proposition 2 for every U and V as in (*) we get

$$\|U\| \, \|V\| \ge \alpha_{n_0-1} \alpha_{n_0} / 4(50\alpha_{n_0}^2 + 20\alpha_{n_0+1}).$$

The desired result follows now from our choice of the sequence $\{\alpha_n\}_{n=1}^{\infty}$.

To conclude this paper, let us recall the following result from [4]. If X is a separable \mathscr{L}_1 space and if $U: l_1 \to X$ is a quotient map then ker U is an \mathscr{L}_1 space which determines X uniquely (i.e. if $U_1: l_1 \to X_1$, $U_2: l_1 \to X_2$ are quotient maps and X_1 and X_2 are \mathscr{L}_1 spaces then $X_1 \approx X_2$ if and only if ker $U_1 \approx \text{ker } U_2$). Hence from Theorem 2 we can deduce that there are 2^{\aleph_0} many mutually non-isomorphic \mathscr{L}_1 subspaces of l_1 .

Remark. Recently Bourgain, Rosenthal, and Schechtman have constructed uncountably many separable \mathscr{L}_p spaces for $1 , <math>p \neq 2$. Their work also gives other new information about the structure of L_p ; e.g., their examples provide for $2 the first examples of subspaces of <math>L_p(0, 1)$ which do not contain isomorphic copies of $L_p(0, 1)$ and yet do not embed into $(l_2 \oplus l_2 \oplus ...)_p$.

References

- 1. BOURGAIN, J., and DELBAEN, F., A special class of \mathscr{L}_{∞} spaces, Acta Math., to appear.
- 2. DIESTEL, J., and UHL, J. J., Vector measures, Mathematical surveys n. 17, A.M.S., 1977.
- 3. LEWIS, D. R., and STEGALL, C., Banach spaces whose duals are isomorphic to $l_1(\Gamma)$, J. Functional Analysis 12 (1973), 177–187.
- 4. LINDENSTRAUSS, J., A remark on \mathscr{L}_1 spaces, Israel J. Math., 8 (1970), 80–82.
- 5. LINDENSTRAUSS, J., and ROSENTHAL, H. P., Automorphisms in c_0 , l_1 and *m*, Israel J. Math. 7 (1969), 227–239.
- LINDENSTRAUSS, J., and TZAFRIRI, L., Classical Banach spaces, Lecture Notes in Mathematics, n. 338, Springer-Verlag, 1973.
- 7. MCCARTNEY, P. W., and O'BRIEN, R. C., A separable Banach space with the Radon—Nikodym property which is not isomorphic to a subspace of a separable dual,

Received August 10, 1979	W. B. Johnson
	The Ohio State University
	and
	J. Lindenstrauss
	The Hebrew University of Jerusalem and The Ohio State University

106