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1. Introduction 

An Orlicz function ~0 is a real-valued function defined as [0, ~o) satisfying the 
condition (a) ~0 is non-decreasing (b) (p(0)=0 and ~o is continuous at 0 and (c) (o is 
not identically zero. In addition ~o satisfies the A2-condition at ~o provided for 
some C and x 

(1.0.1) ~0(2x) <_- c q , ( x )  x >- x 

or equivalently, for some C 

(1.0.2) q~(Zx) ~ C( (p (x )+ l )  0 <_- x <o~. 

I f  ~0 satisfies the A.,-condition at ~o then if (S, ~, v) in a finite measure space 
we may define the Orlicz space L o = L o ( S ,  r,, v) to be the set of  all complex-valued 
~;-measurable functions f an S such that  

f s ~o([fl)dv < ~,. 

As usual in L~ we identify two functions which differ only on a set of  v-measure 
zero. L~ is then an F-space (complete metrizable topological vector space) if we 
take for a base of  neighborhoods of  O the sets B(e; r) (e>O, r>O) where fEB(8, r) 
if and only if 

f s ~o(rl f l )dv ~ ~. 

In this topology f . ~ O  if and only if f . ~ O  in v-measure and 

f _  ~0 (I/,,I) dv --,- O. 

1 Research carried out while the author was visiting Michigan State University and the Univ- 
ersity of Illinois, and partially supported by an N.S.F. research contract. 
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If  9 satisfies the condition 9 ( x ) > 0  if and only if x > 0  then we need not insist 
that f n ~ 0  in v-measure here and the sets B(~; 1) form a base for the topology. 
In fact it is always possible to replace 9 by an equivalent function $ (so that L ,  = L , )  
with this property. 

In this paper we wish to consider the special case when L ,  becomes an algebra 
(under pointwise multiplication); in this case we shall say that L~ is an Orlicz algebra. 
If S is not a finite union of v-atoms then it is not difficult to see that a necessary 
and sufficient condition for this to occur is that for some (7, X 

(1.0.3) 9(x  2) <= Cq)(x) x ~ X  

or equivalently, for some C 

(1.0.4) 9 (x  2) ~ C(cp(x)+l)  0 <= x < , ~ .  

Two typical examples are given by (p (x)=x(1  + x ) - i  (corresponding to the algebra 
L0 of  all v-measurable functions) and p (x )= log+  x. It  is easy to see that under 
condition (1.0.3) Le is an F-algebra, (i.e. multiplication is jointly continuous) and 
possesses an identity. 

Let us observe at this point that (1.0.3) implies the existence of some p > 0  
and A<oo such that 

(1.0.5) 9(x*) <- A(tP+l)(~p(x)+i) t >= O, x >- 0 

and hence that for some A, B <  

1.0.6) 9(x) <= A + a ( l o g +  x) p x -> 0. 

From (1.0.6) we can see that L ,  is in general non-locally convex. There has 
been very little study of Orlicz algebras. The special case of L0 has been studied 
by Bunger [2], Peck [7] and Williamson [15]. 

Our aim in this paper is to study closed subalgebras (containing the identity) 
of an Orlicz algebra L , .  If we take X0 to be a sub-~-algebra of 2 then Lo(S, So, v) 
is an example of  a subalgebra of  L , ;  we shall call such subalgebras elementary. 

We can now state the basic problems of this paper; for this suppose (S, 2;, v) 
has no atoms. 

Problem 1. For which OrBez functions 9 is it true that every closed subalgebra 
of L~(S, Z, v) is elementary? 

Problem 2. For which Orliez functions 9 is it true that every closed self-adjoint 
subalgebra of L , (S ,  ~, v) is elementary? 

Here a subalgebra A is self-adjoint if fEA implies lEA. Problem 2 is in fact 
equivalent for Problem 1 for the real Orlicz space L , .  
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The answers to these problems do not depend on the measure space S, and 
one may take S=(0 ,  1) with Lebesgue measure on the Borel sets. In fact we may 
reduce the problem to considering whether the sub-algebra generated by a single 
element f of L ,  is always elementary. This in turn depends only on the distribution 
of  f ,  and enables us to restate Problem 1 and 2. 

To do this we denote the polynomials on C by ~. If ~ is a finite Borel measure 
on C then ~cLq,(p)  provided 

(1.0.7) f c  o(Izl) d (z) < 

We then denote by Ao(p) the closure of ~ in L~o(p). It is not difficult to see that 
Ao(/~) is elementary if and only if A~o(p)=L~,(#). Now we restate Problems 1 and 2 

Problem 1'. For which Orlicz functions O does there exist a finite Borel measure 
on C satisfying (1.0.7) such that A~o(#)#L~,(#)? 

Problem 2'. As 1" except we require g supported on R c C .  

Let us mention two examples. If  we take O(x)=log+ x and take for # norm- 
alized Haar measure on the unit circle F c C  then A~,(p) can be identified with the 
Hardy algebra N + (el. [11]) of all functions analytic unit disc A of bounded charac- 
teristic and satisfying 

1 , .2~  1 2z 
l i m = - J  log+ If(re'~ dO = ~-~/'0,, log+ If(e'=)l dO 
r ~ l  Z g  0 

(where f (e ~~ are the boundary values of  f on F). This space has been extensively 
studied by Roberts and Stoll [9]) and Yanagihara [16], [17]. Thus if O(x)=log+ x, 
L~(S) possesses non-elementary subalgebras (clearly N+r  since it has 
continuous linear functional@ 

On the other hand if we take O(X)=X/(1 +x) the same construction only leads 
to Ae(#)=L0(#)  (as was shown to the author by Joel Shapiro). In fact a reasonably 
simple argument using Runge's theorem shows that Lo(S ) has no non-elementary 
closed sub-algebras. Williamson [15] shows that L00,  1) has a dense subalgebra 
which is a field. 

Let us now say that a closed subset E of  C is y-elementary if whenever # is 
a finite Borel measure supported on E, satisfying (1.0.7), we have Ae(/~)=Le(g ). 
We can now ask the broader question 

Problem 3. For a given set E characterize those O such that E is y-elementary. 

In this paper we investigate four special cases including E = C  and E = R  
which correspond to Problems 1' and 2'. 

Our main results are as follows. 
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(1) E = F .  Then E is p-elementary if and only if 

(1.0.8) l iminf  p(x) = 0 
~ log+ x 

(2) E=~]. We do not have the complete answer. We show that A is p-elementary 
if p(x)=log+ log+ x, but not p-elementary if p(x)=(log+ log+ x) p where p > 2 .  
As z] is compact it is not difficult to show that if E is p-elementary and ~k (x) -< 
C(p (x) + 1) for all x then E is 0-elementary. Hence E is not p-elementary for p (x) = 
(log+ x)  v for any p, 0 < p <  co. 
(3) E = R .  Again we do not have a complete characterization. We show that 
R is p-elementary if p is concave function of log+ log+ x and 

(1.0.9) Z~=I  P (et"l) 
p(et,+l~) <oo 

where etll=e and et"]=exp (e["-l]), n~2 .  On the other hand if 

(I .0.10) U ap3_2 < 
p(eO r i o  

then R is not p-elementary. In particular if p(x)=log+. . . log+ x with any number 
of  iterates then R is not p-elementary. Thus for R to be p-elementary p must grow 
very slowly indeed; contrast the case E=A.  
(4) E = C .  Again (1.0.t0) is sufficient for C to be not p-elementary; we also show 
that if for some C, X <  oo 

(1.0.ti) p (e0  _-< C p ( x )  x >- X 

Then C is p-elementary (and so, of course, every closed subalgebra of Lq,(S) is 
elementary). 

These results are given in Sections 3, 4 and 5 with applications to Orlicz algebras 
in Section 6. In Section 2 we develop some general results on A~(tt) and introduce 
the notion of an analytic algebra. We hope to continue the study of A,(p) in a 
later paper. 

The author would like to thank A. J. Ellis, C. N.' Linden, R. R. London, and 
J. H. Shapiro for their helpful comments during the course of this research. 
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2. Subalgebras of Orlicz algebras 

Suppose L~(S, ~, v) is an Orlicz algebra and that A is a closed subalgebra of 
L~ containing 1. Then as we have seen in the introduction we call A elementary if 
for some sub-a-algebra X0 of Z we have A=L~,(S, Zo, v). In addition we shall 
call A analytic if dim A > l  and A has the property that if pEA and p2=p then 
either p = 0  or p =  1. Of course A cannot be both elementary and analytic. 

If fELq, denote by Alg ( f )  the dosed subalgebra generated by I aad f We 
shall say f is elementary or analytic according as Alg ( f )  is elementary or analytic. 
These properties only depend on the distribution of f i.e. the Borel measure /z 
an C given by 

where ~ denotes the Bor d sets of C. 
Thus we shall instead consider a Borel measure # on C satisfying (1.0.7) and 

define A~(#) to be elementary if A~(#)=L~(p) and analytic if d i m A ~ > l  and if 
pEA~, and p~=p then p = 0  or 1. A~ is elementary or analytic precisely as z is 
elementary or analytic in L~ (/~). 

We define the spectrum of A~, Spec A~ to be the set of ).EC such that for some 
(unique) continuous multiplicative linear functional OEA~ we have 

so that if fE 
O ( z )  = ;~ 

0(f)  = f(2). 

The following proposition is easy and we omit the proof. 

Proposition 2.1. I f  A~,(l~) is elementary then Spec A~, coincides with the set 
of  atoms of  l~ and is at most countable. 

Proposition 2.2. Let D : { z :  Iz--a[<:r} be an open disc in C. Suppose D inter- 
sects Spec A~(/~) in "a set of  planar measure O. Then 1DEA~Qz) (where It(z)---1 t f  
zED and 1D(z)=0 i f  z~D). 

Proof For 0 < t < r ,  let 

Ct = {~EF: a+t~ESpecAq,(#)}. 

Then, by an application of Fubini 's theorem, Ct has (Haar) m-measure 0 in F 
for almost every t, 0 < t < r .  

Now we recall (1.0.6) 

~o(x) --< A+B(log+ x) p x --> 0 



228 N.J. Kalton 

for some A, B, p. Hence 

~-- f c f 2  A + B ( l o g +  I t - l z - a I [ - 1 ) "  dtdl~(z) 

since the inner integral is bounded independent o f  zEC. Hence for almost every 
t, 0 < t < r  we have both that Ct is of  measure 0 and 

[t-IZ-all" d~(z)<~.  

For  such t we show 1DEA~ where Dt={z: Iz-a]<t}. For  each hEN let o~ be a 
primitive nth root of  1. Since m (Ct)= 0 

m(Cuo~Gu. . ,  uo~"-I CD = 0 

and so for some ~ = ( ,EF ,  we have ~Ok(~Ct for l~=k~=n. 
For  1 ~=kmn, 

1 1 

so that  (z-a-tojkO-1EL~. However a+t~ok~Spec Ao so that  there exists a se- 

quence f ,E~ with f , ~ l  in L~ but f,,(a+tcoko=o. Thus (z--a--toJkr,)-lf,(z~ 
and (z--a--tcokr,)-lf,~(z--a--t~okr,)-lEAe. Now if 

then h,(zA~. 
I f  zEDt then 

(t  (" t" 
h,(z) = H•=I t~k~+a_z -- ~"t"--(z--a)" 

tl-h.(z)l : 

so that h,(z)-~ 1 and 

I f  ]z--al>t then 

lz-al"  Iz-al" 
I~" t" - ( z -a )" l -  t " - l z -a l "  

,l_h.(z), ( ,_Jz;o,)  ' 

t n 

Ih (z)l < n ~-- Iz-al"-t" 
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so that hn (z) ~ 0 and 

.h,(z)[ _-< ( I z t a l  - 1)-1. 

From (2.2.1) we have #{z: [z-a]=t}=O and so h,-~lD, #-a.e. and 

(, ( i ,  t q~ h . (z ) - lo , (Z  <- e t -  -all 
By the Dominated Convergence Theorem, h ,~lD,  and so I,,EA~. 

Now we can find tn~r with 1Dtn~A ~ and so 1pEA ~. 

Before our next theorem we remark that Spec A~ is a Borel set, indeed an 
F~-set. To see this let Vn be a base of dosed neighborhoods of 0 in Ae and let 
E~ = {;rE C; ] f()~)[~ 1 f o r  )rE ~ n V~}. Then each En is closed in C and uE~ = Spec A~,. 

Theorem 2.3. The following conditions are equivalent: 
(i) A~(p) is non-elementary 

(ii) Spec A~,(it) has positive planar measure 
(iii) Spec A~,(#) is uncountable 
(iv) There is a Borel set B with #(B)>O such that A~(p]B) is analytic. 

Proof. We shall denote by ~0 the set of all Borel subsets of C with lsEA~(#). 
Then ~0 is a sub-a-algebra of ~ and contains all p-null sets, and clearly 
L,(g0; #)c~@). 

(i)=,(ii): I f  Spec A,(#) has measure zero, then by Proposition 2.2, g0 contains 
all open discs and so g 0 = g .  This implies A~,=L~,. 

(ii)=~ (iii): Immediate. 
(iii)=~(iv): We can find 2ESpec A,(p) which is not a #-atom. We define 

0 (f)  -- f0-) fE 

and we also denote by 0 the unique continuous extension of 0 to A~. Then 0 is con- 
tinuous on L , (~0;  # )and  is a multiplicative linear functional. Hence there is an 
atom B of ~0 such that if CE~0 

0 ( l c ) =  1 if C ~ B  

= 0 otherwise. 

We shall show that A~ (# [B) is analytic. First suppose dim A, (# I B)--- 1. Then 
z is constant #-a.e. on B so that there exists ,~IEB such that #{21}=p(B). Now if 
fE~ , f lB=f ( )~ l ) lB  and so O(f)=O(flB)=f(,~l). Hence 21=). and we have 
contradicted our assumption. 

Next suppose 1AEA,(#IB ) is an idempotent and suppose f~E~ and f ~ l A  
in A,(# IB). Then f~lB converges in A,(#) t o  1AN B and so AnBE~0.  Hence either 
p(AnB)=#(B)  or # ( A n B ) = 0 ,  so that IA=0 or l a = l  in A,(pIB).  
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(iv)=~(i): Suppose A ~ I B  ) is analytic; then B is not a p-atom. Choose CE~ 
with O<p(C)<p(B). Then lcEL~(p), but lc~A~,(#) since if f , E ~  and f , ~ l c  
then f , ~ I c  in A~(plB ). 

Let us call a subset E of Spec A~, equicontinuous if the evaluations f~ f (2 )  
are equicontinuous for 2EE; of course Spec Ae is an increasing union of equicon- 
tinuous sets, and equicontinuous sets are necessarily bounded. 

If fEA~, then there is a sequence g,E 9 ~ such that g , ~ f  in A~ and pointwise 
p-a.e. Hence if for 2ESpec A~ we denote by 0a the corresponding multiplicative 
linear functional on A~, we have 

Oa(f)=f(2) p-a.e. 2ESpecA~,. 

Hence by choosing a representative suitably from the equivalence class of f we 
may suppose 

O~.(f)=f(2) 2ESpec A~. 

We shall make this assumption in the future. 
It now follows that each fEA~, is a uniform limit of polynomials on equicon- 

tinuous subsets of Spec A~, and is hence continuous on such sets. 

Theorem 2.4. Suppose A ~ )  is analytic. The p is supported on SpecA~. 

Proof. Suppose 24 SpecA~, and let Dr be the open disc of radius r and centre 
4. For small enough r, Drr~Spec A~,=0 and so by 2.2, loEA~,. Hence either 1D=0 
or 1 or = 1 in A~ (p). 

If for all r > 0  l o = 1 ,  then #{2}=p(C) and so dimA~,=l contradicting 
the analyticity of Ar Thus for some r>0,  1 ~ = 0  i.e. p(D~)=0 and 2r 4. 

Theorem 2.5. Suppose A~,~) is analytic and EcSpec  A~, is closed equieontinuous 
set. Then A~,(#)~A~(pIC~E) and so A~(#[C\E)  is also analytic. 

Proof. We suppose 9 (x )>0  for x>0.  Then there exists ~>0 such that if 

f c q~(Ifl) dp < 

(2 .5 .1)  sup t f (z ) l  <- 1. 
z E E  

We shall show that on ~, A~(p) and A~(plC\E) induce the same topology. 
Suppose, on the contrary, that the A~(p IC \E)  topology is weaker. Then there is 
a sequence f.E ~ such that 

(2.5.2) ~o (If, I) dp -~ 0 

but 

(2.5.3) f_~0(lf, I) dp = 
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where 0<5<=e. It may further be supposed that if ~ is any F-norm on A ~ ( # ] C \ E )  
inducing the topology that ~ (f,)<=2-". 

It  will be enough to show f,(z)-~O for any zEE. Indeed if so then by (2.5.1) 
and the Bounded Convergence Theorem 

f~ ~(ILI) d/~ ~ 0 

and this leads with (2.5.2) and (2.5.3) to a contradiction. 
Suppose then that for some 2EE, f , ( 2 ) + 0 .  Then we may suppose by selecting 

a subsequence that f , ( 2 ) - ~ r  where [~[<=1. 
Since {f,} is uniformly bounded by 1 an E, f ,  has a weak limit point g in 

L2(E, #) and there is a sequence h, of convex combinations h, ECo {f , ,  f,+~ . . . .  } 
such that 

hn(z) ~ g(z) /~-a.e. zEE. 

f e t e  ~0 ([h.I) d# -~ 0 
and 

f E ~o(Ig-h.I) @ ~ o. 

Thus h. converges in Ao(#) to a function G where 

G(z) = g(z) /~-a.e. zEE 

~(z) = o zCE 
and of  course GO.) =a .  

Now let A={fEA~,: f lc\E = 0  /s-a.e.}. Then A is a closed subspace of  L~(~) 
contained in L=0t).  Hence A is also closed in L2(/~) and by a theorem of  Grothen- 
dieck [4], dim A<oo.  We shall show that dim A = l  and A=A~ thus reaching 
a contradiction. Suppose HEA; then H"EA for all n and so H satisfies some polynom- 
ial equation. Let p be the polynomial of minimal degree such that p (H) = 0. Then 
if p has two non-trivial co-prime factors Pl and P2 we can find polynomials vl and 
vz such that 

vl(z)pl(Z)WV2(z)p2(z ) =- 1 
and so 

1 = v~ (H) Pl (H) + v~ (H) P2 (H). 

Also vl(H)p~(H) and v2(H)p2(H ) are idempotents so that we may suppose 
v~(H)p~(H)=l and v2(H)p2(H)=O. Then p2(H)=vl(H)p~(H)p2(H)=O and 
this contradicts the minimality of  p. We conclude p(z)=c(z-w)" for some c, 
wEC and mEN. Thus 

( H -  W) m = 0 

Now 0(h,)<=2.2 -"  so that 
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and so H = w  is a constant. Since A is non-trivial (GEA), we have A=C1 and 
G = ~ I ;  thus # ( C \ E ) = 0 ,  and A = A ,  and we have a contladiction. 

For  our final theorem of this section we define the convolution # �9 v of two 
finite Borel measures on C by 

Ls(z) = L oo,,+) 

for f continuous and of  compact support. If  # ~ 0 ,  v_->0 this equality extends to 
positive Borel functions f with both sides possibly infinite. 

Theorem 2.6. Suppose A~,(#) is analytic and v is a finite positive Borel measure 
such that 

fc  ~0(lzl) dv(z) < 

Then i f  supp v\{0}  is connected, A~,(#.v) is analytic. 

Proof. We shall suppose (p(x)>0 whenever x > 0  for convenience. First 
observe 

f ~o(l~i) d#. v(~) = f~ fc e(i.vl) d#(~) dv@) 
<cfcfc(9(l_-_ u 1)+9(I v [)+ 1)d#( u )d  v ( )  v 

since 9(uv)~_C(~o(u)+~p(v)+ 1) for some constant C. Thus Ao(p~v) is well-defined. 
Since Spec A~o has positive planar measure there exists e, 0 < e < l  such that 

if i z -  1 i < e, z Spec AonSpec A o # 0. 
Now let us suppose B is a Borel set and 1BEA, (#* ~); we shall show that either 

IB=I  or 1~=0. There is a sequence f , E #  with 

f~ (fc ~o(I 1,(.~)-L(uv)l)d#@))dr(v) -+ 0. 

By passing to a subsequence we may suppose that for some Borel set F with 
v ( C ~ F ) = 0 ,  we have 

For vEF, f,(uv) converges to an idempotent e(v)=O or 1 in A~o(#). For zESpec A,,  

li+mf,(zv) = g(v) vEF 

where g(v)E{0, 1}. Let Fo={vEF: g(v)=0} and F~={vEF: g(v)=l} .  Then 
FoUF~D supp v; if both F0 and FI are non-empty there exists a non-zero 2EF0nf~ .  
Pick 2oEF 0 and 2~EF~ with 

~-~-  i = 0 , 1 .  
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Then 2~ol - - l ' < e  

But also 

and so there exists zESpec A~n212o ~ Spec Ao. Thus 

lim f,(20z) = g(2o) = 0. 

lim f,(210.o2i-lz)) = g(20 = 1. 

This contradiction shows either F0=0 or FI=0.  If  F I = 0  thert e(v)=0 in A~ 
(since it is an idempotent and A~, is analytic), for all vE Fand  hence 1B =0  in A~, (# �9 v); 
if F0=0 equally e (v)=l  for all vEF and hence 1B=I in A ~ . v ) .  

Corollary 2.6. (i) I f  C is not ~o-elementary there is a rotation invariant measure 
I~ an C such that A~(#) is analytic 

(ii) I f  A is not p-elementary then A~,(a) is analytic for planar measure a on A. 

Proof. (i) Follows easily by convolving with Haar measure m on F. 
(ii) Let # be a measure on A such that A,p (#) is analytic. Let 1 be linear measure 

on [0, I]. Then l . m . #  is rotation invariant and A e ( l . m . # )  is analytic. In polar 
co-ordinates 

d ( l * m . # ) ( z )  = w(r)drdO r > 0  

where w is monotone decreasing. If  we let R = i n f  {s: w(s)=0} then Ao(fi) is analy- 
tic where 

dFz = w l-~] dr dO. 

(since A~,(fi)~A~,(#)). Now suppf i=A and so "SpecAe(fi)DA. 
Now for any r < l  there exists z0ESpec A~,(~) with IZol>r. Clearly by rota- 

tion invariance the set (z0w: wEF) is equicontinuous and by the maximum modulus 
principle for fE 

max If(z)[ ~ max If(WZo)l 
Izl~_r Iwl=l 

so that r A c S p e c A , ( f i ) a n d  is equicontinuous. In particular, A~(filC~Xzi) is 
analytic. As w(r)<=w(-~R) for ! R ~ r < _ R  

and hence Spec A,p (a)D A, and the sets rA (0 < r < 1) are equicontinuous on A,p (a). 
If  fEA~,(a) then f is analytic on A and A,(a) contains no non-trivial idempotents. 
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3. A~ (/0 for measures with bounded support 

Suppose D is a compact subset of  C; we shall seek conditions on q~ such that 
D is q~ -elementary. If  D is not q~-elementary then D supports a measure # such that 
A~(#) is analytic by the results of Section 2. 

If  D is nowhere dense and fails to separate the plane, Mergelyan's theorem 
shows that C(D)cA~(#) for any measure # and so A~(#) is elementary (see Stout 
[12] p. 287). 

Theorem 3.1. Suppose D is a simple closed curve (i.e. D is homeomorphic to F). 
Then a necessary and sufficient condition that D be q~-elementary is that 

(3.1.1) l iminf  q~(x) _ 0. 
x~= log+ x 

Proof If  (3.1.1) fails to hold then for any measure # on D the L~(#)-topology 
on ~ is stronger than that of L~(/z) where ~k(x)=log+ x (of course, since D is 
compact (1.0.7) is automatic for any Orlicz function). Hence Spec A,p (p)D Spec Aq, (/~) 
and it suffices to show that there exists # so that A0(#) is non-elementary. Let I2 
be the bounded component of C \ D  and pick wE(2; let # be a harmonic measure 
for w, so that /z is supported on Of 2=D. Then wESpecA~(p) since 

log+ If(w)[ ~ flog+ If(z)[ d,u(z) f E ~ .  

However w is not an atom of/~ and so A0(p) is non-elementary. 
Conversely, if (3.1.1) holds suppose D supports a measure /z so that A~(#) 

is analytic. We define an Orlicz function 0 by 

O(x)=q~(e ~) l ~ x < o o  

= 0  0--<_x< 1. 

Then lim infx~O(x)=O and so the real Orlicz space Lo, a(V ) has trivial dual if v 
x 

is a measure without atoms ([10], [13]). 
We show first that # has no atoms. Let A (D) be the uniform algebra consisting 

of all uniform limits of polynomials in D. If  aED=Of2 then a is a peak point for 
A(D) ([12] p. 296) i.e. there exists gEA(D) with g ( a ) = l  and [g(z) l<l  for zED 
with zCa. Then gEA~,(/z) and g"~h in A~,(/I) where h ( a ) = l  and h(z)=O z r  
zED. Since h is an idempotent h = 0  (h= 1 implies dim A~(/~)=I) and so # {a}=O. 
Thus L0,a(#) has trivial dual. 

Now pick wE Spec A~o (p). Since A (D) c A, 0 (p), it is clear that wE Spec A (D) = ~. 
By Walsh's theorem ([12] p. 285), A(D) is a Dirichlet algebra i.e. Re A(D) is dense 
n CR(D). For fERe A (D) define 

f l ( f ) = R e g ( w )  where R e g = f  o n D .  
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Then fl is well-defined and 
Ifl(f)l -< I1/[Io 

since Re g is harmonic; fl is also a positive linear functional. We shall show fl is 
continuous in the L0-topology and since Re A(D) is dense in Lo this is a con- 
tradiction. 

Suppose fnEReA(D)  and f , ~ 0  in Lo~). Then e-~-~l in #-measure. Let 
Bn={zED: fn(z)<_--l}; then 

l~ eY. -~ e 

and so by the Bounded Convergence Theorem 

f.. ~ (elO d,u ~ O. 

On D-- B n 
q~ (eS.) = 0 (f.) 

and hence d'--~l in Lv, R(#). Now suppose g.EA(D) and R e g . = f .  on D. Then 
on D 

leg-I = e~.  

a n d  so [eg-[~l in L,(/0.  Thus e g- is bounded in Ae(#) and so for some M <  oo 

or 

i.e. 

[eg-(w)t <= M nEN 

ea(I. ) -<_M hEN 

fl(fn) <- l o g M  nEN. 

Thus fl is bounded above on any null sequence and is continuous and we 
have reached our contradiction. 

Lemma 3.2. Suppose fl>2. Then there is a nondecreasing function G defined 
on [0, 1] such that 

(1) G(0)--0. 
(2) There is a decreasing sequence {an: n=0 ,  l, 2, ...} with ao=l  and such 

that G is constant on each interval [an, an_ O. 
(3) C ( x ) <  1 0<- < = - g  x = l  

(4) If  H ( x ) = j o G ( t ) d t ,  then 

�9 G ( x )  1 - P  

(3.2.2) f s  (lOgH---~J dx<oo.  
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Proof. Define 

where ~ ( f l - 2 ) > l .  Then 
F(x) = e x p  ( - x  - ' )  x : -  0 

F ' ( x )  = ~x  -C1+~ F ( x )  

F" (x) = ~x-(2+')F(x)(o~x - ~ -  (~+ 1)). 

Choose 6 > 0  so that F '(6)<~- and F " ( x ) > 0  for 0 < x < 6 .  
a . ~ 0  so that 

F ' (a . )  = 2-"F'(6) n = 1, 2, 3 . . . .  

Then define 

and ao=O. 

with G (0) = 0. Then 

Thus 

Now define 

G(x) = 2-"F'(fi)  

* F '  (x) ~ a(x)  < F '  (x) 

H(  ) F(  ) -g F(x) <= x <= x 

for a n ~ X < an_ 1 

O ~ x ~ a  

O ~ x N 6 .  

( 1 ) -~ 4 f O ~ x ~ p - m + ~ ) d x  / log (  ,o 

while G(x)<_-}, H(x)--<= ,{ for all x so that 

S:I(  G(x) ]2(log H(x).) 

Also 

H(x) log <_-- 4~x -(l+=)+=e 

<= 4ex = 

~ 0  as x ~ 0 .  

Theorem 3.3. Suppose f l>2  and ~p(x)=(log+ log+ x) p. Then there is a closed 
nowhere dense subset D o f  3 o f  planar measure zero and a finite positive measure 
supported on D so that A~, (p) is analytic. 

Proof  We shall simply show the existence of a measure p so that A~,(#) is 
non-elementary. To do this define G as in Lemma 3.2 and 0 be the Borel measure 
on [0, 1] so that 

x 1 ~  ( log_~(r)) -~dG(r) .  
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Then p is a finite measure since if a > 0  

 ta, 1J = fs  

[ G(r) (, . 1 / - P l  ~ 
= l ~  

"J'-f; ,~-~, [[log--~) --]~[log-""~l ~ -/~-I) 
G(r) ) I dr 

and letting a ~ 0  we see from (3.2.1) and (3.2.2) that 0 is finite. Also 0 is supported 
o n t h e s e t  {0, a,: n = 0 , 1 ,  2, ...}. 

Now define the measure # on z] by 

1 a fol a o f '"  F "( 1 - r) d ~ dO d Q (r). f . F(z) d~ (z) = ~ [ 

Then # is supported on a countable union of circles and hence supp p=D satisfies 
the hypotheses of the theorem. 

Also define v on z] by 

L F(z)dv(z): ~ fjf: 'F((i-r>ei~ dG(r). 

We shall first consider Alog (v) and show that this is non-elementary. Indeed if 
wC A and f~ # 

1 r+tw] fo" log+ If(w)l <-- 2~ r - l w [  log+ If(rd~ dO Iwl < r < 1 

and so for 0 < t < l - l w l  

(1 - [ w [ - t )  log+/f(w)l <-- WJ0 log+ If((1 -t)do)l dO. 

Integrating with respect to dG over [0,1-[wl] we have 

H(1-IwDlog+ If(w)l <-- 2 f  log+ lf(z)l dv(z). 
Thus if 

(3.3.1) 

then 

L 1 log+ If(z)[ dr(z) <= 

1 
log+ If(w)[ <= H ( 1 -  [w[)" 

This shows SpecAiog(V)DA. Next we show that the identity map ~ - ~  
from A.(p) to A~og (v) is continuous. Indeed, if it is not then there is a sequence 
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f , ~ 0  in A~o(/~), bounded away from 0 in Alog(V) but each satisfying (3.3.1), since 
(3.3.1) defines a neighborhood of 0 in Alog (v). 

Clearly f , ~ 0  in v-measure. We shall show that 

f a  log+ [f,,(z)[ dv(z)  --,- O, 

and tb_is will give a contradiction. 
First we observe that there is an X < ~  such that if x>=X and ee~t<=x 

Choose R>O so that 

Then 

log+ t log+ x 
(log+ log+ t) ~ - (log+ log+ x) p " 

exp => X. 

If,(re~~ ~ _ exp 0 = < r < = 1 - R  

and hence by the Dominated Convergence Theorem 

f log+ [f,,(z)] dv(z)  -,- O. 

Similarly if B,={z:  I z l > l - R ,  If , (z)]>e e} then 

f(l_R<r~l~=l)\B, log+ lf,(z)l dr(z)  ~ O. 

Finally 

1 log (log+ log+ l f , (z) l )adv(z)  f,~ log+ tf.(z)l dv(z)  ~ f,~ H(1 --lzl) H(1 -Izl) 

-- fB O~ log+ I f . ( z ) l ) a c l ~ ( z )  --,- o. 
n 

Thus we have a contradiction and so AcSpecAo(#),  and Ae(#) is non- 
elementary. 

Theorem 3.4. Let  ~o(x)=log+ log+ x. Then A is ~o-elementary. 

Proo f  It suffices to show that Ao (a) is not analytic where a is planar measure 
1 z~ is then equicontinuous we may consider Ao (~r}C\~-z~) on A. Indeed since ~- 

i.e. planar measure in the annulus ~ I z l < = l ,  D say. 
Therefore suppose A e ( ~ q C \ ~  zi) is analytic. We start from an example 

of Polya and Szego ([8] pp. 115--116); cf. Hayman [5] p. 81). There is an entire 
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function E such that for some constant M0 we have 

IE(z)--eeZl <= M o R e z = > 0  IImz]<=rc 

IE(z)l ~- M0 otherwise. 

Let M~>---Mo be chosen so that 

IE(z)l <- M1 lzl <-- M. 

For  any nCN and 0 < - 0 < 2 n  we define 

f.,o (z) = 1 E(ei o E(nz)). 

First observe that for any choice of  0., the sequence f . ,  o. converges to 0 in a- 

the annulus D. Indeed if  B . = l z :  If.,o(Z)l>lMl} then for measure o n  z E B  n we 

have IE(nz)l>M and so nz belongs to the strip Rew->0,  Ilmwl_-<~. Hence 

Jim z I =<re and clearly 
n 

Next  we shall show 

as 

a(Bn)=Otn J independent of  0. 

sup I f . ( z ) l - ' ~  
Izl <=l/m 

n ~  uniformly in 0. Indeed for any y _ 0  

exp Iexp (n ( l+ t i y ) )  ] =exp(e-~ncosny) 

Hence there is a constant C independent of  y and n so that  

E n + i  - -e4 stony <=Cexp - e 4  cosny  

for 0_<-y~ - .  Hence for large enough n given 0, there exists y.(O) with 0~y~<= 
n 

1 
- - - < - -  and 
4n 4 

and 
( )] n 

E e i~ n + ty. >= . 
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Hence 

uniformly in 0 and so 
sup If.,o(z)l ~ .  

[zl~-l/2 

As -~ ~ z] is equicontinuous we must conclude that no sequence f.~,0~-*0 with 
nk-*oo. This implies that for some e>O, and NCN, 

fDlog+ log+ IL,o(Z)l da(z) >= e 

for n>-N and 0 ~ 0 < 2 n .  
Thus 

fo~f olog+ log+ If.,0(z)l da(z)dO >= 2zte, 

Suppose n~-N and 
[e(e'~ M~. Let 

a .  
so that 

n~=Mle -~. Then if log+ log+ [f. ,0(z)]>0 

= {(0, z): [E(e'~ > m d  

I~ = f c  log+ log+ Ie(e'~ d~(z)dO ~= 2~.  

For zCD let G.(z)={O: (O,z)EG.}. Then 

C 
f c  dO <= .~z) IE(nz) l 

where C is independent of n and z. Also 

we have 

[E(ei~ <= Mo +e e'~("z'' 
Hence 

I, =< cflE(, , )I>~ log+ log+ (Mo+eet~("~)')lE(nz)]-1 da(z) 

<= c" f da(z) [E(nz)[ >no 

w~e~e ~" ~ ~o~epe~ent  o~ n. T~us ' , = O i l - /  a~a we ~ v e  a ~ontra~0,o~.  

Remarks. The author has been unable to decide whether A is go-elementary 
go (x) = (log+ log+ x) a with l<fl<=2. Since we are dealing with a bounded set 
we may deduce that if go grows faster than (log+ log+ x) a for f l>2,  then z] is not 
go-elementary (e.g. go(x)=(log+ x) v where 0 < p < ~ ) ;  equally if go grows slower 
than log+ log+ x then A is go-elementary. 
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4. Measures supported on unbounded sets 

Suppose q~ is an Orlicz function satisfying (1,0.3). Suppose also that # is a 
finite positive measure supported on R+ whose support is unbounded and such 
that 

(4.0.1) f q~ (x) d# (x) < ~o. 

Then we define A,p (#) to be the space of entire functions f such that 

(4.0.2) f rp(M(f; r)) dp(r) < oo 

where 
M ( f ;  r) = max [f(z)l. 

tzl =, 

If  we denote by 8 the space of  entire functions (equipped with the topology of 
uniform convergence on compacta), then we may regard M as a map M: e~Lo(#)  
defined by 

M(f ) ( r )  = M( f ;  r) 
and M satisfies the conditions 

(4.0.3) U ( f )  >= 0 f e e  

(4.0.4) M ( f + g )  <-- U ( f ) + M ( g )  f ,  gee  

(4.0.5) M(af) = I~lM(f) f e e ,  aEC. 

From (4.0.3)--(4.0.5) we can see that we may induce a metrizable vector 
topology on Ae (#) by taking as a base of neighborhoods of 0 sets of the form 
M - I ( V )  where V is a neighborhood of 0 in L~(#). 

Proposition 4.1. (i) The inclusion map Aq,(p)-~g is continuous 
(ii) N is dense in A~,Ot) and hence A~,(#) is separable. 

(iii) Ao(p) is complete and hence is an F-space. 

Proof. (i) Suppose f , ~ O  is Ao(p), and that R>O. We claim M ( f , ;  R)-~O. 
Indeed, if M ( f , ;  R)_-->~ then M ( f , ;  r)~-~ for r>=R and so #{r: M ( f , ;  r)~}__-- > 
#[R, oo) as M ( f , ;  r )~O in #-measure we see that M ( f , ;  R)~0.  Hence f , ~ O i n g .  

(ii) If  fEAo(#) has Taylor series 

then we define 

and 

f ( z )  = ~ = o a ,  Z" 

s N ( z )  N . Zn=o an z 

 N(z) = (s l(z)  + . . .  + sN (z)). 
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Then a,E ~ and 
M(a,; r) <= 2M(f ;  r) n = 1, 2 . . . .  

M ( f -  a, ;  r) -~ 0 pointwise. 

Hence by the Dominated Convergence Theorem M(f-~r~; r)~O in L ~ )  
i.e. a n ~ f  in A~(#). 

(iii) If f ,  is Cauchy in A ~ ) ,  then f ,  converges to some f in ~. Now if nEN 

M(. f - f . ;  r) = lim M(f , . - fn;  r) 

and hence, bearing in mind that go need not be continuous, 

go ( U ( f - f n ;  r)) <= l iminf  go ( 2 M ( f = - f , ;  r)). 

By Fatou's  lemma 

f go(M(f-L;  r)) dp(r) <= lira i=nff go(2M(fm-f,; r)) dl~(r) 

-+0 as n-~:o. 

Thus M ( f - f , ;  r)-+O in L,,(p) and we see fEA~,~). 
We can now give our first result which is a criterion for C to be go-elementary. 

Theorem 4.2. Suppose that for some C< 

(4 2 1) go (e x) -< C( ( ) + 1) �9 . = go x 0 < = x < ~ .  

Then C is go-elementary. 

Proof. We shall suppose on the contrary that C supports a measure # so that 
(1 �9 holds aad A . ~ )  is analytic�9 From Corollary 2.6 we may suppose # is rota- 
tion invariant so that 

dO 
dl* = dr(r) 

for some measure v supported on R+.  Since go(x)=O (log+ log+ x) it is clear 
that # has unbounded support; otherwise z1 would not be go-elementary. Hence v 
has unbounded support. 

We use the same function E as in Theorem 3.4. We claim that for any hEN, 
E.EA~(#), where E.(z)=E(nz) 

M(E.; r) ~ Mo+e e"" 
and hence 

go(M(E.; r)) ~ a(go(ee"r)+l) 
for constant A. However 

go(e e"") <= C(go(e ' )+l)  

< c~go( ) + c +  = nr 1 
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and hence 
f q~ (M(E,; r)) dv (r) < 

i.e. E, EA~(v). Thus there is a sequence {fro} Of polynomials with fm~E, in A~(v) 
i.e. fm(Z)->E,(z) pointwise and 

fq~(M(fm-E, ;r ) )dv(r )~O as n ~ .  
Now 

fs f~o=~(if=(re,,) �9 E.(re,O)F)_~d �9 ( )  - v r ~O 

i.e. f , ,~E,  in A,(/~). 

Next we claim --1 E,-~0 in A~(p). Indeed I E , ( z ) ~ O  unless z~R+, so that 
n n 

1 E.(z) ~0 in /~-measure. 
n 

Now for constant B independent of r, we have [E(rei~ except on a set 
of 0 of measure at most B( r+ l )  -1. Thus 

fo ~' /E.(re%l d o ~ - - ~ o  (e"'+Mo) +~o l+nr  

B f 

1 +nr 
(q~(e"') + 1)+ ~o [-~ 2 ) 

where B' is again independent of r and n. Thus 

fs  ~o(llE.(reiO)l)dO~_ B'C2q~(nr) B" 
l+nr  

The right-hand side is uniformly bounded in r and tends to 0 pointwise. We conclude 

2~ 1 io dO 
f :  f :  (~ 

i.e. Z E , ~ 0  in A,(I). 
n 

However A~,(I) is analytic and Spec A~(#) is rotation invariant. Hence there 
exists ~SpecA~(p) with c~>0. Thus 

and hence 

1 
0 --  e,t~n) -~ 

n 

1 
- -  e e "  - ~  O .  
n 

This contradiction proves the theorem. 
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The only examples where we know where C is not p-elementary have the 
property that R is also not ~o-elementary. We now proceed to study this case. 

Proposition 4.3. Suppose # is a finite positive measure supported on R and that 

(4.3.1) inf f ~o (~-I" ] d p ( x ) =  O. 
n \ n . ]  

Then A , (p )  is elementary. 

Proof. If  for any n we have 

Then # has bounded support and by the Stone--Weierstrass Theorem ga is dense 
in C (supp #) and hence A~o(p ) is elementary. Otherwise we may suppose that for 
some sequence nk-+ oo 

(ixlok I 
f t-gg  ,. ) d (x) o. 

Now for 0<_-e<=l consider 

( i~x)"k -~ ) 
Sk (x) = e"X-- ( l + ictx + ~ + " " " q- (--~--~-- i~. ) " 

By applying Taylor's theorem to the real and imaginary parts of Sk separately we see 

21xl"~ 
I & ( x ) l - < - - -  xER 

(n0 ! 

and hence Sk~0 in L~,(/0. Thus e~=XEA~, for 0<=e<-I and hence for all 0r 
Now suppose f is bounded and continuous on R, and that nEN. Then there 

is a linear combination gn of functions of the form e ~"x/n (with mEN)  such that 

1 
I f ( x ) - g , ( x ) l  ~- - -  Ixl <= nrr. 

n 

If  sup If(x)l=lfloo then ]g,(x)l<=[lfl[oo+ 1 for all x. Thus 
n 

- + 0  a s  n - + ~ .  

Hence fEA~,~) and A,( /0=Le@).  
Our next result shows how to construct analytic algebras in R and is a partial 

converse to the preceding proposition. 
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Theorem 4.4. Suppose t~ is a measure supported on R+ such that 

w(x) dx where 
X 

(4.4.1) w(x)=0 0=~x<l. 
(4.4.2) w(1)>0 and w is monotone decreasing for  1 <=x<=,. 
(4.4.3) For some constant c>O 

d ~ ( x ) =  

(4.4.4) 

(4.4.5) 

w (x ~) >= cw (x)  1 ~_ x < 

fS  o(x)w(x) dx ~ 0 0  

X 

( x"'~ w(x dx f ~  ~0 tT.r J ) 7 _ - > 8 > 0  n =  1,2,3 .... 

Then A~,~) is analytic. 

Proof. We shall show that A, (p)= A, (#) and this will show that A, (p) consists 
of functions which are entire and hence Ar is analytic. 

Step 1. Suppose fE Aq,~) and 

g(z) -= f(z~). 
Then 

M(g;  r) = M ( f ;  r ~) 
and 

f] q~(M(g; r)) w(r)-dr = f] q~(M(.f; r2)) w-w-(r)- dr 
r r 

d,. 
- f] ~o(M(f; r))w, 2r 

e ( M q  r) (r) dr , W -~oo. 
r 

Hence gE A e (p)- 

Step 2. Suppose f6Ae(#)  and f ( z ) = ~ = 0  a,z". Then a,x"-~O pointwise and 
[a, lx"<=M(f; x). Hence by the Dominated Convergence Theorem 

It follows that 

(4.4.6) 

f ?  qo(ia, I xn)w(x ) dx -.. O. 
X 

[a.IN(n!) -z eventually and so 

sup If (z) l  e-l~t < ~,. 
z~C 
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Step 3. From (4.4.6) and Step 1 we deduce 

sup lf(z2")le-lzl ~:co nEN 
zEC 

so that 
Ilfll~ = sup e-I~l ~ I f ( z ) l  < co ~ > 0. 

zEC 

It  follows that the norms f~ l ]  fll~ are continuous on A,(#) for a>0 .  
Our aim will be to show that on ~ the A, (#)-topology and the A, (#)-topology 

agree, and hence that A, (#) = A ,  (#). It  is trivial that the A,(#) topology is stronger 
than the A~-topology. 

If  it is strictly stronger then we may find a sequence f ,E ~ such that f ~ 0  
in A~, f~ is bounded away from 0 in A~ and I I f . l l ~ l  where ~=1/15. 

Step 4. Since ][f.[[,~_l, the set {f.} is relatively compact in g a n d  has a cluster 
point g. We show that g=0 .  Indeed for some subsequence f , k~g  pointwise. Since 
f .  ---0 is #-measure we have g ( x ) = 0  for l~_x<  ~o. Since g is entire g =0 .  We 
deduce that f , -~0 in ~ and hence that 

l l f . l l~  -~ 0. 

Step 5. We may pass to a subsequence (still labelled f . )  such that 

IILII~ -~ 2 - "  

and ~ ' e . f .  converges in L~(#) for every choice of s .=_+l .  

Step 6. Let 8 ,= : t : l  be given. Then h---~7=1 s . f .  exists in ~' and Ilhll~<=l. 
The series also converges in #-measure to a function in L~ (#), which we may take 
to be h (by selection of  representative in the equivalence class). 

Step 7. We show hEA.(#). Let E be the subset of (1, co) such that 

E = {x: loglh(x)l > cos (5~c0 logM(h ;  x)}. 

Then by a theorem of Barry [I] 

l i m i n f ,  1 f dt >= 1 2 _ 3 
r~ tog r Entx,,) t 5 5 " 

Hence for some 1 < R < co and all r ~ R 

f dt > I1 
Env,,)- / -  = 2-0 " l ~  

Choose flo=R and then _ 2 f l . - /3 ,_a,  n = 1.2. 3 . . . . .  
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Then 

and so 

Now 

For x6Ec~[~,, ~,+0 

dt 11 1 " t "  

dt 1 
f~ntl, p._C-/- -<- -~-- log/~,, 

dt 1 
fE  log//,. 

otp . . . .  p.) "-}-- => 2--O 

f2" ~o(M(h; O)w(O at< )f2. _ _  t = o(M(h" ft,) w(t) dt 
. - 1  ' . _  t 

1 ~o(M(h; ~n))W(fln_l), log/~, 

1 
2c z 9(M(h;  fln)W(fln+l)|Ogfln. 

log [h(x)[ > cos 5~e log M(h; fl,) 

1 = -~ log M(h;/L)  

so that q~(M(h; ~,))<=C(q)(]h(x)])+l) by (1.0.4). 
Hence 

q~(M(h;, p,))Lnt~..r w(t) d 4 ~ c f22+1 (9(Ih(t)l)+ l) w(t)t dt 
so 

2--0-~o(M(h;/~,))w(/~,+l)logfl,+l <-- C +1 ((p(lh(t)])+ 1) w(t) dr. 
t 

Combining we have 

f2-xq~ t)) w(t)t dt ~= ~ :;~ +'(q~ l) w(t)t dt 

so by summing we deduce hCA~. 

Step 8. Thus ~ , f ~  converges pointwise in A~(/O for every e , = i l .  Since 
Ae is a separable F-space we may apply the Orlicz--Pettis Theorem ([3], [6]) to deduce 
that 2;f~ converges in Ae(p) and hence f ~ 0  which produces the desired con- 
tradiction. 
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Theorem 4.5. The following conditions on an Orlicz function (O satisfying (1.0.4) 
are equivalent: 

(i) R is not (o-elementary. 
(ii) There is a finite positive measure # on [1, ~o) such that 

f (o (x) @ (x) < 
and 

[x.)w i n f f  9 d/z(x)  > 0 

(iii) I f  a=sup  [x: 9(x)=0] then there is a finite positive measure v supported 
on [a, oo) such that 

l i m i n f f ?  (o(x9 dv(x) > O. 
- ~  q,(x) 

Proof. (i)=~(ii) Proposition 4.3, 
(fi)=~(i) We shall use (1.0.5). Let 0 be the measure on R+ given by 

dQ 
= x - v - 2  x----> 1 

dx 

= 1  0 < - - x < l  

and consider Lo(R+ XR+) in the product pN~ measure. Define f (Lo(R  + XR+) by 

f ( x ,  y) = xL 
Then f(L~, since 

9(Ifl) < A(YV+ 1)(9(x)+ 1) 

Clearly [f[=>l a.e. and f has a distribution whose density u is given by 

.(x) = f o  F(x l#)x l [ t - ld~  dt 
dt 

where F(x)=#[x ,  ~o). 
If u (x) = w (x)/x then 

w(x) = f o F(xW')xl# dt 

= f ?  F(~) ~ l o g  ~ do [logx] 
logx dt I ~ 1  d~ 

after the substitution ~ = x  l/t. Hence w is monotone decreasing and also 

w ( x 2 ) = f 2  F(~) ~log~ do [ logx~]d ~ 
21ogx dt [ l o g ( J  

= > 2 - ~ - a w ( x )  
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It remains to establish that w satisfies (4.4.5) and then Theorem 4.4 can be applied. 
To do this observe 

s {"/ 'x 
7 w(~)T = f ~  f o  ~ . d p ( x ) d o ( y )  

( x"y ] dp(x) dy >= {o 
do Jo ~. n ! )  y,+2 

:: >= q9 d#(x 

(ii)=~(iii). I f /z  is given by (ii), let e be the distribution of  x 2 in L ~ ) .  Then let 

dv=q~(x)  do on [a, oo). 

Thus v is a finite measure supported on [a, ~ ) . .Now if n ~ t < n + l ,  

(x9 Y tp 
dv tx) = ./'7 ~o (x9 ae (x) 

~, q , ( x )  " " 

f ,7+1~ 0 n = > ( x )  d e ( x )  

X n 

By the Bounded Convergence Theorem 

1 q9 d o ( x )  ~ 0 

and hence 

- !17 s l iminf  f dr(x) >= l i m ~ f  ~o do~(x) 

_-> 1/minff~ ~ de(x) 

= l i a i n f f ~  ~o( x=" ] t(2-~-.v ! d#(x) > 0. 

(iii) =~ (ii). Let 

1 d0(x)=--7--cdv(x) x>= l + a  
~o ix) 

r p ( l + a ) > 0 )  e is a finite positive measure supported as [ l + a ,  ~)  

f q,(x~ de(x) < ~ .  d " " 

so that (since 
and 
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Now if x ~ n  

so that 

Hence 

X 2n n n 
> -  ~ X n ~ =  X n 

n! = n! 

t x ~" ~ f =  5 ( x 9  f( o [TJ do(x) > d#(x). = a .  ~(x) 

lim [ -ZV) ~ 0 (x) > o. 

Let # be the distribution of  x 2. Then (ii) follows for p, since clearly it is impossible 
that the integral should vanish for any n, as/~ has unbounded support. 

Although Theorem 4.5 gives a necessary and sufficient criterion for R to be 
q0-elementary, it does not  appear easy to convert this to a purely analytic condition 
on ~o. We do however give some c6nditions which are either necessary or sufficient. 

Coronary 4.6. I f  R is not rp-elementary 

~(X") 
(4.6.1) lim sup = o~. 

. . . .  ~. ,;o (x) 

Proof. This is immediate from the Bounded Convergence Theorem. 

Corollary 4.7. Suppose cp(x)=~ (log+ log+ x), where ~ is a concave function 
on R+, and that R is not ~p-elementary. I f  x,(n~=O) is any sequence such that 
x , ~ e  x.-1 for nEN then 

(4.7.1) ~ ' L 1  ~p (x , -  1) 
~o (x.) < ~ "  

Proof. The hypotheses ensure that ~o(xt)/q~(x) is a decreasing function of t 
for x > e  e. Indeed 

q~ (x") = ~ (log log x + log  n) 

and since log ~ is also concave we have that log ~0(x")-log ~0 (x) decreases with x" 
If  v is chosen to satisfy (iii), let F(x)=v[x ,  oo). Then for e e < T < ~  and 5>0  
we have for all t ~ T. 

f7  5 q,(x) 
Now 

i.e. ~o(et')/q~(et)<=2. 

~p(e") = if(2 log t) 

-< 2~ (log t) 

= 2~o (e') 
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Hence 

L~ ~ dv(x) <= Let P ( x t )  dv (x)  + 2v [e', ~) .  

Again for  some T 1 and  all t~= T1 

Then 

i.e. 

Howeve r  

' p!x') s dv(x) > e 
p tx )  " = -5" 

p (t t) v [t, et) >= e 
p ( t )  

p( t )  V [t, e t) >= 
2 p ( t ' ) "  

9 ( t ' )  <= p (d*) 

<= 29 (et) 
so tha t  

e p ( t )  
v [t, e') >= 4 p (e') 

Since v is finite we deduce (4.7.1). 
We now have a posit ive result 

fo r  t > ~ T 1 . 

Corollary 4.8. Suppose  p is unbounded,  cont inuous and that  

(4.8.1) 

Then R is not  p -e l emen tary .  

f [  dp (x) 
p(eO 

- - ~ o o .  

P r o o f  Note  first tha t  the integral can only diverge at  
a = s u p  (s:  9 ( s ) = 0 ) ,  then 

f dp(x) = dp(x) 
p ( e  x) " ,  p ( e 0  

and p (e") > 0. 
We can  define a Borel measure  O on [a, ~o) such that  

1 
0[x, ~) - 

p (e9 
a ~ 

Q is then finite with to ta l  mass  p (ca) -1 .  NOW define v so tha t  

d v ( x )  = 9 ( x ) d o ( x )  a < = x < ~ .  

indeed 

251 

if 
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We claim v is finite. Indeed for b <  ~o 

f 2  dr(x) = f 2  e(x)  de(x) 

[1 1] 
= f 2  ~o (x) d (p (e") e (ex) 

[_2 (x )  I b + c~ de(x) 
t e (e  ~)la J ,  e(e~) " 

Thus 

f2  av (x) <= e (a) de (x) 
e(ea) + f~  e(e x) 

so that v is finite. Also v satisfies the conditions of  4.5 (iii). We have for t>=a 

f7 @ d~(x)= f7 ~(x,)a~(x) el, ) 

e(t') 
- -  e ( e  t) - -  

Corollary 4.9, I f  e is continuous and there exists a >  l, X <  0% c>O such that 

(4.9.1) e (e ~) => ce  (x) ~ x ~ X. 

Then R is not e-elementary. 

Proof. By 4.8. Contrast Theorem 4.2. 

Examples. The functiorL e (x)= log+. . . log+  x with m-iterates of  log+ satisfies 
(4.9.1) for any finite m and hence R is not e-elementary. On the other hand the 
function e ( x ) = m  where m is the least integer such that log+.:.log+x<=l for 
m-iterates of  log+, is art example of  an unbounded function such that C is e-element- 
ary, by Theorem 4.2. 

5. Applications to Orlicz algebras 

Theorem 5.1. Suppose (S, X, #) is a diffuse finite measure space, and L, (S ,  Z, #) 
is an Orlicz algebra. In order that any closed sub-algebra of L,(S,  %,/~) containing 
1 be elementary it is sufficient that for some C< ~,. 

(5.1.1) e (e  x) <= C ( e ( x ) + l )  0 <= x < oo 

and necessary that either e be bounded or 

(5.1.2) f o'Ce(x---2 =~ 
e (e x) " 
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Proof. If  (5.1.2) fails then L~o contains a single real element which generates 
a non-elementary algebra. 

I f  (5.1.1) holds then every element of  L~ is elementary. We show that this means 
that every closed sub-algebra A is also elementary. Indeed let ~0={BE2;: 1BEA}; 
2; 0 is a sub-a-algebra of 2;. I f  fEA then f is elementary and hence for any open 
set U in C, ly-I(v)EA i.e. f is is Zo-measurable. Thus L~(S, S o , # ) ~ A c  
L~ (S, Zo, ~). 

Theorem 5.2. Under the hypotheses of Theorem 5.1 condition (5.1.2) is necessary 
in order that every closed self-adjoint sub-algebra of L~ containing 1 be elementary. 
A sufficient condition that every such sub-algebra is elementary is that ~o(x)= 

(log+ log+ x) where ~ is concave and 

(5.2.3) ~,  ~o=1 ~o (x,-1) = 
(x.) 

for some sequence (x,: n=0)  satisfying x , ~ e  x.-1 for all n. 
Conditions (5.1.2) and (5.2.3) are also respectively necessary and sufficient that 

every dosed sub-algebra of the real Orliez algebra L~,,R is elementary. 

Proof. As for Theorem 5.1. 
Our final result observes that a closed subalgebra A with identity of an Orlicz 

algebra cannot be a field. In this context, we point out that Williamson [15] showed 
that L0(0 , 1) has a dense subalgebra which is a field and Waelbroeck [14] has given 
an example of an F-algebra which is a field. See also Turpin [13]. 

Theorem 5.3. Let A be a closed subalgebra of an Orliez algebra L~(S, Z, I~) 
which contains the identity 1 and is afield. Then A=C1. 

Proof. Suppose fEA and f([ C1. Let B be the closed subalgebra of A generated 
by all rational functions in f .  Then the proof of Proposition 2.2 can be used to 
show that 1D o fEB for every open disc D in C. Hence 1D e f =  1 or 0 for each such 
disc. This again implies fEC1 which is a contradiction. 

6. Concluding remarks 

It is possible to develop the study of the spaces A o (#) to a much greater extent 
than we have attempted here. In particular, we propose to study spaces A~o~) 
when/t  is supported on the real line or is rotation invariant with unbounded support 
in a subsequent paper. There we shall examine questions relating to the equality 
A,p (p)= A,0 (#) (if # is supported in R) and also attempts to characterize for given 
~o these measures # of which A,p(#) is analytic. 
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The main  a im of  this paper  has been to establish condi t ions  on  q9 so that  a given 

set E ( = F ,  A, C, R) supports  a measure # for which A~(/t) is analytic. Our  results 

have only been partially successful. Of  part icular  interest are the cases C a nd  R 

where our  necessary condi t ions  and  our sufficient condi t ions  are very close bu t  

do no t  match. I t  would be very interest ing to plug that  gap. 
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