
Examples of spaces* 
W. B. Johnson** and J. Lindenstrauss*** 

In this note we present a class of  new examples of  simple but interesting ~1 
spaces. Let us first recall the definition of  ~1 spaces. A Banach space X is said to 
be an ~l ,a  space for some 2 -> 1 if for every finite-dimensional subspace B of X 
there is a finite-dimensional subspace C of X containing B so that d(C, I~)_~2 
where n - -d im  C (d(U, V) denotes the Banach Mazur  distance between U and V. 
See [6] for details and also for the basic facts concerning Sap, a spaces, 1 <=p-<_ ~o). 
A Banach space is said to be an S~ space if it is an .oq'l. ~ space for some 2 <  ~.  It  
is known (cf. [6]) that X is an .L#~,I+, space for every e > 0  if and only if X is isometric 
to the space Ll(/z) for some measure/~. Consequently, there are up to isomorphism 
only two examples of  separable infinite-dimensional spaces which are Sal,l+~ spaces 
for every 5>0,  namely/1 and LI(0  , 1). (Up  to isometry there are countably many 
such spaces, according to the number of  atoms of/~.) I t  is also known that  there 
are ~1 spaces which are not isomorphic to LI(#) spaces. In [4] a sequence of mutually 
non-isomorphic separable infinite-dimensional ~e~ spaces was constructed. It  was 
not known however, till now whether there exist uncountably many different spaces 
of  this type, or even if there are for a given 2 < co, infinitely many mutually non- 
isomorphic separable and infinite-dimensional ~ ,  x spaces. The examples presented 

here solve these problems. They also provide the first examples of  separable ~e 1 
spaces which on the one hand do not embed in/1 and on the other hand do not 
contain isomorphic copies of  LI(0  , 1). 

Our construction here was motivated by a paper of  McCartney and O'Brien 
[7]. In this paper  the authors produced an example of  a separable space which has 
the R a d o n - - N i k o d y m  property (R. N. property in short, see [2] for a detailed dis- 
cussion of this property) but which does not embed into a separable conjugate space. 
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Mittag-Lettter Institute, Sweden. 
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We noticed that a modification (and simplification) of the construction in [7] yields 
s spaces. The s spaces we obtain also have the R. N. property without being 
subspaces of separable conjugate spaces (such examples were constructed independ- 
ently of [7] and a t  about the same time also by Bourgain and Delbaen [1]. The exam- 
ples in [1] are ~ spaces). 

The basic building blocks of our examples are the following spaces. Let 0 < e <  1 
and let T be a quotient map from /1 onto L~(0, 1). Let X~ be the graph of e-~T; 
i.e., the subspace {(ex, Tx), xEl~} of (/1@L1(0, 1)),. The space X, depends of 
course also on the special choice of T. We did not indicate T explicitly in the nota- 
tion of X, since the special form of T will be of no importance in the sequel. More- 
over, from the isomorphic point of view X, does not really depend on T. It was 
proved in [5] that there is an absolute constant K so that if/ '1 and T~ are both quotient 
maps from/1 onto LI(0, 1) then there is an automorphism z of/1 with []z[], [[z-x]l <~K 
and T~=T2z. The map ~: X~(TO~X~(T.~) defined by 

e (~x, Txx) = (~x ,  T~zx) 

is thus an isomorphism with It~11, I1~o-111 ~ g .  
We exhibit next some simple properties of the spaces X~. 

Proposition 1. a) There is a constant 2 (independent of ~ and T) so that each 
X~ is an .LPl, ~ space. 

b) d(X,,/1)<=(1+c0/~ for every c~>0. 
c) For every subspace Z of ll and every ~>0,  d(X~, Z)->l /2~( l+~) .  

Proof. a) The annihilator X~ of X, in (l~| 1))= consists of all the 
vectors of the form (--c~-lT*y*,y *) with y*EL=(O, 1). Since T* is an isometry 
it follows that X~ is isometric to L~(0, 1). Since L=(0, 1) is an injective space 
(i.e., a / ' 1  space) there is a projection of norm 1 from (l=| 1))= onto X~. 
Consequently, there is a projection of norm <=2 from (/~@L=(0,1))* (which is 
an L~(/t) space for some/z) onto X~ -~ (which is isometric to X~**). The desired result 
follows now from [6, Theorem II.5.7.]. It can be easily checked from the proof of 
that theorem that one can take as 2 any constant larger than 10. (If one takes as T 
the "most natural" quotient map; i.e., the operator which maps the unit vectors 
e~.+i, 0<=i<~- ", n=0 ,  1,2 . . . .  of 11 to the vectors 2"Z[~2_,,(I+1)~_. 1 of LI(0, 1) 
then a simple direct argument shows that X,/ is an s ~ space for every e>0.)  

Assertion b) follows by considering the isomorphism x~(~x,  Tx) from/1 onto 
X~. In order to verify assertion c) we note first that if {u,}~=l is a sequence in the 
unit ball of l~-c o so that []u,-u~][~27 for some 7>0  and every nCm, then 
every w* limit point u of {u.}~=~ satisfies Ilull <--1-~. Moreover, for every e>0,  
there is a sequence {n,}~=~ of integers so that U,=u+yk+w k with the {Yk}~=~ 
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having mutually disjoint supports and _~k=lt]Wkl[<e. In particular 

IlY2=,'.k(u~ >= (27- g) y~=112kl 
for every choice of scalars {2k}~= 1. 

Let now r . ( t )=s ign  sin 2n~t, n =  1, 2 . . . .  be the Rademacher functions on [0, 1]. 
Let x, Ell be such that Txn=r, with [[x~[I-~1 as n - * ~  and consider the vectors 
v,=(~x, ,  r,)CX=. Then clearly Ilv~[l=l+~+o(1) and ] [v , -vJ=>l  for every n # m .  
Since (by Khintchine's inequality) the sequence {r,}~= 1 in LI(0, 1) is equiv- 
alent to the unit vector basis in 12 it follows that if {nk}~=l and Q are such that 
Z~=I ,~(v.~ -v.=k+)ll =>~ Z:=I ['~k[ for every choice of scalars {'~k}k=l' then nec- 
essarily 0-<-2e. Assertion c) is an immediate consequence of this fact and the pre- 
ceding observation. II 

As an easy consequence of Proposition 1 we get 

Theorem l.  Let l~oq>o~2>.. ,  be a sequence decreasing to 0 and let 
Y= Y({%}~l)=(Z~21| X~,)I. Then 

(i) Y is an ~1 space. 
(ii) Y has the Radon--Nikodym property. 

(iii) Y has the Schur property (i.e., a sequence in Y tends w to 0 only i f  it tends 
in norm to 0). 

(iv) Y is not isomorphic to a subspace of  11. 
(v) Y is not isomorphic to a subspace of a separable conjugate space. 

Proof. Part (i) follows from Proposition 1 a. Parts (ii) and (iii) follow from Prop- 
osition lb and the easy and well-known fact that if {Z,}~= 1 all have the R. N. property 
(resp. the Schur property) then the same is true for (z~=~| Part (iv) follows 
from Proposition lc. Finally Part (v) is a consequence of (1), and (iv) in view of a 
result of Lewis and Stegall [3] which asserts that an s space which embeds in a 
separable conjugate space already embeds in/1. II 

We are going to prove next that by taking different sequences {ei}~=a in Theo- 
rem 1 we can obtain 2 ~0 many different isomorphism types among the spaces 
Y({ai}~'=~ ). This is essentially a consequence of the fact that if 0 < f l < a  with fl 
much smaller than a, then it is impossible to embed X~ in Xa in such a way that 
there is a projection from Xa onto the image of X~ whose norm is substantially smaller 
than a -L  A precise statement of this fact in a somewhat stronger form is the content 
of the following proposition. 

Proposition 2. Let 0<fl<~_-<l, let S be an operator of norm <=fl from ll 
into itself with ker S={0} and let T: Ix-+LI(O, 1) be a quotient map. Let Z be the 
subspace {(Sx, Tx); xEl~} of  (I~| 1))1. Then for every pair of  operators 
U: X~+Z, V: Z ~ X ,  such that VU=identity of  Xg, we have [I U[I II VII--> 
~/(20B + 50o~). 
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(Note that the same operator T is used in the definition of  Z and X~. This is 
done just for notational convenience and is of no significance in the proof.) 

Proof. We assume, as we clearly may, that Jl V][ = 1. Let {r,}~= 1 be the Rade- 
macher functions in LI(0, 1) and let {xn)~= 1 be elements of norm <-2 in ll so that 
T x , = r  n for every n. Let {un}~+ 1 be defined by the relation 

U(ctx,, Tx , )  = (Sun, Tun). 

As in the proof  of Proposition lc, we can find a sequence of integers {nk}k= 1 and a 
constant a so that if vk=u,,  k -  u,,k+ 1 then [[ SVk[ ] <--2a for every k and [[~k=l 2k Sl~ [] :> 
a ~k=l  [2k] for every choice of scalars {2k}k= a. Putting yk=Xn2--Xn~§ we have 

(1) (~y~, Ty~) = V(Sv~, Tv3. 

Note that [[ Tykll = 1 for every k (for future reference, note also that II Tyk-- Tyh[] >---- 1 
for every k~=h). Also we have that [[~,k=X TYk[[=O(]/n)" Hence 

<- + II LiTy ll)<- ,IVJl(4n +0(  ) 
consequently, ~<--41]U]I~, i.e. 

(2) IlSv~[l <- 8llUli~ k = 1,2, . . . .  

The sequence {Tvk}~= 1, as any bounded sequence in LI(0, 1), can be represented 
(after passing to a subsequence if necessary) as 

TVk = f k + h  k k =  1 ,2 , . . .  

where {fk}k=l is equi-integrable and even weakly convergent in LI(0, 1), the {hk}k= 1 
have disjoint supports and [hk]A [fk]=0 for every k. By passing to a further sub- 
sequence, if necessary, we may assume that the sequence ][hkl] is almost constant 
(up to a factor 2, say). Now it is well-known that LI(0, I) has the Banach--Saks 
property; that is, every weakly convergent sequence in LI(0 , 1) has a subsequence 
whose Cesaro averages are norm convergent. Thus by passing to a suitable sub- 
sequence of the Vk'S , we may assume that 

II_ ;:l(-1)v ll = o(n). 
By repeating the argument used to prove (2) (using ~'k=l (--1)kVk instead of  

~2=1 Vk) we get 

(3) IIh~ll <-811U[l~ k =  1,2 . . . . .  
Since 

Ilfktl <- liTVkll <- llUll [I(~Y,, Tyk)II <- llUll (1 +4c 0 <= 511Ult 

and since Tis a quotient map there are {zk}~= 1 in/1 so that IIz~ll <=5 II ull and ; r~=A.  
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Let now WkEl 1 be such that 

(4) V ( S z k , f k )  = V (Szk ,  Tzg) =- (C~Wk, Twk). 

If  the sequence {WR}~~ is not a Cauchy sequence then by passing to a sub- 
sequence we may assume without loss of generality that there is a constant V>0 
so that [[W2k+l--W2k[[~Zy for every k and ][~~ ~.k(W2k+l--W2k)[[~ 7 ~k~~ t/~kl for 
every choice of scalars {2k}~~ By repeating the argument used to prove (2) and (3) 
(noting that II vii = 1 and ]1Szkll <- 5/~ II u II) we get that 

(5) IlW2k+a--W2kIT <= 20fllIU[T/~ lr = 1, 2 . . . . .  

Clearly (5) is also valid for large k if {%}~~ is a Cauchy sequence. We have for 
every k 

(6) IJ T(Y2k + I - -  Y2k -- W2k + l + W2k)ll >= IIZ(Y~k+ 1--Yak)If --20fl [IU[I/~ 

1 --20fl IlUfl/~. 

On the other hand, since [[ V]I= 1 we get by (1) and (2), (3) that 

11T(yzk + 1 -- Y~k-- W2k + X + Wk) II 

(7) <- I I S (V~_k + 1 -- V2k -- Z2k + 1 + Z2k) l[ + [I T (V~k +1 -- V2R -- Z~k +1 + Zk)][ 

<= [[SV2k+l[I + IlSv~kll + Ilaz2k+ill +llSz~kll +l[h~k+Xl[ + IIh~kll 

_-< 32~11U11 + 10/~llU[I <--42~11U11. 

By combining (6) and (7) we get 

HUll => ~/ (20/~+50~) .  [] 

Theorem 2. L e t  cr 2", n = l ,  2 . . . .  and  let  {m~};=l and  {nk};= ~ be two 
increasing sequences  o f  integers. Then (_,~=1~) X,, )l and  (_.5~=1@X,,,)1 are 

isomorphic  i f  and  only i f  the sequences  are eventual ly  equal, i.e. i f  there are integers 

ko>= 1 and  i o so that nk=mk+io f o r  every  k>=ko . In part icular,  there are 2 ~o m a n y  
i somorphism types  among  the spaces  Of the f o r m  ( ~ ~  1. 

Proof .  The " i f "  assertion is obvious. In order to prove the "only i f"  assertion 
it is enough to prove that if No is a subset of the integers so that no~ No then for every 

( ~ )  U: XotnO ~ (ZnENo~Xctn) I ,  V: (Zn6No~)X~,)I ~ X-,n ~ 

such that VU=identity of X,,0 we have ]1U]] I] V]] >=K/a,o where K is an absolute 

constant. 
Let us decompose No into a union N 0" wN 0" where No={nENo , "  n<no}, N o --"- 

{nENo,  n>n0}. It follows from Proposition lb that d(l~, (~ ,CNg@X~)I )<= 1/CCno_ 1 
and hence since ( ~ ' . ~ u , g @ X J I = Z  contains a subspace isometric to /1 onto which 
there is a projection of norm I we deduce that d ( Z ,  (~,~NoOX~)t)<_-4/e,o_ ~. 

Each X,. can be represented as {(u.x, T , x ) ;  x6 l~(n)}  where l l (n)  is isometric 
to ll and where T, is a quotient map from l l (n  ) onto a space Lx(0 , 1)(n) which is 
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isometr ic  to LI(0 ,  1). The  space ( ~ n e N g o l l ( n ) )  1 is isometric  to ll, the space 
(~ ,eN~@LI(O,  1)(n))l is isometric to L~(0, 1) and the m a p  T: ( ~ n E N g ~ l l ( n ) ) l ~  
(,~,,=Ng@L~(0, 1)(n))~ defined by T[tI( . )=T ~ is a quot ient  map.  Let  S be the 
opera to r  f rom (~,eN'~@ll(n))~ into itself defined by  S lh ( , )=~ , . iden t i ty .  I t  is 
clear that  

Z = {(Sy,  Ty); YE(z~.eN~G I1(n))1} 

and tha t  ]lSII =<c%0+~. Hence,  by Proposi t ion  2 for  every U and V as in ( . )  we get 

ILUII IIVII --> O~no--lCtno/4(5OO~o+2OO~no+l). 

The  desired result follows now f rom our  choice o f  the sequence {~,}~=~. [] 
T o  conclude this paper ,  let us recall the following result f rom [4]. I f  X is a 

separable  s space and if U: l l ~ X  is a quot ient  m a p  then ker  U is an s space 
which determines X uniquely (i.e. if  (]1: I ~ X ~ ,  [72: I~-+X~ are quot ient  maps  
and X1 and X 2 are ~e 1 spaces then X I ~ X  2 if  and only if ker U l ~ k e r  U~). Hence  
f rom Theo rem 2 we can deduce tha t  there are 2 ~0 m a n y  mutual ly  non- i somorphic  

Le 1 subspaces of  11. 

Remark.  Recent ly Bourgain,  Rosenthal ,  and Schechtman have constructed 
uncountab ly  m a n y  separable ~p  spaces for  1 < p <  o% p ~ 2 .  Their  work  also gives 
other  new informat ion  abou t  the structure of  Lv; e.g., their examples  provide for  
2 < p <  co the first examples  o f  subspaces o f  Lv(0, 1) which do not  contain i somorphic  
copies o f  Lp(0, 1) and yet do not  embed  into (l~| ...)p. 
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