
Oscillating kernels that map H 1 into L 1 

G. Sampson 

O. Introduction 

Let f2 and f be two Lebesgue measurable functions on R". Then the equation 

f2 . f (x )  = f R, f2 (x -  t)f(t) dt 

(whenever the integral exists) defines the convolution transform of f2 and f In 
that case, we set Tf= f 2 . f  W. B. Jurkat and myself have been working on the 
(L p, L q) mapping problem for the kernels g2(t)=b(t)e *a~~ that is to determine 
all pairs (p, q) for which I[Tf]lq<--B][fl]p for f~L  o and B is a positive constant 
independent of f For example also see [2], [4], [5], [6], [7], [9], [11], [13], [14], [15], 
[16], [17], [18], [19], [20]. Since (Tf) ^ =f2 ̂  f ^ ,  where f2 ̂  is the fourier transform 
of f2, this problem is closely related to the corresponding multiplier problem. 

This paper represents a first step in solving the (L p, L q) mapping problem stated 
above. Here I show, (see Theorems 3 and 4 in 3) that for a general class of functions 
a(t) the kernels 

eia(t) 
(0) K(t ) - -  l + l t ] '  tCR 

map H 1 into L 1 continuously. As an application of these results it is shown in the 
Corollary in 3 (also see [I1; Theorem 3]) that the functions a(t)=lt[ ~, 0<a ,  a ~ l  
belong to this class. In Theorem 6 (in 4) it is shown that for the functions a ( t ) =  
t (log It I) ", 0<: t /< 1, the kernels defined by (0) do not map H 1 into L 1 continuously; 
although, these latter kernels do map L p into L p for all l < p < ~ o  [4; Cor. 1.16]. 
This should indicate to the reader how delicate these results are. 

This work also resolved a question that I had been carrying around for some 
time. Does the class of kernels K(t) where [l~(t)l<-Bltl  -~ and IlK ̂  I1_<~o have 
the same mapping properties? And as explained above some of these kernels map 
H ~ into L ~ and others do not. 

Another problem that has interested me for a while is to fully understand the 
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complex method as first discovered by Hirschman--Stein [21] and developed further 
by A. P. Calder6n [1] and then by Macias [12] (the Macias result is the one we use 
here, see 1). What I believe may be true is, 

then 

"'If {f2:~}0~_x~=a is a real analytic family with 

II~o*fll~ ~- BIJfllR~ and ll(aOAll~ < oo 

X 

2 

1 
I lOx~fl l~Bl[ f l Ip  for - = 1 - -  p 

and 0<x<=l,  B a positive constant independent o f f " .  

At this point I know how to solve the problem above when f2 0 is a regular kernel 
(definition is in 2) and f2~ satisfies a straightforward type of integral condition. 
This last result shall be done in a subsequent work. The Theorem 5 (in 4) plays 
a key role in obtaining this result. 

Recently, Per Sj6lin [19J has independently solved some of these mapping 
problems. 

1. Preliminaries 

In this paper, I am concerned with determining those kernels f2(t) that map 
H 1 into L 1. Earlier work with W. B. Jurkat [8; Thin. I] suggests I should assume 
that lf2(t)l<=B]t] -1, tCR. And so I consider kernels defined by (0), i.e. K ( t ) =  

e ia ( t )  

l+it-- ~ -  where a( t ) i s  a real-valued function (t~R). In this paper, I only discuss 

the cases where a(t) stays bounded away from zero as t ~ ,  and for which 
e ia( t )  - -  1 

is locally integrable. Thus, with these kernels the bad behavior occurs 
t 

only at infinity. It follows from this that we could assume that /~( t )=0 for t < 0  
(or for t>0)  since for these kernels there is no cancellation across the origin. And 
so in the next step we set K( t )=k ( t )g ( t )  with g(t)=la'~(l+t)[lme i'(~ for t=>0. 
Now this paper is concerned with giving conditions on a(t), k( t )  and g(t) that 
imply K(t) maps H ~ into L 1. For example, see Theorems 3, 4 (in 3) and Lemmas 
7, 8 and 9 (in 5). 

The result which is most helpful to us is this result of R. Macias [12] on analytic 
families of linear operators. We just need the following special case of his result. 

Theorem A. Suppose {T~} is an analytic family of  convolution operators 
( T~ f  = f2~ . f )  satisfying 

[]f2iy*fl[~ ~ Ao(Y)l[f[]nl and ilf2~+,yll~,2 = AI(y ) < 
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for all y E ( - ~ ,  oo) and fELo(R), where logAj(y)<=cjeaJ lyE, cj>O, O<dj<rc, 

1 1 - ~ x  (0 x = l ) ,  then j = 0 , 1 .  I f p  < < 

llQ:,*fllp <- Bit flip 

where B depends on Co, el, do, dl, x, but is independent o f f  

Let T f = ~ , f ,  we set IIf~ll~.2=supHs,~2<=lliTfll~ where fEL o , and when II f~ll~,~< co 
we say that f2EL~. 

The letter e generally stands for an absolute constant. The letters B1, B~, ... 

stand for positive constants and we use the letter B generically. 
By H 1, see [3; 591--3], we mean the set of all f for which f ( t )=z~2~bj(t  ) 

where ~'12jl<oo and bj(t) is a (1,2) atom. And Ilf[lHa=inf~_,Yi2j[, where the 
infimum ranges over all such decompositions of f 

The function b is said to be a (1, 2) atom if 
(i) the support of  b is contained in an interval I, 

(ii) f Ib(t)? dt<-[I1-1 
and 

(iii) f b (t) d t :  O. 

2. General results for regular kernels that map H I into L 1 

Here, we give sufficient conditions on K in order to show that 

(1) ][K.fill ~ BHf[]Hx , 

B a positive constant independent of f In order to prove (1) it suffices to prove 
that for every (1, 2) atom b(t) with support in [0, rlJJ 

(1') IlK* bl[1 <- B, 

B a positive constant independent of  b. 
We begin with the following. 

Definition. We say that a kernel K is regular if 

(2) K(t) = k(t) g(t) 

(3) [g(u)[ =< B~lg(t)[ for -~  =< lul <= 21tl, VtER, 

(4) supf ~ dt]k(t-u)-k(t)[[g(t)l-<- B2, 
u # 0  I t _ 2  u 

and 

(5) KELp. 
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We should add that among our applications we have the kernels 

ei[t]a 
(6) K(t)- -  with a > O ,  a ~ l  

l+[ t [  
and 

eUOogitl)" I (1--t/). 
(7) K ( t ) =  ( l+ [ t l ) l og , (2+ [ t  0 where 0 < 1 / < 1  and 0 ~ 6 < _ - ~  - 

In [I 1; proof of Theorem 3], we prove that the kernels in (6) are regular. In the 
proof of the Corollary in 3 of this paper, we also prove that these kernels are regular. 
At the end of 4, we prove that the kernels in (7) are regular. Also, the Calder6n-- 
Zygmund--H6rmander kernels are regular and to see that you take K ( t ) : k ( t )  
and g ( t ) -  1. 

Let b(t) stand throughout for a (1, 1) atom with support in [0, [I[]. 

Theorem 1. I f  K is regular, K=kg, and 

(8) fJ.  ~ ['l [k(x)] [g* b (x)r dx <- B8 

where Ba is a positive constant independent of all (1, 2) atoms b(t) (with support 
in [0, [II]). Then, 

lIKe'fill <= B[IflI,1, 

where fE H 1 and B is a positive constant independent off .  1n fact, B depends only on 
nl ,  g~, B~, I[~h,~. 

In a Lemma (that appears in the proof of Theorem 5) we prove that for regular 
kernels K, K=kg, condition (8) is also a necessary condition for K to map H 1 
into /_.1. 

Lemma 2. Let J( be regular. Then for any atom b (supported in [0, [I1] ) we get 

fLxl~-2 III dx IK* b(x)l <-- B +  III-X fl~[~ ti] dx l k , z , ( x )  g .  b(x)] 

where B is a positive constant that is independent of b and 111. 

Proof of Lemma 2. We note that 

(9) K * b ( x ) =  f k ( x - t ) g ( x - - t ) b ( t ) d t - l I [ - i  f d t k ( x - t ) X i ( t ) g * b ( x )  

+ ]l [ -~ k * z~(x) g * b(x). 
Hence, 

~l,( ~=~ i dxtK*b(x)[<= f l~l~=~j,jdx f dt(k(x-t)-k(x)) (x-t)b(t)---~T-g.b(x) 

+ II1-1 f ,  xj_~, llz Ik * x1(x)g * b(x)L ax, 
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but 

(10) 

<= f dt Ib (t)l fl,l~-' Ixl ax [ k ( x -  t) - k(x)l Ig ( x -  t)[ 

a. tbO,)J f dt f dxak(x-t)-k(x)t 1g(x-u)t / + 

now using (3) and (4) (since/s is regular) we get the proof  of  the lemma. 
Now to give the proof  of Theorem 1. 

Proof o f  Theorem 1. It suffices to prove the Theorem for (1, 2) atoms where 
the support of  b c [0, 1I []. 

Since KE L~ this implies 

f IK • b(x)[ dx <= (2lI[)l/e!]K * bH2 <= (2111) a/2 [Ib[l~ ][KI]z,e <= B. 

Thus, we are left with estimating 

ftxl~2I~t dx IK * b(x)l. 

From Lemma 2, we get that 

dx lK*b(x ) l  ~= B+lll-~f d x l k * ) o ( x ) g * b ( x ) l  
flxl-~txi 

and hence 

(11) I,l-l f dx [k * Z,(x) g * b(x)l 

<= I z I - i f x  ~, dx f dt(k(x-t)-k(x))z~(t)g~b(x) I 
I [ ~ 1 ]  

dx Ik(x)l [g* b(x)l 

<= IIl-l f dtx,(t) f du lb(u)l fLx~_._~L, ~ dx Ik(x-t)-k(x)l Ig(x-u)l 

+ dx [k (x)[ [g * b (x)l. 

The proof of  the Theorem follows since K is regular and by (8). 

Remark. In the special case where K is regular and K ( t ) = k ( t )  (i.e. g ( t ) - l )  
then these kernels reduce to the Calderdn--Zygmund--H6rmander  kernels. In this 
case the assumption (8) is easily satisfied since f g=0 .  

In this paper we are concerned with determining those regular kernels which 
map H 1 into LL We shall study those kernels defined by (0) and for the most part 
set g(t)=Ia"(l+t)l l l~ei"(~ t>-O. Note K ( t ) = k ( t ) g ( t ) ,  this forces us to assume 
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that a"(t) exists for most t ' s  and that a"(t) has isolated zeros. Furthermore, a (t) 
is a real-valued function of the real variable t. 

We shall also assume for g that 

(12) sup g(t) e -itx dt ~ B4. 
a,b,x a 

Let us discuss this condition (12). In an earlier paper [10; Lemma 3] when a(t)= 
Itla, a > O , a r  we showed (12) holds. In [16; w it was shown when a ( t ) =  
t ( iog [ t i )~ ,0< t /< l ,  8 1 ( l - t / )  that (12)holds. In 5 of this paper we give 
explicit conditions on a(t) in order that (12) holds. Note that when a ( t )=s in  t 
then (12) fails. 

So in order to prove the kernels in (0) map H ~ into L ~, we use the decomposi- 
tion defined above and then determine conditions on a(t) which force K(t) to be 
regular and also for which condition (8) holds. Then we apply Theorem 1. 

3. Sufficient conditions for regular kernels to map H 1 into L 1 

In this section we shall give explicit conditions on k(t) and g(t) in order that 
(8) of Theorem 1 holds, note K(t)=k(t)g(t) .  Once again I remind you from 
the discussion at the end of 2, we only consider kernels K(t) defined by (0) and we 
assume g(t) satisfies (12). For the most part, we shall set g(t)=[a"(l+t)il/Ze last), 
t~_O. 

Let's begin with the following. 

eia(t) 

Theorem 3. Let / f ( t ) :  1-1-Itl =k(t)g(t)  

real-valued}. Furthermore, i f  

(13) f ,L- l Ik'(t)l dt <= B5 and 

and 1~ satisfies (3), (4) and 

(14) __f~_~t,~ Ik(t)12 dt <= B6. 

And for some function h 

(15) 

and 

(16) 

Then, 

f 2s~[tl~--h(s) Ik(t)l Ig ( t -u ) -g ( t ) l  dt <= B7, 

s u p l f  ~ dtlk(t)l 2 ~ g s .  
lul~_i [u[ h(u)_[t[ 

IlK*fill <= Bllfllnl 

where g(t) satisfies (12) (a(t) is 

lim k(t) = 0 
t ~ o o  

O < l u l ~ = s ~ l ,  
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where f~H 1 and B is a positive constant independent off .  In fact, B depends only on 
B 1, Bz, IIKII~,~, Ilgll~,~, B~, Be, B,, Bs. 

Proof. Since g(t) satisfies (12) we get ( a < - - l < l < b )  

f2 K(t)e-'*~ dt = f l,l~lZt~,<(t)K(t)e-"* dt+ f i,l~, Zt~,blKe-U*dt 
and 

f :  K(t)e-"" dt I <= f ,,,~_l tK(t)l dr+f: dt Ik" (t)l If; dv g(v)e-'~" I 

+ f-a' dt Ilc'(tll Is  

+1/,(1)1 f~g(v)e-'Wdv + l k ( - 1 ) i  s 

and by (13) we get that KELp. Since K satisfies (3), (4), then we get that Kis  regular. 
Now we shall prove K satisfies (8). 

For lI[=>l we get (note b has support in [0, I/l]) 

f f,,,~,,,, dxlktx)nlg*b(x)l <-~ { f  ,...~=,, dxlk(~)l~'}"=llg*bll= 

B~ ~= (2 I z l) ~2 I1 g}l,~,= 11 bll =, 

since g satisfies (12), b is a (1, 2) atom and (14), we are through with this case. 
For [I[<= 1 we get, 

s d~lk(x)l I,* b(,)l -<- (s + f ,=>_,,,,,) lk(x)l Ig~ b(x)l d~ 

~_ f ~,>_~.>_<,, dx tk(x)1 If dub(u)(g(x-u)-g(x))] 

+ {fh{I'l>~-l~l dx tkCx)12} ~t= It g * bll= 

+ aa t ' I I  1 */" II gl l , ,  = 11 b II 

~_ ~ ,+a lZ l ' / = l l g l l = ,= l l b l l =  <- ~ ,  

since g satisfies (12), by (15), (16) arm since b is a (1, 2) atom. And now by Theorem 
1 we get our result. 

eia (t) 
Theorem 4. Let K ( t )= l+ l t l=k ( t )g ( t )  where g(t) satisfies (12) (a(t) is 

I I 

real-valued). Furthermore, i f  I( satisfies (3), (4), (13) and 

(17) sup f ~ at I k ( t ) l l g ( t - u )~g ( t ) l  <= B0, 
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and for some function h, 

(18) sup 

and 

(19) 

at Ik(t)l ~ ~ 910, 

fh(~)~--i,I dt[k( t)[ lg( t-u)-g(t){  ~ Ba~ lul ~ s, s ~ 1. 

Then, [{K.fIIx<=B 11 f{lH1, where f is any function in H ~ and B is a positive constant 
independent o f f  1n fact, B depends only on B1, B2, [IKIh,~, lie[h,2,//5, B0, ni0, Bll. 

Proof Just as in the proof  of  Theorem 3, we get that/s and since K satisfies 
(3), (4) we get that K is regular. Now to show that K satisfies (8). 

We note that for 71->1, 

f,x,-~,,,, dx Ik(x)l Ig* b(x)l <- (L,,,~_,x,~_,,,,,, +L,l,,,~_,x,) dx Ik(x)l Ig* b(x)l 

lI[ ~ [xl ~h([l[) 

+ f  du Ib (u)l fh~t,I)~_l~{ dx Ik(x)l I g ( x -  u ) -  g(x)l 

<- Bl~2lllX/2[Ig[le,2llb][2+ gl~ <= B, 

since b is a (1, 2) atom and K satisfies (18) and (I9). Now for the ease [I I ~_ 1 we get, 

axlk(x)llg, b(x)l-<- f,.,.~,,jdxlk(x)l If a~ (g (~ -~ ) -  g(x))b(u)l f i x [  ~_2 II{ 

~_ f du {b(u)[ f ,~,~,~, dx Ik(x)l [g(x-u)-  g(x)[ 

<=B. 

Now Theorem 4 follows by Theorem 1. 
eiltl * 

The kernels K(t)=l---~-~l- , a > 0 ,  a ~ l  satisfy either Theorem 3 ( a > l )  or 

Theorem 4 ( 0 < a <  I) this was done in an earlier work; in this case, we take h ( t )=  

2 It }~--z7 in these Theorems. We shall do that proof  here again in the Corollary. 

Corollary. Let 

and B is a positive 

etltl ~ 
K(t)= l+l t{ '  0<a ,  a r  

constant independent o f f  

Then [Ig*fllx~B[lfllH1, f E H  x 

1 
Proof Here we set g(t)=(l+[t{)f f- le  iztJ" and k(t)=(l+,tl)a/2.[ Now that 

(3) holds for all a > 0  is clear and that (4) holds for all a>0 ,  we note that 

i d k(t) - a for t6R, t O. 
1 a --d7 2(1 +lt{) +2 
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And hence, 

fltl-~lul dt [k( t ) -k( t -u)r  [g(t)l <-- B2. 

(20) 

and for [u[~l 

Hence all these kernels satisfy (3) and (4). 
Now suppose a > l .  Now we show that K satisfies Theorem 3 (we take h(u)= 
1 

2[u]~--:3-). We show that g(t)satisfies (12)for  a > l  in Example 7', 8' in 5. That 
1 

k(t) satisfies (13), (14) and (16) (h(u)-~Z[ul~-o) can be seen by inspection. We 
note that 

1 - 2  a 
Ig'(t)l  ~ - -  I- 

a a 

(1+it[)  e -~  [tl~-~(1 +l t l )~-~ 

f2  ~ dt 
[u[-~lt]~_2 [ul 1--~ 

1 
(1 + It I) ~/~ I g (t -- u) -- g (t)[ 

<=B. 

dt ~ 1 dt } 
+ltf)  ~ fL~rtl=<el.l~ --=z [ t l~-"( l+I t [ )  

Now suppose 0 < a < l .  Here, we show K satisfies Theorem 4 (we take h(u)= 
1 

2 [u]i-zT). We show that g(t) satisfies (12) for 0 < a <  1 in example 9' in 5. That 
k(t) satisfies (18) can be seen by inspection. From (20), it follows that (17) holds. 

And for [u[:>l, again by (20) 

dt 
fltl~_2[ul--L-gdt[k(t)[[g(t-u)-g(t)[-~ B l u l  (l+ltl)ltl _. 

<=B. 

Now the proof of  the Corollary is complete. 

4. A regular kernel  that does not map H 1 into L ~ 

In this section we shall show that the kernels in (7) do not map H 1 into L 1 
continuously. I have studied these kernels in earlier papers [15], [16]. The proof 
that these kernels in (7) are regular will be done at the end of this section. 

Let us begin with the following Theorem. 
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Theorem5.  Suppose K~y(t)=k~y(t)g(t) for - o o < y < o o  and Ko( t ) - -K( t )=  
k ( t )g ( t )  (ko(t)=k(t)) .  Assume also that K is a regular kernel and [K(t)l<= 
B(1 + It I) -1. Here, we let c be a non-zero real constant. I f  

(i) IIK~ylh,~ <- M(y)  for - ~o < y < 0% 

k( t )  for - o o <  y < ~ .  
(ii) k,y(t) - (1 + It l) 'cy 

Then, i f  IIl(,flll<=Bllf[Im for all f E H  1, then 

IIK~y*f!ll <- g'M~(Y)l l f l l l : ,  

where B" is a positive constant indep, o f f  and y and M l ( y ) = M ( y ) +  1 + lyl. 

Proof. I t ' s  enough to prove the Theorem for (1, 2) atoms b with support  in 
[0, [I[]. We note first, 

(21) I~1 IK~y * b (x)l dx <- (2 lI I) 1/2 IlK~y * b[[= 

<= BlllXZZl[Kj~,2llb[h <= BM(y) .  
We now show, 

Lemma.  I f  K is a regular kernel, and i f  b is a (1,2) atom with support in 
[0, II[], then 

f, dx lk (x ) l l g .b (x ) [  <-B+f I g . b ( x ) l d x .  
x[=~2 I11 Ixl-~ 2 IXl 

Proof of  Lemma. 

By (9) we note that  
]I[-l  k * z1(x) g . b(x) 

= g*b(x)- f  dt(k(x-t)-k(x)){g(x--t)b(t) Z,(t) .b(x)} ---Viv-g 
hence, 

(22) f/l-lftxl   ,, Ik * xt(x)l [g * b(x)[ dx  

~- flxt---~ t~l [K* b(x)[ dx 

+ f l=l~_,lxt dx f dt [k(x-t)-k(x)[ g(x-t)b(t)-~ g. b(x)l 

~-- B+flxl_~zlt t o  IK*b(x)l dx 
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just as in (10) since K is regular. But, 

[l[-i f x~_,t dx If dt k(x-t)Zt(t)g*b(x)l 

= axlf  a,(k(x-,)-k(x)+k(x))x,(,) g,b(x) l 

----> [I]-1 flxl-~= I/I dx { f dtk(x)Zt(t)g* b(x)[ 

- f dt(k(x-t)-k(x))z,(t)g*b(x)[} 
hence, 

(23) 

hence 

f,x,== ~,, dx lk(x)l Ig* b(x)l 

IIl-~ f dxlk*zz(x)llg*b(x)l 
Ixl_~2 [I[ 

+[II-~ f dtz~(t) f l~l~2[,~ dx[k(x-t)-k(x)[ [g.b(x)[. 

Since K is regular and from (22) and (23) we get the lemma. 
Now back to the proof of Theorem 5. Again just as in (9) we get that 

K~y. b(x) =fk,y(x-t)g(x-t)b(t)dt-lll-~fdtk~y(x-t))~,(t)g*b(x) 

+ I / I - I f d t k i y ( x -  t)Xz(t)g, b(x) 

f .~f=~,l Ix,,. b(x)[ dx 

<= f lxl.,I,I dx f dt[lqy(x-t)-k~y(x)[ ] g ( x - t ) b ( t ) - ~ g . b ( x ) l  

+ [I[-a f,=,.=,=~ ax [k,,. z,(x)[ Ig* b(x)[. 

Note that from (iii) we get that 

(k(x-t)-k(x)) ( 1 
k~y(x-t)-k~y(x) = (l+[x_tl)~cy" +k(x) -(l +[x_tl)~y 

since K is regular and. IK(t)l~_B(l+ltl) -I we get 

fr=t_~21ii IK~,. b(x)l dx <= 2B~B2+2(1 + [yl)B1B2 

+I I I -1  fl.I-~', m dx [kiy �9 Zi(x)l [g * b (x)[ 

(1 +~xly cy ) 

<= B(l+ly[)+lll-l f dx ftdtIk,y(x-t)-kiy(x)I[g*b(x)[ 

+fl=l~-2JII dx ]k~y(x)] ]g * b(x)[. 
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Hence, 

(24) f IKiy*b(x)[ dx  <- B(1 + [yl)+f~xl=>2~/l dxlk(x) l  ]g .b(x)[ .  

Now from (24), (21) and the lemma we get our Iesult. 
I believe a better appreciation of Theorem 5 will occur after we apply it to 

the kernels in (7). We begin by setting ( z = x + i y )  

e i t ( l og  ItE) n 

(25) gz ( t ;  3) = (1 +[tl)l/2+(1-z)/2(log(2+lt[)) ~ ' 0 < rl < 1 
_.< l ~ f l  x and 0<_-8=~t~-t/).  

Theorem 6. There exists a regular kernel that does not map H ~ into L 1 contin- 
uously. More precisely, the kernels in (7) do not map H 1 into L ~ continuously. 

Proo f  Now for the kernels defined by (25) we see that K(t;  6) (set K(t;  6) = - 
K0(t; 8)) is a regular kernel. Just take k( t ;  6 )=( l+[ t t ) -~ l~Oog(2+[ t l ) ) - z  with 

K(t;  6)=k( t ;  (5)g(t) and note that - ~ k ( t ;  6) <-B(l+ltl) -3/2, ]g(t)l<=(1 + ]tl) -1/2, 

as long as 8-->0. We note that KCL~ is clear. 
Now assume that K(t ;  8) maps H ~ into L ~ (8 fixed) that implies (by the Lemma 

contained in the proof of Theorem 5) that 

f dx Ik(x; 6)1 lg*b(x)[  <- B, 
IxI-~21II 

B a positive constant independent of b and 111. Now consider the kernel 
K(t;  ~ ~- (1 - t/)). Hence, -~(1 --q)) and k( t )=-k ( t ;  ~ ~-(1-t/)), where we set K ( t ) - K ( t ;  1 

fl l-  t,J ax Ik(xlt [g* b(x)] <= B 

since Ik(t)]<=fk(t; 6)1 for 0<_-8<_-~-(1-r/) and all t. Hence by Theorem 1 we get 
that K maps H ~ into L I continuously. Also the conditions (ii) and (iii) of Theorem 5 

k(0 
are satisfied by Kt,(t ) (=-Ki,(t; {(1- t / ) ) )  since here we have k,r(t ) -  (1 + [tl) -i'/2 

with Kiy(t)=k~y(t)g(t  ). In [16; formula (11)], I showed for 8 = { ( I - t / )  

(26) ilgl+irZta, b3llz,2 <= B(1 + lYI)- 
Kl+~( t )  

K~y(t) -- (1 + It[) a/2 this implies that 

(27) IIKJ2,~ ~ B(1 + lYl). 

Now it follows from (27) that condition (i) of Theorem 5 is also satisfied by K~y(t) 
and hence that implies (by Theorem 5) that 

IlK~r*fll 1 ~ B(1 + lYl)IIfH ,O. 
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Hence from (26) and the estimate above we get by Theorem A of Macias that 

Ilgx*fllo ~ Bllfllp for lpl = 1---2x ( 0 < x <  1), 

this positive constant B is independent of fl  (Note this family {Kz} defined by (25) 
is an analytic family). But by [15; Thm. 3] I know that Kx(t; ~-(1--77)) does not map 

2 
L p into L ~ strongly as long as 1 <P=<I + . Hence we get our contradiction. 

t/ 
I would like to point out that in [15; Theorem 2] it was shown that Kx(t; ~ 7(1 -~)) 

does map L p into L p weakly for 1 = 1  x 
p 2 "  

5. When does (12) hold? 

As I have explained in 1, we could assume that K ( t ) = 0  for t < 0  (or for 
t>0) .  And so we have K(t)=k(t)g( t )  and g(t)=]a"(l+t)ll/% g"~~ for t ~ 0  and 
g ( t ) = 0  elsewhere. In this section, we shall get a partial answer to when g(t) sat- 
isfies (12). In particular, our results will imply that g satisfies (12) when a(t)= It I a, 
a > 0 ,  a .~l  and a(t)=t( log [t]) ~, r/>0. 

We assume throughout that la"(t)l is positive outside a compact set C=[0,  M]. 
For a given x let tx denote the point where a'(tx)=x, of course when such a solu- 
tion exists. Of  course, the arguments that we use here also apply to the cases when 
a'( t )=x has a finite number of  solutions. 

We begin with the case whereby tx~C and here we set 6x=]a"(tx)[ -1/2 and 
Px = [ tx -  fix, tx + fix] (note tx r C). Also, we assume 

(28) sup sup In"(1 +t) l+[a"(v)[  =< Ba4 
x c R  . . . .  , ~ x  la"(u)L 

sup is only over those x ' s  where t~,~ C. 
We use the following conventions. When we write 

g(t,x)~ for t > u, 
that means either, 

O) g(t, x)>-O for t>u  andg( t ,  x) is decreasing as a function o f t  for t>u; or, 
(ii) --g(t, x)>=O for t>u and -g ( t ,  x) is decreasing as a function o f t  for t>u. 

And similarly for the notation g(t, x)t for t<u. 
Also for each tx, 6x (tx~ C) 

la"(l + t)l 1/z 
(29) a ' ( t ) - x  ~ for t >  t~+6x. 
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Furthermore, let t~EC or suppose no t~ exists, then we assume 

[a"(1 +t) l  1/2 
(30) ~ for t > 2 M  

a ' ( t ) - x  
and 

la"(1 +2M)I  1/~ 
(31) sup la'(2M)-x[ <= BI~, 

where the sup is over all those x 's  where either t~,EC=[0, M] or no t~ exists. 

Lemma 7. Assume g ( t ) =  [a"(1 + t)lll2eia(t) for t>-O, gELlo c, la"(t)l is positive 
outside some compact set, a(t) satisfies (28), (29), (30), (31) and 

(32) [ a '~+ t ) l l / 2 t  for M < t < t x - 6 x .  
x--a'(t) 

Then a(t) satisfies (12) and hence gELS. 

Proof. First suppose that t~ exists and t~r So consider, 

f ,7+~x zt~ ) g(t )e-lt~ dt + ftx+~x., tx-ax 2ta'bl(t) g(t )e-itx dt 

p t x - - ~  x . M 
+JM Zt,.bl(t)g(t)e-'t~dt+fo Zt,,bl(t)g(t)e-it~dt 

---- I + I I + I I I + I V .  

Since g6Llo o, we get that [IVl-<_f0 ~ Ig(t)[ dt. To do III, we get by (32) (6~ is de- 
fined above) 

-~=-ax la"(1 + 0[ 1/2 l IIIII = j ~  Zt~,b~(t) (x-a ' ( t ) )  (x-a'(t))J~(t)e-itXdt 

la"(1 +t~-6~)] 1/2 "<: - < g  
= I ' ( t )  '(t  6)1 = 14 

a x - - a  x - -  x 

by (28) and the mean value theorem. 
To do II, using (28) we get 

[II[ <= Bla[a"(L,)l~/26~, <= B. 

To do I, by (29) (and just as in III above) 

]a"(1 + t~ + 6~)l ~/2 
I I l  - <  < B14 

la (t~-k6x)-a (t~)l 

again by (28) and the mean value theorem. 
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Now suppose txC[O, M] or t x does not exist. We look at 

f2  ~ g(t)xt,,ba(t)e-"X dt + f ~  M g(t)Zta, bl(t)e-UX dt ----- I+ I I .  

[I] ~ f :  [a"(1 +t ) l  v~ dt. And by (30) we get that 

fa"(1 +2M)I  1/2 
[II[ <-- and by (31) we get that 1II1 -<_ B~5 

[ a ' ( 2M)-x l  

and hence the lemma is proven. 

Example 7'. The functions a ( t ) =  It I a, a>=2 satisfy (12). 

Proof We take C=[0,  1] and show that for x > 0  that these functions satisfy 

Lemma7.  For  x > 0 ,  then G=[x)  ~-i ', , now tx~C implies xz>a and in this case 

( a '~  a -~  
~x=(a(a--1))-1/2[x~ ~---~Y-~). We first note that (28) holds. We also note that 

(1 +t )  (~-2)/~ 
at a-1 - x  > 0 and is decreasing for t :> tx 

hence (29) holds. And similarly we get that (32) holds. We note that GCC implies 
0 < x < a  and then to show that (30) and (31) holds is routine. 

Now for the case x < 0 ,  we consider 

f2 dtg(t)e-itx+ f ~  (1 +t)a/2-1elt"e-itX(ata-l-x) dt 

ta/2-1ta/2 (a q - ~ )  

and note that f~ [g(t)] dt<=B. For the second term, keeping in mind for fixed x 

f ~  . . . .  l i m f  n 

and observing that 

ta_l and 

are positive and decreasing for t=>2, we get by two applications of the second 
mean value theorem for integrals that 

e" I 
rr a 1 <= B Je (at - -x)e~t"e-it~'dt <- B, 

1(x) 
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B a positive constant independent of  n and x. And now the proof  of  the Example 
is complete. 

Now before I begin the next lemma, let me point out some things. We let e 
denote a positive constant with e < l ,  for most applications we could take e= l ]2 .  
For  t~r  M] we shall assume M<t~<=etx<=t~-6~, ~ being some positive 

1 constant depending on x. In most cases #~=et~=y t~. 

Lemma 8. Suppose g(t)=la"(l +t)lme ~0,  t>=O, la"(t)] is positive for t > M  
and [a"(t)[~ for t > M  (for some M). And suppose a(t) satisfies (28), (29), (30) 
and (31) and gEL,o c. I f  for each t x>M ( O < c < l )  

1 
(33) x_a , ( t )  f for M < t - < c t  x, 

and for some It x (as above) 

(34) sup �9 1 [a"(1 px)l ~2 
xER Ix - -a ' (~ ) l  I- ~ ~  ) 

and 

(28') sup sup In"(1 + t)l .< B '  
14 xERctx~u,t~--tx--#x la"(U)l 

and the sup (.,.) in (28'), (33) and (34) is over those x 's  whereby tx>M. Then 
xER 

a(t) satisfies (12) and hence gELS. 

Remark. In most of our applications we could take c = 1/2 and replace (34) by 

1 

I ( r  I 
(34') sup , 1 - x  

xER a t x 

sup is taken over x ' s  whereby tx>M. And so for those a(t) satisfying the con- 
ditions of the lernma with (34') in place of (34) we would get that a(t) satisfies (12). 

Proof of Lemma 8. For t x>M we note that 

+f ,x+~x + f , x - ~  .. ff  Zto'bl(t)g(t)e-U~dt:=: fi,+ax"" tx-a~"" c,~ " 

P ctx pltx t~M 

+Lx +Jo ' "  

= I + I I + I I I + I V + V + V I .  

The estimates for I, II and VI follow just as in the proof  of Lemma 7. 
Now to estimate III, we note that since la"(t)]r and la"(t)] is positive for t > M  

that implies a'(t) is either increasing or decreasing for t > M  and hence Van der 
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Corput applies and we get 

I[lIl = [ f" -~zt . ,b~( t )  la"(1 + t)l~/2e i"(t) e-itx dt 
~ '  C t  x 

la"(1 + ctx)l x/2 <= B ,, 1/~ ~ BB14,  
la (t~-6~)l " -  

by (28'). Now to estimate IV and V, we note that 

I V + V = ( f ; ~ +  f2~lzto,.,(t) 

now by (33), (34) (and la"(t)10 we get 

( 1 , ) 
IIVI + IVI <- B Ix-a'(Ctx)l [a"(1 +/~x)l!/e-~ Ix-a '( /~)[ 

<= BBI~, 

and now the proof  is complete. 
Let me add (as stated in the Remark) that by (34') it follows that 

la"(1 + t)l 1/~ (x-- a" (t)) e i"<') e-itx dt. 
( x - a ' ( t ) )  

and so (34') could be used in place of (34). 
For the cases where either t S C  or no t x exists, the proof  follows just as in 

Lemma 7. 

Example 8". The functions a(t)=]tl", l < a < 2  and a ( t )= t ( log  It[)" (t/>0) 
satisfy (12). 

1 
Proof. In the cases where a(t)=[t] ~ we take M=4~/"(a(a - "  1))1/, and set 

C=[0,  M]. And now these functions It I" satisfy the hypothesis Of Lemma 8 with 
c = 1/2 and (34') in place of (34). 

Now we consider the cases where a( t )= t  (log t) ~, t > 0  and 0 < t / < l .  The 
cases where ~/~ 1 also satisfy Lemma 8 but the proof is slightly different (a little 
easier) and so we will stay with the cases where 0 < t / < l .  

Now since we are assuming that a ( t ) = 0  for t < 0  (which is purely a tech- 
nicality) we note a ' ( t )=x  only has solutions when x > 0 .  And so for x > 0  

(and x large), we take px=e~TJ . ctx=-} e-l&e xl/~ and note that a ' ( G ) = x  implies 
t~ ~ e xl/" and 

6x = la"(t~)l-'12 ~ x(1-,)/(2,)g(xlln)12 
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Now I need to check that the set Px=[tx-6~, tx+5~] "makes good sense" and 
also that ct~<-t~-3~. But we note that 

and so there is an x, 

t x - f x  e x:/" (1 x(:-"~/(2") 
-- e(X~/,)/2 ) 

so that 

X(1 - rt)/(2t/) 3 
1 -  e -~/" 

e ( X t ~ . ) / 2  - -  

for x>=x,~. And so we choose x~ large enough so that the above estimates are 
realized. And then we choose M=e(2~, )1~'. Then we select C=[0,  M] and note 
that g(t) satisfies Lemma 8 when tC[M, ~). 

I shall outline this argument. To show that (28) and (29) holds is clear and 
the proof  will be omitted. 

Now to see (30) we note that t~<=M or no t~ exists implies tx<=e(2XO ~/~ and 
thus x<=2x, (that very last inequality is also valid for negative x's). And we note 
that 

[a"(t)[ ~/~ 1 1 
a'(t)--x tl/2(logt) (t-~)/2 0og t )~-x  

is positive and decreasing for t>2M and so (30) is satisfied. 
In order to see (31) we note that 

ia"(1 + 2M)] 1/~ 1 1 ( x p  -")/2..] 
~_~2x,sup la ' (2M):-xl  ~ x~-~,sup (2M)l/~(log2M)(l_,)/2 (log2M)~_x = O(  e~X'", ) 

and so (31) is satisfied. 
Now that (33) holds is clear and since #~=e  (~/2)1/" then in order to see the 

rest of  (34) we note (t~>=2M implies x>=2x,) 

[a"(l +#~)[1/2 x(1-.)/(2.) 
sup --< B sup -< B. 

~_2x. tx--a'(ct~)[ - e (~1'")/2 = 

And of  course la"(t)l~ for t > M  and so we are finished. 

Lemma9.  Suppose g(t)=la"(l +t)lll2e ~a(O, t~O where la"(t)l is positive out- 
side some compact set, gELlo~, a(t) satisfies (28), (28'), (29), (30) and (31). Also, 

[a"(l+t)l~/2 ~ for t > M  and for t~r 
a'(t) 

1 1 
(33') x I for M < t < = y t ~  

- - - 1  
a'(t) 
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and 

(34") 1 
sup sup <= B~z 
xERM~t~--tx/2 ] 1 - a-~t) ] 

where the outside sup is over those x's where t~(~C. Then a(t) satisfies (12) and 
hence gC L~. 

Proof The argument here follows very closely to the argument found in Lemma 8, 
except for the term IV. To do IV here, we note that, 

I [a"(1 +011/2 (x-a ' ( t ) )  e 't~e"~')dt 
x 

Now using (33'), (34") and ]a"(1 + t)l 1/~ a'(t) 4 for t>M, we get that ]IVI ~B and now 

the proof is complete. 

Example 9'. The functions a(t) = [t I", 0 < a <  1 satisfy (12). 

1 
Proof Let ca=4a-(a(l_a))l/a, then we note that 

f o  ~ g(t)e-itXdt ~__-" fo~ 

And for tE[e,, ~) we see that g(t) satisfies Lemma 8, here we take C=[0, ca]. 
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