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Abstract 

In this paper, results on removable singularities for analytic functions, har- 
monic functions and subharmonic functions by Besicovitch, Carleson, and Shapiro 
are extended. In each theorem, we need not assume that f has the global property 
at any point, so we are able to allow dense sets of  singularities. We do not state our 
results in terms of  exceptional sets, but each one leads to a series of  results implying 
that certain sets are removable for appropriate classes of  functions. 

1. Analytic functions 

In 1931, Besicovitch obtained a generalization of PainlevCs theorem: let f be 
a bounded function defined on an open set W, and L a subset of  linear (i.e. one- 
dimensional ) measure 0. Assume that at each point z of  W - L ,  f admits a Taylor 
expansion f(z+w)=f(z)+wf'(z)+o(lwl). Then f can be continued over L to be 
analytic. Besicovitch's theorem is noteworthy in two respects: the set of  singularities 
is allowed to be everywhere dense, and the concept of  holomorphy is replaced by 
that of  a complex derivative. At present, these hypotheses are further reduced: 
differentiability is not required at any point in the domain, and approximate dif- 
ferentiability (wherever it is required)is  understood in the space L 1. The difficulties 
attendant upon covering a dense set of  singularities are finessed (or evaded) with 
Whitney's partition of unity, and line integrals are avoided. In  consequence of  the 
last point, we are able to obtain integrability theorems that are close to best possible 
(as in [4]). 
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To formulate our theorem precisely, we define the reduced norm N0(f ,  B), 
for a measurable funct ionfdef ined on an open ball B: this is the infimum of integrals 

fSB IS(z)- g(z)l dx dy, 

extended over functions g(z), analytic on B. The infimum is attained. (If  necessary 

we set f = 0  outside W.) 

Theorem 1. Let f be measurable on a bounded open set W, and for each e~O, 
suppose there is a covering 

W =  U B(zi, ri) such that X~ No(f,  B(z,,  2 r l ) ) r / - ' <  ~. 
1 

Then f can be corrected on a set o f  measure O, to become analytic on W. 

Example 1, Besicovitch's theorem. Let f be bounded a.e. on W, and suppose 
that L is a set of  linear measure 0. At each point z in W - L ,  we suppose 

f ( z + w )  =f ( z )+wc(z )+o( lw[  ), for small w. 

(Here o(Iw[) may depend on z). 
Inasmuch as f is bounded a.e., and 

No(f, B(zl,  2rl))r/-1 --< 4~zr i Ilfll =, 

the set L can be accounted for. To each 5>0,  we can cover W - L  by disks B(zj ,  rj) 
so that 

No(f, B(zj ,  8rj)) <_-- er~, 

and we can choose a subsequence B(zk, rk), still covering W - L ,  while 1;~ r~ is 
bounded by a constant depending only on the area of  W. 

Example 1'. We can add an exceptional set L1 to L, provided f is continuous 
at each point of  L1, or that L 1 is contained in the set of  Lebesgue points of  f .  Indeed, 
we have 

No(f, B(z, 2r)) = o(r 2) 

at each Lebesgue point z o f f  (See Besicovitch [1].) 

Example 2. Suppose for simplicity that W is convex, and set 

h1(6 ) = sup [f(zl)-f(z2)l ,  

over the pairs ziE W with ]zl-z2[~=6. (Observe that h~(26)<=2hl(5).) I f  the set L 
of Example 1 is allowed to have Hausdorff  measure 0 for the measure-function 
h (3) =6h~(6), then f is analytic. Indeed 

No(f,  B(z, r)) = O(r2h(r)) 

for any z in W. Compare  [2]. 



Removable singularities for analytic or subharmonic functions 109 

Example 3. Let f belong to LP(Iz]<I ) ,  and suppose that the exceptional set 
L has finite Hausdorff  s-measure, with p > 2  and a = l - ( p - 1 )  -1. T h e n f i s  equal 
a.e. to an analytic function on IV. 

To verify that our theorem can be applied, we cover L by disks B(z i, rl)=---Bi, 
such that 27 r ia-<c,= while maxr i  is small. Writing B* for the double of  Bi, we 
have the inequalities 

1 1 ~ _ 1 + _ . 2  1 

Zrr - ' f~  1SI ~ Zri-l(f~,lfl ' l-Pm(B*)7< 7 r Z ' r  ' q (L  )-P" ~< 

This can be handled by H61der's inequality, because q ( - 1 + 2 q - 1 ) = ~ .  The sum 
actually tends to zero with max r~, because w B* has small area when max ri is 
small. With a little more effort we can treat a set L of  a-finite Hausdorff  a-measure. 

In the case of  sets L geometrically like the Cantor set, each covering is composed 
of O(r; ~) cubes Qi of  side rj, for some sequence rj~O. 

Now the set B j= w Q* has measure O(r~-~), so what must be proved is that 
1 

fEIf!=o(m(E))-~ f o r s e t s  E ,  m(E)~O. 

But this is nothing but the condition 

m {]f l  > 2} = o( ,~-P) ,  2 -~ + ~ o  

We shall now prove that when a closed set L has positive a-measure, 0 < ~ <  1, 
there is an analytic f u n c t i o n f  on W--L, such that 

m{IfI > ~} = O(2-P), ). ~+oo.  

Having positive a-measure, L carries a positive measure p, such that Ix(B(r))<=Cr ~ 
for every ball B of radius r. F o r f w e  take f ( ( - z ) - l # ( d O ,  so t h a t f i s  analytic off L, 
and admits no extension to an entire function, as its primitive is multiply-valued, 
I f  z~R 2 and 6 > 0  is a small number  

as can be seen by a Stieltjes integral. Fubini 's theorem shows that 

fi:l~_100 fl~-:l~_~ Ir zl-l~(d0 dx dy = 0 ( 6 ) .  

To confirm that  
m{lz I < 100, If(z)l > 2} = O(2-") ,  

we choose 6 a large multiple of  21/('-~), so that 2-16 = O (2-P). (For similar results, 

see [4, VII.) 

Proof of  Theorem 1. Before writing the formulas necessary in the proof  of  the 
theorem, we construct a refinement of  the covering B(z~, r~) of W. We will be inter- 
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ested in covering a compact  subset K of W, so we work with a finite set of  balls 
B(z,,ri), l<-i<=N, and assume that rl>=r2>--...>=rN . We expand B(zl, rx) to 
B(z~, 3r~/2) and discard any ball B(zi, ri), (i=>2), contained in this one; that is, 
we discard any ball for which Izx-zgl<=3ra/2-r~. I f  any ball B(zt, ri) remains, 
we expand the radius of  the largest one as before and discard superfluous sets. 
We continue this process until no ball remains and obtain a covering B(z~, 3rJ2), 
lET, in which lzi-zjl>r~/2, whenever i<j. We shall work with this covering 
only. 

Next, we find a function ~ in CI(R2), such that 0<_-4)<_-1, ~ = 0  on each set 

B(z~, rJ8), </i=l outside the union of all the sets B(zi, rl/4), and IVq~l<-cr~ 1 on 
the annular regions defined by ri/8~-[z-z~l<-r~/4. 

Let now H be a function of  class Ca(W), with compact  support in W. Then f 
is integrable on its support, call it K, and we shall prove that 

f f dx dy = o. 
By a classical method (Weyl's lemma), f is equal a.e. to a function analytic on W. 

Here ~ is defined by the equations 

0+0 ~ 0 0 - ?  = - i  0- 7 
In the proof  that 

f f O, 

we can assume that I H [ < l ,  lOH/~xl<l, t~H/Oy]<l. 
First we estimate 

f f f(~H-~(r 
We recall that the support of  l -  # is contained in disjoint balls B(zi, rd4) and 
IVr on B(zi, rJ4 ). Hence 

0 H - 0  ( r  = O (1) + cr?- ~ 
and 

f f  
is at most  

(O(1)+  cri- 1)),( N0(f~ B(zi, 2r,)). 

Summing over i, we obtain a quantity tending to 0 with 8. 
Now let 1 =2:~ q~, be Whitney's partition of  unity for the complement of  

the set F =  {z i, iET}. The standard procedure [6] shows that for the support Qk 
of go k, we have diam Qk~=3d(Qk, F). We can improve this to d(Qk, F)/4. The 

sums q~H=S 4)H, and ~ ( r  = Z ~(~Hg0k) are actually finite, and we shall 
now consider some k so that q~H~Pk ~ O. I f  Qk meets B(zi, 3rd2) for a certain i, 
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then Qk is entirely contained in B(zi, 1.875ri) and Qk is not covered by B(zi, ri/8) 
and therefore fails to meet B(zi, ri/16). Let us choose one i=i(k) so that d(Q k, F) = 
d(Qk, z~). Then each index i occurs at most c times (an absolute constant) in view 
of  our assertion that QkC=B(z~, 2ri)-B(zi, r~/16). In case Qk meets some bail 
B(zj, rj/4), then rJ16<-rJ4, whence I-Oq~l<=4cr71. Now 

can be evaluated over B(z,, 2r,) and is bounded, as before, by 

O(ri-1)No(f, B(zi, 2r/)). 

In view of  the remark on the function i(k), this leads to the conclusion that 

f fj~.=o. 
This completes the proof. 

In the proof, we used a quantity N ( f )  smaller than No(f), defined as follows: 

] f  nfOh[ <= N(f)suplOhl+ N ( f ) s u p  IOhl 

for functions h~ C 1, vanishing near the boundary of a ball B. The functional N ( f )  
is genuinely smaller than No(f). Indeed, let 

L(z) = Iz l~z  - 2 ,  o < ~ < 1. 
Then 

fa(ei~ z) : e-2i~ f~(z), 

so the best analytic approximation to f ,  is 0. However, N(f,)  is bounded, because 

f LOh =--~ f ~:-~z-l(h(z)-h(o)). 
If, then, [h(z)-h(o)l~=C[zl, we obtain 

lf f,- hl <- . c .  

The limit as a ~ O + ,  is -~(Oh)(o). 

2. Subharmonic functions 

Let W be a bounded open set with smooth boundary in R" (n->2), L be a 
closed set in W. In [3], Carleson proved the following 

Theorem (Carleson). Let H~ be the class of harmonic functions in W \ L  which 
satisfy a H61der condition of order a ( 0 < a <  1), 

[u(x)-u(x')[ <--_ CIx-x'[  ~ whenever x, x 'EW\L .  
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Then L is removable for the class H~ if and only if  L has (n-2+~)-dimensional 
measure zero. 

The proof  is ingenious, however, it does not seem applicable for studying 
removable singularities of  subharmonic functions. In [5], V. L. Shapiro studied 
removable sets for subharmonic functions. After a reformulation to suit our purpose, 
one of his results states that 

Theorem (Shapiro). Let S ~ ( - ( n - 2 ) < = ~ < l )  be the class of L I ( W \ L )  func- 
tions with property 

(1) sup ~ . . . .  f B  lu(y)-u~,o(x) ldy = O(1) 
B ( x ,  o) c _ W ( x ,  o) 

O<Q<r 

as r-+O, where u~,~(x) is the average on u of ball B(x, 0). Then L is removable 
for subharmonic functions in class S, if  and only if  L has (n-2+g)-dimensional 
measure zero. 

Shapiro's theorem implies the harmonic result by Carleson. However, the con- 
dition (1) seems too restrictive for studying subharmonic functions, because (1) is on 
smoothness of  a function, which does not hold even for the most fundamental 
subharmonic function u(x) = - I x [  -("-2) (when n->3). Because the sub mean value 
property is a one-sided inequality, a one-sided control of  u from its mean or a two- 
sided control of  u f rom other subharmonic functions would be more natural. Theo- 
rem 2 is an analogue of Theorem 1 for subharmonic functions. Theorem 3 shows 
how a one-sided control of  a function and its mean gives subharmonicity. We observe 
that every subharmonic function on W must satisfy (2) and (3). Moreover, the 
sufficiencies for Carleson's theorem and Shapiro's theorem follow immedicately f rom 
Theorems 3 and 2 respectively. 

For  a measurable function f defined on an open ball B=B(x,  r) we define 
N l ( f ,  B) to be the infimum of integrals 

f B r-" If(x) -- u (X) l dx 

extended over functions u(x), subharmonic on B. 

Theorem 2. Let f b e  measurable on a bounded open set W and for each e>0 ,  
there is a covering W= U~ B(xi, ri) such that W= U~ B(xg, 2ri) and 

(2) Z ~  rf-2Ul(f, B(x,, 2r,)) < e. 

Then f can be corrected on a set of measure zero to be subharmonic on W. 

Proof. Let H be a non-negative function in Co 2 (W); the theorem will follow if 
we can show that 

f wf(y) A H(y) dy >- O. 
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Let  K be the suppor t  o f  f and let the covering B(x~, ri) iE T, fb and {rpk} correspond-  
ing to K be as in the p r o o f  of  Theorem 1. Observe that  0<= 1 - ~ 1. 

We assume tha t  

Hence :  
AH--A(~H)=O(1) ( I+r~  2) on B(zi,ri/4 ), iCT. 

Thus  if u is subharmonic  on IV, then 

f.  ix, f.  ix,, (i-  ( m)ay 
Also, taking inf imum over subharmonic  functions on B(xi, rJ4), we have 

inf  f , , ~ ( f -u) (AH-A( fbH))dy[  <= CrT-2Nl(f, B(xl, 2ri)). 
.ix,,2) 

Summing over  i and noticing tha t  1 - ~ is suppor ted  in the disjoint balls B(z~, rd4), 
i~ T, we obta in  

fwf(AH--A(eH)ldY 
bounded  below by 

- CX3 r~ -2Nl ( f ,  B(z,, 2r,)) 

which tends to zero with e. 
Fo r  each k with ~0H~o k ~ 0, we choose i=i(k) as in Theorem 1. Reasoning 

similarly as before,  we have 

f ~(x~,=~,)fa (,Y,~) dy >= -Cr~-eNl(f,  B(z,, 2rl)). 

Summing  over  k and recalling that  each index i occurs at  most  c times, we obtain  

f w  fA (#H) dy >= O. 
Thus  

wfAHdy >-_ 0 
and the theorem is proved.  

Fo r  an upper  semi-continuous funct ion f defined on the closure o f  the ball 
B=B(x, r), we define 

N2(f, B) == sup f(y)--PIx,~,~(y ) 

where PIx.,. I is the Poisson integral on B(x, r) with bounda ry  funct ion f .  
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Theorem 3. Let f be an upper semi-continuous function on a bounded open set W 
and for each e > 0 ,  there is a covering 

W =  U B(xi, ri) so that W =  B(xi,2ri)), r i< e, 
1 1 

and 

(3) ~ rT-2N + (f, B(x,, 2ri) ) < e. 

Then f can be corrected on a set of  (n-2)-dimensional measure zero, to become sub- 
harmonic on IV. 

Proof. Corresponding  to a fixed ball B(x, 2r) for  which N2=N2(f ,  B(x, 2r)) 
is positive, we define a subharmonic  funct ion u as follows: 

u(y) = 2N21og tY-Xl ,  if n = 2 

u(y) = - 2 N 2 r n - Z l y - x l  z-n, if n --> 3 

The  Poisson integral o f  u on B(x, 2r) exceeds u by  at least Nz on B(x, r). Thus  

(4) f ( y ) + u ( y )  ~ PIx,2,,,+f(y), yEB(x, r). 

Let  {B(xi, 2rl)} be a covering o f  W for  which 

.~  rT-~ N~(f, B(x~, 2r,)) 

is finite, and construct  the corresponding functions u~. The sum ~, ul converges 
in L* on any bounded  set, and for  n=>3 each te rm is negative, so the sum is again 
subharmonic .  When  n = 2  we can use the fact that  log [y-x[<=C when x, yC W, 
and 27 N 2 <  + ~, to conclude the subharmonici ty .  

Fo r  each posit ive integer k, choose a covering 

{Bk,,} = {B(xk,,, rk,~)}r 

corresponding to g = k  -2, with the propert ies  stated in the theorem,  in par t icular  

221 2rk, i))< k 

Const ruc t  the corresponding funct ion Uk, i and let 

Vr = X~'=r 2~=1 uk,," 

For  each k the series converges everywhere to a function, finite or - c o ,  and 
the double sum I7 27 lUk, i[ converges in LI(W).  Moreover ,  v k + 0  in L 1 as k ~ .  
We intend to show that  f + v  k is subharmonic  for  each k, and  the case k = l  is 
typical. 

F o r  each x~ W there exist {Bk, i(k) } SO that  X~Bk, itk) and rk, i(k}-+O as k + ~ , .  
In  view of  (4), we have  

fq- Uk, irk) (X) <---- P/,~,, (k), 2,~,, (k,, Y +,k,, (~, (x). 



Removable singularities for analytic or subharmonic functions 115 

From the subhat, monicity of  blk, i'S, it follow that 

(5) f -4-vl(x) <= PIx,,,r 2,~,,,k,,f+v,(x), 

that is, for each xE W there exists a ball in W containing x with arbitrarily small 
radius so that f+vl(x)  is no greater than the value of the harmonic function in 
the ball, with boundary values f+v l ,  evaluated at x. Let B be any ball with B ~  W 
and g be any harmonic function on B with boundary values no less than f +  vl on 
OB. To show f+v l  is subharmonic it suffices to show f+v~-g<=O on B. Let A 
be the closed subset of  B, where 

max {f  +v, - g(x) xc~B} 

is attained and x0 be the point in A closest to OB. I f  x0~ B, in view of (5) and the 
extremum at x0, there exists a ball B0 containing x0, with B0=~B and OBoC=A. 
This contradicts our choice of  x o as the closest one in A from B. Thus xoCzOB. 
Therefore 

f+vl- -g(x)  <--f+vl--g(xo) <---- 0 for xEB. 

This shows that f+v t  is subharmonic. 
The sum 

Z, tu .,t 
belongs to LI(W) and also to Lt(da), a being the surface measure of  any ball. Thus 
Vk-~O in La(d~) as k - ~ + ~ .  We know also that there is a subharmonic function 
f l  on IV, equal to f almost everywhere on W. When B(x, r) is a ball contained 
in W 

f~(x) ~ m(B(x, r)) -1 f f Bf(y)dV; 
letting r - ~ 0 +  we obtain fl(x)<-f(x), because f is upper semi-continuous. Using 
the mean-value inequality for the functions f+Vk and making k ~ ~ we find that 

f(x) m(B(x, f f BA(y)dV 
if X i  Z k  lUk, i(x)l < + ~.  

Thus f=>f~ everywhere and f = f l  except on the set where r~2 luk,~(x)]=+~. 
But if yfzB(x, r), then 

f(Y) <= N~+ PL,2~,:(Y) = N~+ PL,2,,f~(Y). 
We find that if y belongs to a sequence of  balls B(Xk, r k) for which 

lim inf N2(f, B(xk, 2rk)) = 0, 

then f(y)<--f~(y). Consequently f = f ~  except on a set of  Hausdorff  (n -- 2)-dimen- 
sional measure 0. The proof  is complete. 

Observe that  if F is a closed set in W of ( n -  2)-measure 0, Xr fulfills the hypoth- 
eses of  the theorem, as does zr+g, whenever g is subharmonic. 



116 Robert Kaufman and Jang-Mei Wu 

References 

1. BESICOVITCH, A., On sufficient conditions for a function to be analytic and on behavior of analytic 
functions in the neighborhood of non-isolated singular points, Proc. London Math. 
Soc. 2 (32) (1931), 1--9. 

2. CARLESON, L., On null-sets for continuous analytic functions, Arkiv Mat. 1 (1950), 311--318. 
3. CARLESON, L., Removable singularities of continuous harmonic functions in R m, Math. Scand. 

12 (1963), 15--18. 
4. CARLESON, L., Selected Problems on Exceptional Sets, Van Nostrand, 1967. 
5. SHAPIRO, V. L., Subharmonic Functions and Hausdorff Measure, J. Diff. Equations 27 (1978), 

28--45. 
6. STEIN, E. M., Singular Integrals and Differentiability properties o f  functions, Princeton University 

Press, 1970. 

Received October 6, 1978 Robert Kaufman 
Jang-Mei Wu 
University of  Illinois 
Department of Mathematics 
Urbana, Ill. 61 801 
U.S A. 


