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1. Introduction 

Let U be a bounded open subset of C". Denote by PSH (U) the plurisubharmonic 
functions on U. We construct a capacity D (in Choquet 's sense, of. Choquet [6]) 
on U, related to the complex structure. A compact set K is of vanishing D-capacity 
if and only if K is C"-polar. (See Josefson [8] and Lelong [9] for definitions and 
results concerning C"-polar sets). We also show that, in many cases, the D-capacity 
of a compact set K is related to the extremal plurisubharmonic function 

li---m sup {~0(z'); q~ <_- 0; q~lK ~ - 1 ,  rpEPSH(U)} 
z t ~ z  

studied by Bedford [2], Siciak [10], Zaharjuta [12] and others. 

2. Capacitary functionals 

Definition. Let S be a compact space. Denote by T(S) and C(S) the real-valued 
and the continuous real-valued functions on S respectivly. A eapaeitary functional 
L is a mapping 

T(S) L ,. [0, + co] 
such that L(1)<  + oo and 

i) I~lL(h)= L(o~h), V~ER, VhET(S). 

ii) L(hl +hz) ~-- L(hO+ L(h,.). 

iii) I f  0 --< h I ~ h2 then L(hl) ~ L(h~). 

iv) If  h,EC(S), h,, >- hn+ 1 ~ 0, nEN then l imL(h,)=L(lim h,,). 
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Remark. Every eapacitary functional is continuous on C(S). 

Remark. Anger [1] studies capacitary functional without condition iv). 

Definition. Let S be a compact space and L a capacitary functional. Define 
a set of measures ML by 

M z =  {/~=> O; fhd#<=L(h),  Vh~C(S)} 
and L by 

L(h) = sup f* Ih[ d/t. 
~tEM L 

Remark. Since 0=<f d # ~ L ( 1 ) <  + o~V#CML, ML is weakly compact. 

Proposition 2.1. For every non-negative upper semicontinuous function h we 
have L (h) = L (h). 

Proof. If  h is continuous then it follows from the Hahn--Banach theorem that 
there is a measure/~ such that 

0 f h d . = L ( h )  

ii) f fd l~ <= L(f)  VO <=fEC(S) 

and we can choose /z to be positive (cf. Anger [1]). Hence, we have proved the 
statement for continuous functions. 

Let now h be any upper semicontinuous function on S and choose a decreasing 
sequence {h,}~= 1 of continuous functions on S with lim h,=h. Since L(h , )=  

L(h,), VnEN it is by iv) enough to prove that 

lira L(h.)  = L(h). 

Choose p, EML so that L(h.)=f h.d#., n~N, We can assume that/~, tends to 
# weakly where #~ML. For each fixed m we then have 

f hmd#= lim f hmd~t, >-_ lim ( h ,  dl~,= lim L(h,) 

so 

f h dt~>= lira L(h,)>~ f h d# 

which proves the proposition. 

Corollary 2.2. Let M be a weakly compact set of measures. Put 

A(f)  = sup f *  Ifl d/~, fCT(S). 

Then A ( f )  is a capaeitary functional and 
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& a capacity. Here P(S )  denotes the subsets of S and X~ the characteristic func- 
tion of E. 

Corollary 2.3. For every non-negative universally measurable function h on S 
we have L(h)<-L(h). 

Proposition 2.4. Let S be a compact space and F a convex cone of negative upper 
semicontinuous functions on S containing all the negative constants. Let R be a negative 
continuous linear form on F. Then /~(h)=inf {R((P); (PEF, (p<=-]h[} is a capacit- 
ary functional. 

Proof. We restrict ourselves to iv) in the definition of capacitary functional. 
The verification of i)--iii) is easy and will be omitted. 

Assume that {h,}~= 1 is a decreasing sequence of non-negative continuous func- 
tions on S. By iii) it is clear that R(h,)>-R(h) where lim,_,+= h,=h(->0). Given 
e > 0  choose (p E F such that ( p < - h + e  and R(h)+e>R((p). Now s = u ,  {(p+h,<e} 
so there is an n, such that ( p - e < - h , ,  on S. Hence 

R(hn) <= R((p-e)  = R((p)+eR(--1), n ->_ n, 
SO 

/~(h) =< R(h,) -<=/~ (h) + e ( I + R ( -  1)), n>n~.= 

which proves the proposition. 

Definition. Let z be a fixed point in the compact set S; we also write z for the 
linear form on T(S)  defined by 

T(S)  ) h ~-,--h(z). 

Then 5 denotes the capacitary functional constructed in Proposition 2.4, 
Mz={#=>0; f h  d l ~ , ( h ) ,  hEC(S)} and ~(h)=sup,  eu. f * Ihl d~ (el. the defini- 
tion just before Proposition 2.1.) 

Proposition 2.5. I f  #E Mz then 

for every universally eapacitable set E. 

Proof. Let K b e  any compact subset of S. Then 2(Zr)=~(Zr) by Proposition 2.1. 
Now, if  (pEF and #EM, then (p(z)<-f (p d#. To see this choose {h,}~= 1 a de- 

creasing sequence of continuous functions on S with lim,~ + = h, = q~. Then 

- f ( p  d/~ = l i m f - -  h, dl~ ~= lim ~ ( -h , )  <_- ~(-(p) = -(p(z). 

Hence 

f~(xK)d~--inf{-f(pdm (PEF; p -<--Xr} 

< = inf {--(p(z); (PEF; (p <-- -ZK} = z(zK) 
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so 

and both expressions are capacities which completes the proof of the proposition. 

Corollary 2.6. ~(Z~) = ~ ( ~  (X~)). 

Corollary 2.7. I f  E is universally capacitable and if  z(zE) is upper semicontinuous, 
then ~ (g~) =,~ (XE). 

Proof. e(e(z,3)->_e(x~)=~e(z,~)=~(e(z~))=~(e(x~)) so ~(x~)=e(z~). 

Corollary 2.8. #EMzc, q~(z)<=f~odlz V~EF. 

Proof. It follows from the proof o f  Proposition 2.5 that if pEM~ then 
~p(z)~fq~dp for every ~pEF. Conversely, assume that cp(z)<=fcpd/~ for every 
q~EF. Given O<=hEC(S), choose ~pEF with ~p<= - h .  Then fh dp<-f -~o dp~_ -~p(z) 
and it follows that f h  dl~<-~(h) so #EM, by definition. 

Corollary 2.9. For any bounded non-negative function h we have ~(h)<-~(h). 

Proof. Given #EM~. If  0 ~ h  is a bounded function and if r q~<= - h  then 

f *  h d~, ~ f -~o d~, ~=-~(z) 
so ~ ( h ) ~ ( h ) .  

3. Extremal plurisubharmonic functions in a bounded set in C" 

Let U be any bounded set in C". Denote by F the convex cone 

F =  {~0EPSH(U); q~ <_- 0, lim ~0(z')exists VzEOU}. 
ZP~Z 

(The value - oo is allowed.) We want to apply the result of the preceeding section 
and so we put for zE U 

~(h) = inf{-q~(z); ~pEF, ~o _-< -[hi} 

Ms = {~ ~ 0; fh dr <= 5(h), V0 ~ hEC(U)} 

~ ( h )  = s u p  fhd.. 
We already know that ~,(h)<=~(h) for any bounded function with equality if h is 
upper semicontinuous. 

Consider now the family (~"(t~E))EEP(O)" 
Since ~0~/~)=5(XK) for every compact set K and since ~()~g) is Lebesgue- 

measurable for every E it is clear that ~(ZK) is Lebesgue measurable. By a proof, 
similar to that of  Theorem 3.5 in Cegrell [4] we have the following proposition. 
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Proposition 3.10. The set function d defined by 

P(U)~EI a fu~(ZE )dz  

is a subadditive capacity on U. 

Proposition3.11. I f  E c U  is C"-polar then d(E)=0.  I f  E = 0 ~ = I K , ,  where 
d ( E )= 0  and 1s are compact subsets of U then E is C"-polar. 

Proof If  E is C"-polar then ~(~(E)=0 a.e. (cf. Siciak [10]) and since ~(ZE)= < 
z(ZE) (Corollary 2.9) we have d(E)=0 .  

On the other hand, if E=O~=IK,  where K, are compacts and d(E)=O, 
we have to prove that E is C"-polar. It is enough to prove that K, is C"-polar. But 
~(X~)=~(ZK) by Proposition 2.1 and we conclude that Kn is C"-polar (cf. 
Siciak [i0]). 

Remark. Proposition 3.11 is also proved by Gamelin and Sibony [7, p. 62]. 

Theorem 3.12. Denote by L the capacitary functional 

by D the capacity 

h ~-~ L(h) = f u ~ ( h )  dz, 

P(U)3E~+D(E) = sup #*(E) 
. u s  L 

and by d the capacity defined in proposition 3.10. Then d (E)=D(E)  for every uni- 
versally capaeitable set. 

Proof We know that d and D are capacities, so it is sufficient to prove that 
d(K)=D(K)  for every compact set K. But then, again by Proposition 2.1, we have 

D(K) = sup /~(K) = -,,[" ~(Z~) dz = ~[~ ~(ZK) dz = d(K). 
ItEM L 

Remark. We know that L(Zr)=0 if and only if E is Cn-polar but we do not 
know if D ( E ) = 0  implies that E is Cn-polar. This problem is equivalent to the 
following problem: 

If  a Borel set has the property that every compact subset in C"-polar, is the 
set then necessarily C"-polar? Thus, this question has a positive answer if and 
only if there is a capacity vanishing exactly on the C"-polar sets. In that case D is 
such a capacity. In any case, the following proposition is easily proved. 

Proposition 3.13. Let E be a subset of  U. Then E is Cn-polar i f  and only i f  there 
is a decreasing sequence {O,}~~ 1 of open sets containing E such that lim,_~ + ~ D (O,) = 0. 
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4. Extremal plurisubharmonic functions in regular domains 

Let U be an open and bounded subset of C". If there is a ~ P S H ( U )  such that 

A~ = {zEU; ~p(z) < ~} 

is relatively compact in U for every ~ < 0  and U = U , < o A ,  then U is called 
P-regular (el. Siciak [10] and Zaharjuta [12]) or hyperconvex (el. Berg [3] and 
Stehl6 [11]). I f  ~b can be extended to a plurisubharmonic function in a neighborhood 
of U we say that U is essential or amply P-regular (el. Zaharjuta [13]). 

Consider the following extremal plurisubharmonic function (cf. Bedford [2], 
Siciak [10] and. Zaharjuta [12]): 

he(z) --- sup {q~(z); q~EPSH(U); ~p ~ 0, ~ol~ ~ - 1 } .  

If  U is P-regular and K compact in U then it is clear that 

hK(z) = --z(ga) = --e(Xr) 
and since 

is a capacity we have proved the following theorem, which gives a partial answer 
to a conjecture posed by Siciack in [10, p. 149]. 

Theorem 4.14. Assume that U is P-regular and that {K,}~~ is an increasing 
sequence of compact subsets of U such that U~=t K,=K~ is compact in U. Then 
lim,_~ + o~ hK = h r .  

Remark. This is a partial answer to a conjecture posed by Siciak [10, p. 149]. 
This result is also used implicitly in Zaharjuta [12, Lemma 6]. 

Lemma 4.15. Assume that U is P-regular and that K is compact in U. Then 
z(z~) is upper semieontinuous. 

Proof Given s>0.  Let N be any compact subset of U and choose M such 
that M r  on N where ~pEPSH(U), q~<=0 and ~p lK=- l .  Choose (~0,)~=~ 
a decreasing sequence of negative continuous plurisubharmonic functions, defined 
near {M~k<-e}, with limit q~. Take n so large that ~ o , - e < - 1  on K and put 

[sup (qg,-e, M~9), zE {M~ < -e}  
0 = { M e  

It is clear that 0CPSH(U) and that 0-<_-1 on K. 
Furthermore, 0 is continuous on N since 0=q~,--~ on N. Thus hr can be 

written as a supremum of continuous functions on N. Since N was any compact 
subset of  U and since ~(Zr)------hr,(z) the lemma is proved. 
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Remark. See also Zaharjuta [13, Theorem 3.1]. 

Corollary4.16. It follows from Lemma 4.15 that i f  U is P-regular, then 
(z(z~))~v~u) is a swarm for every compact subset N of  U. 

In particular, by Theorem 3.6 in Cegrell [4] ~(ZE) is a universally capacitable 
function for every universally capacitable set E. 

Note. A class of non-negative functions (LE)~r is called a swarm if the 
following two conditions hold: 

i) E~-~Le(x) is a capacity for every fixed x, 
ii) LK is an upper semi-continuous function with compact support for every 

compact set K. 
For the rest of  this section we assume that U is amply P-regular in C ~. We wish 

to study the connections between the capacity C defined in Bedford [2] and the 
capacity D defined in Section 3. It is not known if C is a capacity in Choquet' s sense. 

Theorem 4.17. To every compact subset N of  U there is a constant CN such that 

C(K) < CND(K) 

for every compact subset K of  N. 

Proof. Let N be any compact subset of U. By the same method as in CegreU 
[5, Section 6], we prove that there is a constant CN such that 

f u ddr q~A dd*q = < c~ ll~[l. 1~I. (*) 

for all ~oEPSH(U)nL=(U) and all tlEPSH(U)nLI(U). Here IL" [Lv is the L=-norm 
and 1. Iv the Ll-norm. To prove (*)  we choose 0 to be a testfunction on U which 
is equal to 1 near N and 0<=0_<-1. We then have 

0 <= f u  ddCgA ddcq -~ f v  9ddCqAddCO" 

The right hand side of this inequality defines, for 0 fixed, a bilinear form on 
[3-PSH (U) n L = (U)] • 6-PSH (U). (See [5] for the notation of delta-plurisubharmo- 
hie functions). To prove continuity of this form, it is enough to prove separate con- 
tinuity and this follows from Cegrell [5, Theorem 2.3.1] since 

fv ~ dd*qAdd* 0 >= 0 for ~o, r/E PSH(U), ~pEL = (U). 

This completes the proof of  (*). 
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Now,  i f  K is c o m p a c t  in N, we have  

C ( K )  <- f N dd~(--2(ZK))Add~(--Z(ZK)) <- c" f ue(zK) dz  

s o  C(K)<=CND(~:). 

Remark .  By Bedford  [2, P ropos i t ion  4.1] we have  for  every pa i r  o f  compac t  

subsets  K and  K" o f  N :  

j '(dd*(--e(ZK')))2ZK .< f (ddc(--Z(XK))) 2XK 

so, by  Theo rem 4.17, for  every K c o m p a c t  in N the measures  

(dd ~ ( - e (ZK))) 2 ZN E Mo 
CN 

where  M D =  {/~-->0; g(k)<=D(K),  V K c o m p a c t  in U}. ( C o m p a r e  with Theorem 3.12.) 
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