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1. Introduction 

Let D ~[ O~ (i.e., D has a nontrivial Green's function) be a plane region and 
let Lp(D), l < p < ~ o ,  be the usual Lebesgue space of functions on D, relative to 
the area Lebesgue measure da(z)=dxdy. For l_-<p<~o and q=p/p-1, the 

pairing between fCLp(D) and gELa(D) is given by (f ,  g)=fDf(z)g(z)da(z). The 
class of holomorphic functions on D will be denoted by H(D) and we write Bp(D)= 
Lp(D)•H(D). The Banach space Bp(D) is called the Bergman p-space of D and 
its norm is given by Ilf[lp={fDlf(z)lPd~(z)} lip. Let KD(Z, ~) be the Bergman 
kernel of D and consider the "Bergman projection" (whenever is defined) 

= (:, :<o(.. = f oi(,)l<o(z. ,,(z). 

When D is subjected to some mild smoothness requirements, it was shown 
in [5] and [6] that PD is a bounded projection of Lp(D) onto Bp(D), for 1 < p <  ~o. 
With this we have the decomposition Lp(D)=Bp(D)@B~(D) • This was done 
by exploiting an integral operator involving the "adjoiat"  [3] of the Bergman kernel. 
The latter has the required singularity of the theory of singular integrals. 

Quite recently Solov'ev [12], using different methods, has announced a number 
of results on the boundedness of the Bergman projection provided D is a bounded 
finitely connected region with some smoothness requirements on its boundary. 
These results of [12] are similar to those of our previous work [5] and our present 
method of proof can be also applied to extend them to the more general 
ease of D ~[ O G. 

In this paper we extend our previous results [5, 6] to the more general case 
when D~[Oa and we investigate more extensively operators related to the "pro- 
jection" PD" We also characterize all regions D~ Oa for which PD is a bounded 
projection on Lp(D) by introducing a condition of the Muckenhoupt 's type. The 
treatment of these problems will also yield new identities between certain relevant 
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operators which may be of some interest and will enable us to identify the annihilator 
Bq(D) • of  Bp(D). 

In w 2 we review some known results from the theory of singular integrals while 
in w 3 we introduce the Bergman--Schiffer transforms. In w 4 we establish the various 
relationships amongst the Bergman--Schiffer transforms, the Bergman projection 
and the Hilbert transform when D is an arbitrary region, D ~[ O~ (Theorem 1 and. 
its corollaries). In w 5 we introduce the crucial class of regions Wp (1 < p  < ~)  in 
terms of a universal cover mapping of  a region. The fact that this definition is 
intrinsic is proved in Theorem 2. The intimate connection between this class and 
the boundedness of the Bergman projection is demonstrated in Theorem 3 and 
Corollary 2. A detailed study of  the Bergman projection is conducted in w 6 (Theo- 
rems 4, 5 and their corollaries) while w 7 is devoted to the identification of  the annhil- 
ator Bq(D) • as a Sobolev space and as an image of a Bergman--Schiffer transform 
(Proposition 4 and its corollaries). 

2. Singular integrals 

In this section we collect some known facts from the theory of singular integrals 
which will be needed in our work. Throughout  this paper we shall restrict ourselves 
to the case 1 < p <  co with q=p/p-1. We shall consider certain transforms (in- 
tegral operators) on L~(C). For  a kernel h(z, ~) we define the transform 

and its (formal adjoint) 

(Hf) (~) = f c h (z, Of(z) da (z) 

(H*f)(() = f c  h((, z)f(z) da(z). 

When the kernel h(z, 0 is singular, the integrals shall always be taken in the prin- 
cipal value sense. Let ZD be the characteristic function of the measurable subset 
D of  C and write HD=HzD. Therefore, if H maps Lp(C) into Lp(C) we can view 
HD as a mapping of  Lp(D) into Lp(C) or Lp(D) in a natural way. In particular, if 
H is bounded on Lp(C) then HD is bounded on Lp(D). Also, H~ =H*zD on Lq(D). 

We consider the following familiar transforms; the Cauchy transform 

( S f ) ( ( ) = l  f c  z l~f(z)da(z)  

and the Hilbert transform 

(Tf)(~) = - fc s da(z). 
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It is well known that these operators are bounded on Lp(C) for any l < p <  co, 
and, moreover 

(2.1) T * T  = TT* = I 

on Lp(C) with I being the identity operator on Lp(C). From this follows that 

T* TD = T* TZD = (T* T)D = ID, 

TT~ = TT* ZD = (TT*)D = ID 

on Lp(D) with I D being the identity operator on Lo(D). 
Let z = x + i y  and let f be a differentiable function near z. We write 

f :  = O=f = ~ (Oxf--iOyf), 

f~ = Oef = @ (O J +  iO, f ) .  

By a use of  Green 's  formula one easily obtains: 

Proposition 1. Let f be o f  class C a in C and assume it has a compact support. Then 

f = S * f , ,  f - = - S f ~  
and 

L = - T % ,  A =-TL. 

We also note the following known fact: namely, if fELp(C) then Sf i s  absolutely 
continuous on almost every line parallel to either axis and, therefore, (Sf)~ and 
( S f )  e exist almost everywhere in C. In fact, ( S f ) z = - f ( z )  and (Sf)e=(Tf)(z) 
(for almost all z in C). 

Let d = {z: ]z I< 1 } denote the unit disk. We recall, that if 35 is a circle orthogonal 
to the boundary of A, 0d, then the part of L in A is called a noneuclidean line in 
the Poincare's model of hyperbolic geometry. Naturally, a diameter of d is also 
a noneuclidean line and every noneuclidean line separates the noneuclidean plane 
d into two noneuclidean half planes. Any part of  a noneuclidean line is called a 
noneuclidean segment. 

By a noneuclidean polygon in A we shall mean a subset S of d bounded by 
a simple curve consisting of  finitely many noneuclidean segments. The family of  
all such polygons is denoted by N(A). Evidently, th i s  family remains invariant 
under the action of  any AEM6b (A) and it covers A. 

Let 2 be a non-negative locally integrable function on A. The space 35p(A: 2) 
stands for the class of  functions on A for which 

is finite. For  future reference we shall record the following proposition which is 
due to Coifman and Fefferman [7] (see also [2]): 
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Proposition 2. The Hilbert transform TA is a bounded operator of Lp(A: 2) 
into Lp(A: 2) if  and only if  

, 

(2.2) sup 2(z)da(z) �9 2(z) ,-i 

where the supremum is taken over all SEN(A). Here 

da(z)] p-l] < ~ ,  

IS[=~(s). 

The condition (2.2) on :t is called the Muckenhoupt M:condition. The family 
N(A) can be, of course, replaced by a variety of other families (see, for example, [2]). 
The advantage of using noneuclidean geometry, however, is clearly demonstrated 
in defining the class Wp in w 5. 

3. The Bergman--Schiffer transforms 

Let G=GD(z, ~) be the Green's function of the region D~O~. Thus 

GD(Z, ~) = H(z, ~)--log [z--(I, 

where H=H(z,  ~) is symmetric and harmonic in (z, ~)EDXD. The Bergman kernel 
K(z, ~)=KD(Z, ~) is given by 

K(z, ~) =-20=O~G 
and its "adjoint" L(z, ~)=Lo(z, ~) is 

L(z, ~) = - 2  0~O;G. 

Therefore, 
1 1 

L(z, ~) -- zr (z--~) ~ l(z, ~) 

where 

l(z, ~) = 2 0=O~H 

is symmetric and holomorphic in (z, ~)ED• The function l(z, ~) is holomorphic 
in (z, ~)ED• whenever the boundary OD is analytic. For this and other related 
results, one is referred to Bergman and Schiffer [3]. Also, it can be shown that 
l(z, ~) is identically zero if and only if D is a disk less (possibly) a set of zero inner 
capacity. 

In analogy to the Bergman projection 

(Pof)(~) = f v K(z, ~)f(z) da(z), 
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we also introduce the "Bergman--Schiffer" transforms 

and 

Therefore, 

(3.1) 

(Qof ) (O = f o L(z, Of(z) da(z) 

(Aof) (0 = f . t(z, Of(z) d6 (z). 

TD = QD W Ao. 

Throughtout the  remainder of this section we shall assume that the boundary 
OD is analytic. The class of all such regions will be denoted by A. In this case l(z, 0 
is holomorphic on D• and K(z, ~) is holomorphic in (z, ~) for (z, 0 ~ D •  
It is also a matter of  a straightforward application of Green's formula to verify 
the following statement (see [3] for additional details): 

Lemma 1. Let DdA. Then, for z, ~ED we have 

(3.2) 

where 

(3.3) 

Also 

(3.4) 

1 1 

(t-  ~)~ 

1 da(t) 
F(z,O =-~f_Doz (t_z)~(t_O~ ' ED-C--D.  

1 1 K(t, ~) da(t). l(z, 0 = f D l(z, t)K(t, ~) da(t) -~-~ f . 

Clearly, K(z, ~), F(z, ~) and K(z, ~)-F(z,  ~) are Hermitian positive definite 
kernels on D. Also F(z, ~) is holomorphic in (z, ~) for (z, ~)~DXD, 

4. Identities for general regions 

We now return to the general case namely, that D is a plane region, D ~ OG. 
Let {D,} be a canonical exhaustion of D where each D, belongs to A. The corre- 
sponding kernels of D,, K,(z, ~) and l,(z, 0 converge strongly in L2(D) and hence 
uniformly on compacta of D to K(z, ~) and l(z, 0 respectNely, when n ~  oo For 
these, see [10] and [13]. From these also follows that Lemma 1 remains valid for 
the general case too, and, especially, 

f ( 0  = ( f ,K( . ,~ ) ) ,  ~ED, 
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for any fEB2(D ). Here, of course, (3.3) holds and therefore, for a fixed ~ED we have 

r(z, 0 = 7: E. (z), ED = C - D .  

Therefore, 

This function is in B2(D ) for any fixed ~CD. In fact F(z, ~) is in Lp(C) for any 
fixed ~ED. Indeed, 

~ l l  --A i{ fED d'(t)~i]P 
IF(  ", I)IL=(C) <---- A=~- ;(e~,(t) p ~- It-~l  ==j . Lp(C) 

Here Ap is a constant which can be taken as Ap=klp- t -k~(p-1)  -1 with kl,  ks 
being positive constants independent o f p  ( l < p < ~ ) .  When p = 2 ,  since T is an 
isometry o n  L 2 (C), we even have 

1 II I 1  l do'(t) ~112 
-Y I I Z " ( t ) ~ l  L'(') = 7{f=~ I t - ( l ' ,  " 

I r ( - ,  ()IL~(C) 

W e n o w  introduce another transform 

(ADf)(r =( f ,  F ( - ,  1)) = f of(z)r(z,  I) da(z). 

Using (2.1), (3.3) and Fubini 's theorem we have 

1 (t--~) 2 1 [1 (t--z) 2 1 ] (A~,f)(O = --s f lr. -s f D f(z)da(z) da(t) 

= T* [Z~D TDf] (~) = T* [(1 -- Zo) To f ]  (~) 

= [(11)-- T~ TD)f] (~) 
on Lp(D). Hence 

(4.1) A,  = I , - T ~ ) T  o 

on LF(D), and, Ao is a bounded self-adjoint operator on Lp(D). 
The operators AD, PD and QD are always bounded on L~(D) by virtue of the 

fact that L2 (D) and B2 (D) are both Hilbert spaces while the "geometric" operators 
TD and A D are bounded on L v (1)). The following relationships amongst these oper- 
ators will be needed in our work. 

Lemma 2. Let D ~ 0~,  then on L2(D) the following hold: 

(4.2) A~Ao = A~) To, 

(4.3) A,  = TvPo = AoPo, 

(4.4) QDP D = A ; Q  D = 0 



The Bergman projection over plane regions 213 

and 

(4 .5)  A o = PD-A;AD. 

Proof. (4.2) follows from (3.2) and (4.3) follows from 0,4). Next, by (3.1) 
and (4.2), A;QD=A;(TD'Ao)=O. Also, by (3.1)and (4.3), QDeo=(To-Ao)eo=o 
and (4.4) follows. Finally, (4.5) follows from (3.2). 

This lemma provides us with rather interesting identities involving the oper- 
ators Qo and Po which are described in the following theorem: 

(4.6) 

and 

(4.7) 

Theorem 1. Let D~OG, then, on L2(D), 

Qo -- TD(ID--PD) 

ID-P.  = TDQo = Q•QD. 

Proof According to (3.1) and (4.3), QD = T19--A19 =- Z D -  T D PD and (4.6) follows. 
Next, by (4.1), (4.2) and (4.5) we have 

ID--Po = T~TD-A;Ao ~ T~TD-A;TD 

and thus, using (3.1), Io-PD=QgT D. Conjugating the last identity we obtain the 
T* * A* first half of (4.7). Further, by (3.1) and (4.4), we also have DQ,=(QD+ D)Qo= 

Q~QD and the theorem follows. 
The result I o - P o  = Qg Qo when D is assumed to be of class A was first proved 

by Block [4] by using different methods. Clearly, in view of (4.4) and (4.7), P~=Po. 
Also PDfis  in B2(D) for any fCL~(D) and P o f = f  for all fEB~(D). The above 
results are valid on L2 (D) and on Lp (D), p r 2, P9 and QD are not necessarily bounded. 
However, we have the following simple, yet crucial corollary: 

Corollary 1. On Lp(D) the boundedness of  Po & equivalent to the bounded- 
ness of  Oo. 

Proof Assume PD is bounded on Lp(D). By (4.6) of Theorem 1, QD= 
T D- ToP D and so Qo is bounded on Lp(D) for, T D is so. Conversely, assume Qo 
is bounded on Lp(D). By (4.7) of Theorem l, Po-=lo-T~QD and the result follows. 

5. The class Wp 

In view of Proposition 2, PD is bounded on L~(D) provided the boundary OD 
of D is sufficiently smooth. Here, we shall characterize the class of all regions D 
for which Qo and, therefore, P ,  is bounded on Lp(D). 
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Since Dr D has the unit d iskA-{o~:  l~o[<l} as its universal cover. Let 
~: A ~ D  be a universal covering map for D. Let F be the covering group of ~, 
that is, F consists of all those ? E M6b (A) for which ~t o ~ = n. Then, as is well known, 

GD(Z, ~) = ~rlogll--~(~ I 
~,(o~)-~ 

with z=u(co),  ff=n(T); co, ~EA. On. the unit disk A, 

lo [ 1 - co~  Gn(co, z) = g]--~-L--~_z[ , 

1 1 K~ (co, ~) - 
( 1 - ~ o ~ )  ~ 

and 

Consequently ,  

/ ~ .  (o~, z )  - 
1 1 

( o ~ - ~ ) ~  " 

G.(z, r = Z ~ r  c .  (~(o~), ~), 

and 
L.(z, r = T ~  L~(r(o~), ~)~'(~o). 

The above representations are evidently well defined and they are independent of 
the choice of the projection map n. 

Let f2=A/F be a fundamental region o f / ' .  In this case uln is (modulo a set 
of  measure zero) a homeomorphism of f2 onto D. Also, A=[ , J~r? ( f2 ) :  Let 
�9 =(~  In) -~. For  a measurable subset U of  D, we write 

ll 'll :  = 

Let N(12) be the family of all noneuclidean polygons in f2. Evidently, N(f2) 
is a subfamily of  N(A) and it covers f2. By a (noneuclidean) polygon U of D we shall 
mean U = u ( V ) ,  where VEN(O). The family of all such polygons is designated 
by N(D). This definition of  N(D)=u[N(f2)] is independent of the projection 
as the first part of  the next theorem shows. 

The region D~ Oo is said to belong to class Wp if 

where the supremum is taken over all UEN(D). Again, this definition is independent 
of  the projection u as the following theorem shows: 
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Theorem 2. Let nl: A ~ D  be another cover map and let F a be its cover group. 
Let also f21=A/F 1 be a fundamental region o f f  1 with g,=( ,hl~l)-L Then, N(D)= 
n[N(O)]=n~[N(01)] and 

1--r , -< l + r  
l + r  I I~ 'b :~  =< q* . :v -- T-sT-r II~o'll..v 

for all measurable subsets U o f  D. Here, r is a constant in [0, 1) which is indepen- 
dent of  U. 

Proof  There exists an AEM6b (A) so that rq oA = ~  and hence F = A - 1 F 1 A .  
Therefore, f21=A(f2 ) and tk=Ao~o. Clearly, A[N(f2)]=N(f21) , and, therefore 
rq[N(t21)]=n[N(E2)]. Next, ~'(z)=A'(~o(z))q/(z)  and 

* p IIO I1.:~ = f ~ ]A'(e(z))l~>'(z)l~ d~(z) 

for U c D .  Since A~M6b (A), A is given by 

C O  - -  T O . 

A(co) = ~ 1-~o-----~' I~1 -- 1, 1~oI < 1. 

Now 
h'(co) = (1 -ITol~)(1 - ~ o  co) -~ 

and thus 

1-lTol <_ IA'(co)l <= l+lzol 
1 + IT0] 1 --]To] 

for all coEA. Using the fact that co=q~(z)EfacA this, therefore, yields 

1-1Tol , < l + l r o l  
1+1.ol lifo l ip:v= IIr <= 1--1Tol II~#'l[...v. 

The theorem now follows by setting r =  Izol. 

Theorem 3. Qo is bounded on Lp(D) i f  and only i f  DE Wp. 

Proof By definition 

(Qof)(~) = f D LD(z, ~)f(z) da(z) 

= f~ LD(Z , ~)f(z)lr((co)l 2 da(co) 

- •  ~,(o,) 
- 7: ( ~ , o ~ - 0 ~  

= - " -  -~ f ~  Z ~'(o,) 1 n (~) ~ r  (~o~_r )~  

- -  f (nr re" (r_o) da  (co) 

I g ( ~ ) d ~ ( ~ )  
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with g = ( f o n ) ~ ' .  Here, g is an automorphic form satisfying 

g(o)) = g(~o))/(o~) 

for each co E A and all T EF. Also 

Ilgl[L~(a:u) = Ilfllp; /~(co)= [rr 

In what follows the interchange of  sum and integral is justified by virtue of  
Fubini's theorem, and, we find that 

1 ~ t ( T ) _  1 ZTEFfy~ ~'((-D) (QDf) (r = 7 (ya~-- z) ~ g (co) da (o~) 

1 k - -  
,~ ~'(O-~ Z~cr  a (v_O~ 

g(v) do(v) 

(v - z) - - - - - - 7  g (v) do (v). 

Consequently, 

(5.1) 

Therefore, 

(QDf)(z) = n'(r z = ~(eo)ED. 

I[QDfl[f, = f D Irc'(e~ I(Ta g) (co)lP do(z) 

= fxa l(Tag)(co)l" lrV(co)l =-p d~(~o). 

The norm inequality ][QDf[[~<=Cl[f]]~, is therefore equivalent to 

f~ I(Tag)(eo)['p(eo)do(co) ~ cf, lg(o)[,~(o) ao(~) 
with the weight 

~(co) = z~(co)I~'(co)l ~-~, o)CA. 

This, in view of Proposition 2, is equivalent to 

o r  

p=l do(co < 

where the supremum is taken over all SCN(A). This evidently is equivalent to 

(5.2) 
1 p--2 

sup ~ [ L  [='(r176 do(~) ] .  [ L  [~' (~) f_-2y da(m)]p-,  < 0% 

1 p--2 

s~p ~ [L~o r~' (~v-p ~(~)1  [Lno l~' (~)l p-1 ~o(~)l ~-1< ~ ,  
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where the supremum is taken over all VEN(f2). We write 
Then UEN(D) and 

Also 

and 

u=,t(v), VEN(Q). 

IVl = f doC o) = f Iqr = 

p--2 

= []~o G v .  

Therefore, condition (5.2) is equivalent to the condition that DE Wp. This concludes 
the proof. 

Corollary 2. P,  is bounded on Lp(D) if  and only if DE Wp. 

We also note that for any D~[ OG, DE We and that DE Wp if and only if DE Wq. 
The above results extend those obtained in our previous work [5, 6]. It  is also clear 
that i f0D is Dini smooth then DE Wp for anypE (1, ~o). In fact, the following stronger 
statement is also true. Assume 0D is Dini smooth except at one point cEOD. At 
the point e the boundary makes an angle with aperture ~/a, 1 / 2 ~ a <  co. We denote 
the class of such domains by M~. Then (see [6] for additional details). 

Proposition 3. Let DEM~. I f  ~>=1 then DE W v for all pE(1, oo). If  1 / 2 ~ a <  l 
then DE Wp if  and only if  pE(2/1 +a, 2/1 - a ) .  

We conclude this section by remarking that similarly to (5.l) we also have 

(5.3) (Pof)(z) = rC'(~O)-I(PAg)(cO); z = ~(co)ED 

with g = ( f o ~ ) ~ ' .  Recall that for any ~E/" we have 

(5.4) g(co) = g(yco)y'(co); coEA. 

Also [Ig[[L~(,~..~)=[[f[(p with #(co)=[~'(a~)[~-PZ~(o~), ogEA. 

6. The Bergman projection 

Here we assume that the region D ~ OG is of class Wp so that Q9 and Po are 
bounded on Lp(D). Since Ao= TD--QD it also follows that AD is bounded on Lp(D). 
Moreover, in this case, it is also clear that the operator identities of Lemma 2 and 
Theorem 1 remain valid on Lp(D) too. Especially, Pg=PD on Lp(D), in view of 
(4.4) and (4.7). Also, P9 is self-adjoint on Lp(D) arid thus IIPDIIp=IIPDItq with 
JIGII2=l. 
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Theorem 4. Let DE Wp. Then PDfE Bp(D) for any fE Lp(D). 

Proof. Let C~(D) be the class of C=(D) functions with compact support 
inside D. According to Weyl's lemma it is sufficient to show that 

(PDf, ~)~) = f D (PDf)(z)O=~(Z) da(z) = 0 

for every OEC~(D). Let fELp(D), because of the density of C~(D) in Lp(D) there 
exists a sequence {f,}cC~(D) with lim,~.o Uf,-f[]p=0. Since also f ,  EL2(D) 
it follows that PDf~EB..(D) and especially Pof~EH(D). Therefore, 

(PDf,,0=i~) = 0 ;  n = 1,2 . . . .  , 

for every ~EC~(D). Now, by the boundedness of PD on Lp(D), 

l(Pz, f, O~i~)l = I(PDf --Pof., O=~)l <= Ap[]f-fnl[vl[O=~lla--7-2~--, 0 

and the theorem follows. 

Corollary 3. Let DE Wp and let (ED be fixed. Then K(. ,O belongs to 
Bp(D)nBq(D). 

Proof. Since DE W v we have IIPDfll <=Av Ilfllv for each fELp(D). It follows 
by Fubini's theorem that (PDf)(z) converges absolutely for almost all zED. How- 
ever, by Theorem 4, PDfis holomorphic in D and thus (PDf)(z) converges absolutely 
for all zED. Let ~ED be fixed and consider the linear functional R(f)=(PDf)(O, 
rELy(D). This linear functional is bounded. Indeed, let {f,}cLv(D ) with 
l i m , ~  []f,--fllp=O. Then l i m , ~  UPof,--PDfl[~=O and, since Pof,, PDfEBv(D) 
we obtain that lim,_= PDf,=Pof tmiformly on compacta of D. In particular, 
this shows that R is a bounded linear functional on Lp(D). Consequently, in view 
of the Riesz representation theorem, K( . ,  ~)ELq(D). Since also DE Wq we have 
by duality K(., OELp(D). The corollary now follows by noting that K(z, () is 
holomorphic in zED. 

Theorem 5. Let DE Wp. Then Pof=f  for every fEBp(D). 

Proof. Let fEBp(D). Since (PDf)(z) converges absolutely for all zED it follows 
from (5.3) and (5.4) that (Pag)(~o) converges absolutely for all a)EA=Orer ?f2 
and is holomorphic in A. Also, since fEH(D) it follows from (5.4) that gEH(A). 
Now, by the absolute convergence of (Pag)(co) we have 

l f z  Ig(01 da(x)<oo 
11 -~col  2" 
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for every coEA. Especially, gEBI(A) and therefore 

1 g(z) da(z) g(,o) = ~ f .  (1_~@------~ 

or g(to)=(Pzg)(co), ooEA. This together with g=(fon)n" and (5.3) shows that 

(PDf)(z) = Ir" (co) - l  (Pz g) (co) -= ~t' (co) - l  g (co) = f ( z ) ;  z = n(co)ED. 

This concludes the proof. 
We are now in a position to prove the following corollary: 

Corollary 4. Let DEWy, then we have the direct sum decomposition 

L.(o)  = B.(D)eB.(D)a-.  

Proof. For fELp(D), let h=Pof  and h-L=(ID--Po)f. Hence f=h+h • and 
by Theorem 4, hCBp(D). Let gEBq(D), then Pog=g and by the self-adjointness 
of Po 

( ha-, g) = ((Io--Po)f, g) = (f, g)--(Pof,  g) = (f, g ) - ( f ,  PDg) = O. 

If f~B~(D)nBq(D) • then (f ,  g ) = 0  for all gEBq(D). However, by Corollary 3, 
K ( . ,  0 is in Bq(D) and so by Theorem 5, f ( 0 = 0  for all (ED. This concludes 
the proof. 

The rest of the results in the remainder of this section follow by standard 
arguments based mainly on the Hahn Banach theorem and we include them here 
only for sake of completeness (see also [5]). 

Corollary 5. Let DE Wp. The mapping R: Bq(D)~Bp(D)* given by R(g)=Lo, 
where Lgf=(f ,g)  for all fEBp(D), defines an anti-linear isomorphism of Bq(D) 
onto the dual of Bp(D), Bp(D)*. 

Corollary 6. Let DE Wp and let {t,} be a dense sequence of points of D. Let 
r i,), n = l , 2 ,  .... Then the span of the q~,'s [r is dense in Br(D ). 

Corollary 7. Let DE Wp and let f , ,  f6Bp(D), n= 1, 2 . . . . .  Suppose that {ll f.llp} 
is bounded, and, that f , ( z )~ f  (z) for each zED. Then f , ~ f  weakly in Bp(D). 

Corollary 8. Let DE Wp. Suppose f , ,  fEBp(D) with f , ( z ) ~ f  (z) for each zED 
and Ilf, llp~ilf[l~,. Then I I f , - f i [ r~0 .  
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7. The annihilator Bq(D) • 

The annihilator B~(D) • of the Bergman space Bp(D) may be identified as a 
Sobolev space. The region D is arbitrary here and not necessarily of class Wp nor 
necessarily DdiOG. This fact (Proposition 4 below) is rather known and it seems 
that the earliest reference for it appears in Havin [8]. For the special case that DEA 
and p=2 ,  this result was even mentioned earlier in Schriffer [I 1]. This identifica- 
tion has been also used by various authors (as, for example, [I, 8, 9]) in proving 
approximation theorems. For sake of completeness, however, we shall include 
a proof which uses Proposition 1. 

The Sobolev space wpl(D) stands for the class of all Lp(D) functions f (z)  
whose first partial derivatives (taken in the sense of distribution theory) J~ (z) and 
f~(z) also belong to LI,(D ). It is a Banach space normed by 

II f l [ p,1 = {fo (I f(z)P + If~ (z)p + [ fe  (z)l~) "/~ d,~ ( z ) }  l ip  , 

Trivially, 

(7.1) max ( l l f l lp,  !Ifzllp, IlAllp) <- Ilfllp,1 < 2(llfll.+llfzll~+llAIIp). 
We denote by 17/~ (D) the closure of C~ (19) in W~ (D). As usual, a function fE We (/9) 
is said to vanish on OD if f E l ~  (D). 

Let Rp(D) be the Lp(D)-closure of the set {hz: hEC2"(D)} and let Sp(D)= 
{h~ELp(D): h~l~p~(D)}. If h~CSp(D), then, clearly, lirnn_.~l[hn-hllp, x---0 with 
{h,,}=C~'(D). Consequently, using (7.1), limn_.~llh.,z-h.llp=O and therefore, 
@(D)=Rp(D). Conversely, let hz6Rp(D). Then lim~_.~.l[h.,z-h~llp=O with 
{h.}cCg'(D). Especially, lira . . . . .  [Ih~,~-hm, dlp=O. In view of Proposition 1, 
lira . . . . .  lihn,~-h,.,ellp =lira . . . . .  IlTD(h~,~--hm,z)llp=O and lim . . . . .  IIh.-hmllp= 
lirn . . . . .  ]lSo(h.,~-hm, z)llp =0. Therefore, using (7.1), lim . . . . .  Hh.-hmllp, x=O. 
Hence, h~ESp(D), showing that @(D)=Rp(D), 

We now prove: 

Proposition 4. Bq(D) • = Sp(D)= Rp(O). 

Proof. Since Sv(D)=Rp(D ) it is sufficient to show that Bq(D)• 
Moreover, since Bq(D) and Rp(D) are closed subspaces of the reflexive Banach 
spaces Lq(D) and Lp(D), respectively, it will suffice in showing B~(D)=Rp(D) • 
Now, by Weyl's lemma, Rp(D)ZcBq(D). Conversely, let f~Bq(D) and let 
h.CRp(D). Let {h.}=C~(D) with limn.~. IIh~,z-hzllp=O. Then 

(h .... f ) = f D O~ hn (z)f(z) da (z) = - f o h. (z) O~f(z) de (z) = 0 

for each n and, consequently, (h~, f ) = 0 .  This concludes the proof. 
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The fo l lowing coro l l a ry  states that ,  for  DC Wp, each funct ion  o f  Lp(D)  is the  

direct  sum of  a ho lomorph ic  funct ion  and  a complex  der ivat ive  of  a func t ion  in 

W ~ ( D )  which vanishes on  the bounda ry .  

Coro l la ry  9. Le t  DC Wp. Then L p ( D ) = B p ( D ) O  S~(D). 

Proof. This  fol lows f rom Coro l l a ry  4 and  P ropos i t ion  4. 

Corol la ry  10. Le t  D E W p .  Then S p ( D ) = Q ~ Q o ( L p ( D ) ) .  

Proof. This  fol lows f rom Theo rem 1, Corol la r ies  1, 2, 4 and  P ropos i t i on  4. 
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