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w 1. Introduction 

This paper deals with the space 9J~ of  all multipliers of  the Cauchy type integrals 
in the unit d i scD={zEC:  lz[<l} in the complex plane C. To be more precise 
let M (T) be the Banach space of  all finite Borel measures on T with the usual varia- 
tion norm and let fl/~ be the Cauchy transform of  a measure # in M(T):  

~#(z) d~f f dp(t) Izl < 1. 
~ J T  t - - Z  ' 

Kd~C {f The space of  the Cauchy type integrals is the Banach space ~ : 3#EM(T),  
f = ~ # }  with a natural norm 

IlfllK def inf {[[pl] : f = R#, pEM(T)}. 

It is easy now to define the space of  multipliers mentioned above in a correct way. 
Let 9J~ be the class of holomorphic functions rp in D satisfying 

I[~ol[~ dof sup {l[~0fllK: [Ifl[~ ~- 1} < + co. 

It  is clear that ffJ/ is the Banach algebra with the norm [1' [[m and it is easy to 
check that 

]lrpl] ~ a~f sup {[r zED} _~ I[~oll~. 

Therefore the identity map imbeds ~ continuously in the algebra H = of  all uni- 
formly bounded holomorphic functions in D. 

The study of  the space 9Y/was started in the papers of  V. P. Havin [1], [2] and 
was continued in [3] and [4]. It turned out that the elements of  9Jl have a surprising 
collection of properties. For  example, radial limits lim,-.l_o q~ ( r0  of any multiplier 
rp exist everywhere on T and partial sums of the Taylor series of  ~p are bounded 
uniformly in D ([3], [4]). 
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The purpose of this paper is to describe inner functions in 9Jl (see the Theorem 1 
below). We prove that the Blaschke products with the sequence of zeros satisfying 
the Frostman condition are the only possible inner functions in 9JI. This description 
leads in a natural way to the description of all families of rational fractions 

1-[a,I-- / [a,,[<-1, which form a symmetric basis in the closure of their linear 
1 - -  ~ n Z ) n ~ l '  

span in 9B (Theorem 2). At last, an application to the pointwise convergence of 
Fourier series of bounded functions of the first Baire class on T is given. 

The space ~ is interesting not only because of its importance for the study of 
Cauchy type integrals. It is also the chief ingredient of the description of Toeplitz 
operators bounded on the disc algebra Ca. Let us remind some definitions. Let 
P+ be the orthogonal projection of L~(T) onto H 2 and let P = l - P + ,  I being 
the identity operator. For q~ in L=(T), the Toeplitz operator with symbol 9 is the 
operator T ,  on H 2 defined by T,h---P+ 9h and the Hankel operator with the same 
symbol is defined by the formula H,h=P_~oh, hEH 2. Clearly 

q~h = H~,h+T~h, hEH 2. 

Lemma 1.1. Let 9EH ~. Then the operator To, is bounded on CA (or equivalently 
on H ~) iff 9EgJI. Moreover 

See [4] for the proof of the lemma. This proof follows from the formula for the 
natural duality between the spaces Ca and K. We shall write this duality in an anti- 
linear way 

(f 'h) def r~a-01im fTf(r~)h(~)dm(~ ), fEK, hCC A. 

Here m denotes the usual normalized Lebesgue measure on T. The .description of 
Toeplitz operators T, bounded on CA (or H =) is now a simple corollary of Lemma 

1.1. Indeed, let 93l 0 d~_=f {~: ~0E931, ~(0)=0} and let 

~o+CA dr {~PE L=(T): P -  ~EgJio, P+ ~oE Ca}, 

~ o + H  ~ d~_r {(pE L~(T): P_gE~0io, P+r 

Then T, is bounded on CA (or H ~176 iff 9EgJ10+Ca (cpE~J~o+H=). It is curious 
that both spaces 9~o+C a and ~ 0 + H  = are algebras. To see this it is obviously 
sufficient to prove that (SfE~0+H ~ for any cpE.~o and fEH% It follows from 
Lemma 1.1 that P + ~ f E H  ~ and the formula P+(P_Cof)g=P+gH~f= 
P+(gCpf-gTcof)=P+Cogf-gT,~f~H ~, gEH ~, implies the inclusion P-~fEgJ/0. 
With the norm 

the space ~ 0 + H  = becomes a Banach space closed under the pointwise multiplica- 
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tion of functions on T. Therefore there is an equivalent norm on ffJi0+H = such 
that ~ 0 + H  = is a Banach algebra with this norm. It certainly is not a uniform 
subalgebra of L=(T). 

Definition. Let a=(a,),_~l be a sequence (finite or infinite) of  points of  the 
unit disc D satisfying the Blaschke condition 

Z._~I (1 - l a . I  2) < + ~ ,  (B) 

and let B a denote the corresponding Blaschke product 

Ba(2 ) def ~ L 1  [a,[ a , - z  
a, 1 - 8 , z  

A sequence a is named the Frostman sequence (briefly aE (F)) i f  

sup Z Z ~  1 -la,,l__.__~ ~ < + oo. (F) 

Theorem 1. Let I be an inner function. Then IE~OI iff  I is a Blasehke product 
B a and a~(F). 

Remark. The sufficiency of the condition a~(F) for the inclusion B"CgJI had 
been proved for the first time in [3] and was later proved independently in [5]. The 
second fact we shall use below is that the inclusion Ba~gYl implies aC(F) if B" 
is an interpolating Blaschke product [4]. For the sake of completeness of the exposi- 
tion we shall give simple proofs for both of them. 

Theorem 1 may be compared with the theorem describing inner functions 
in the multiplier space of Cauchy type integrals with uniformly bounded densities 
on T. It was proved independently and by different tools in [6] and [7]. For p, 1 _-< 
p<= co, the Banach space LP(T) of all functions on T summable with the power p 
is imbedded in M(T) in a natural way: f ~ f d m .  Let 911(RL p) be the space of all 
multipliers of the space RL p. The following formulae hold 

~I~ (RL 1) = ~Jl (RM (T)) d~t ~JI, 

~ ( a L  =) = ~(~C(T)) "~ ~=,  

9Yl(!RLP)=H =, l < p < : ~ .  

Theorem (see [6], [7]). Let I be an inner function and let IE~III ~. Then I is a 
finite Blasehke product. 

Theorem 1 is also connected with the well-known Frostman theorem. 

Frostman theorem (see [8], p. 54--55). Let (~T. The following assertions are 
equivalent: 
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1. the Blasehke product B ~ and all its subproducts have radial limits at ~ and 
moduli of all these limits are equal to one; 

1 - 1 a . I  2 
2. Z .  iC-_  

To formulate our second theorem we recall some definitions of the uncondi- 
tional bases theory. Let a (A) denote the set of all permutations of a set A. 

Definition. An unconditional basis (ea)a~a in a Banach space X is said to be 
symmetric i f  and oMy if  there is a positive constant C such that 

sup I[~zcac~o~e~[ix <= C'[[~aEa~e~l{x 
cr E a( A ) 

for every complex function 2 ~  with a finite support in A. The coefficient space 
I(A) of an unconditional basis (ea)ze a is defined to be the space of all families (c~a)a~a 
of complex numbers satisfying 

The definitions of the Stolz domain and of the separated sequence used in the 
statement of the theorem may be found in w 3 of the paper. 

Theorem 2. A family ( 1-I~t=/ )a<acA<D of the rational fractions forms a 
I, 1 

symmetric basis in the closure of their linear span in 9Jl i f  and only i f  one of two follow- 
ing possibilities occurs. 

1, There is a separated Frostman sequence a=(a,)~m such that A={a , :  n->l}. 
2. The set A can be covered by a finite number of Stolz domains and A = {~,: n >= 1 } 

for a separated sequence a. The coefficient space I(A) coincides with co(A) if  the 
first of the mentioned possibilities takes place and I (A)=P(A)  if the second one is 
occured. 

Let us remark that the family [1-~[a.l~}- forms an unconditional basis 
t l - - a . z / . ~ l  

in its linear span in H ~176 iff a=(a,),~_; is separated Frostman sequence. In this case 
the coefficient space is Co (see w 5). 

The methods of this article are applicable to the construction of some examples 
if discontinuous functions on the unit circle T with a good behavior of their Fourier 
series. 

Theorem 3. Let E be a closed nowhere dense subset of the circle T. Then there 
is a Blaschke product B with the following list of properties. 

l. The infinite product the function B is defined by convergence at every point 
of the dosed disc. 
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2. The set of the discontinuity points of B is precisely the set E. 

3. The Fourier series of B converges everywhere on T and /~(n)=O/--l] ,  
/~(n) being the n-th Fourier coefficient of B. k n !  

The work is presented in six sections. In w 2 the necessary information about 
the space 91l is collected. In w 3 relations of the Frostman condition with the inter- 
polation theory in H = are analyzed and, at last, in w167 4--6 the proofs of our theo- 
rems are given. 

Acknowledgement. We are grateful to N. K. Nikol'skii for the valuable dis- 
cussions and to V, P. Havin for reading the manuscript. 

w 2. The multipliers of the Cauchy type integrals 

In this section we describe some auxiliary results about the space 911 needed in 
what follows. Details may be found in [3], [4]. 

2.1. Let 6~ be a unit mass at the point ~ of T. The convex hull of the set 
{6~: ~ T }  is a weak-star dense subset of the unit ball in M(T). This, together with 
the obvious identity (~-z)-~=!~lr~(z), implies that 

sup'Ill o(z)ll �9 CeT}. [l~011~ - -  I I I  ~ - z  II~:" 

2.2. It follows from Lemma 1.1 that IIz"ll~=lIT~.ll. Therefore it is easy to 
check that 

�88 N IIz"ll,~ <-- l + l o g n ,  nE{2, 3 . . . .  }. 

2.3. The formula for the norm IIqoll~ mentioned above entails the inequality 

Ilfll~n ~ I lf l l~+sup t - ~  
~ E T  J 

for every f in Ca. Let us assume the function f to be differentiable in the closed 
disc. The integral in the right-hand side of the inequality can be divided into two 
parts corresponding to non-overlapping arcs FI=-{tET: ]arg t--arg (l<n/n} and 
F 2 = T \ F 1 ,  n being a positive integer. Simple estimates show that the following 
inequality is valid 

II/ll~t -<- 1 Hf'H~ +(log ne). ][f[[~. (1) 
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Lemma2.4.  Let ~ET, let ~ED, and let ?(z) d~f a - z  o~ denote a conformal 
1 - ~ z  

automorphism of the disc. Then the following inequalities hoM 

4 -1" [l~pll~t <- II~oo~ll~ <= 4.  I1~o11~. 

Proof. It is sufficient to test the left-hand inequality only. Formula 2.1 shows that 

II~011~ = s u p ~ l f  ~o(z) ~(z)dz : I~1 = 1, Ilhll~ < 1, h(0) = 0} 
[IJ T 1 --~/z 

and the change of  variables z~v(z  ) implies 

f (z) h(Od = f ,   or(z) 1 1 - . y ( z ) '  - h (0))} 

It may be assumed without loss of  generality that a = 1. Then 

y'(z)  ~ 
1-r /? (z)  ( .+~  ]-1 z 1 /~-z  

k l - - ~ )  - 

and therefore l[(1--Oy(Z))-l.~'(Z)]lk<--_2. To finish the proof  it remains to remark 

tha t  Ilho~-ho~(O)H=<-_21lhll=. �9 
2.5. The division theorem. Let ~o belong to 9B and I be an inner function divid- 

ing ~p (i.e. ~o.I-~EH=). Then ~o.I-~EgJI and moreover 

lifo . I - a l l ~  <= II~oll~. 
Here is a simple proof  of  this theorem due to P. Nikolov [7]: 

11~ o" 1"111~ = IlZo, ll = sup {P+ ~Ihll~: hEH ~, [Ihll~ -<- 1} 

<-- sup{llP+~hll~: I[hll~ <-- 1} --I1~o1[~. �9 

w 3. The Frostman condition and the interpolation in H ~ 

We begin with some definitions of  the interpolation theory. The sequence 
(a,),~l of  pairwise distinct points in D is said to be an interpolating sequence for 
H = iff for every bounded sequence (x,),_>l there is a function f in H = satisfying 

x ,=f(a , ) ,  nE{1, 2 . . . .  }. (1) 

It is well known that (1) can be reformulated in purely geometric terms. To do this 
let a be a sequence of points in D and let 

/~a = ~ . ~ 1 ( 1  -lanl2)ba,. 
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Let D(~, r) denote the disc {zEC: I z -~ [<r} .  A non-negative measure /z in D is 
called a Carleson measure if 

7 ~ )  ae_f sup{r_ l .#(D(~,  r)): ~ET, r > 0 }  < + o ~ .  

The pseudo-euclidean distance ~ (a, b) between points a and b of  D is defined 
by the formula 

a - b  
e(a, b) = ~ . 

The sequence a=(a,),_~l is named separated if 

S(a) --- inf q (a,, am) > O. 
n r  

We denote by B, ~ the Blaschke product with the zero set {ak: k r  

Carleson interpolation theorem. The following conditions on a are equivalent: 

1) a is an interpolating sequence; 
2) 5(a)=inf ,  IB~(a,)] > 0 ;  
3) a is separated and i~ a is a Carleson measure. I f  a is the interpolating sequence 

then 6 (a) >= exp { -  Const. 7 (#a)" s -3 (a)} and there is a solution f o f  (1) in H ~ such that 

11 f 1[ • <_- Const. (1 + 6 ( a ) - l -  log 6 -1 (a)). 

See, for example, [9] and [10] for the proof. The references on the original 
publication may be found there also. 

A sequence a satisfying 

sup Card {n : q (a, ,  ~) < ~} < + ~ (2) 
~ED 

for some positive ~ is a disjoint union of a finite family of  separated ones. This fact 
is of  course well-known. Nevertheless we are going to prove it because of its impor- 
tance for the proof  of Theorem 1 and because we have failed to find a reference. 

Lemma3.1.  Let X be a metric space endowed with a metric d, let 

D(x ,  e) ~er {yEX: d(x, y)<~} and let E be a subset o f  X satisfying 

n = sup Card (E n D (x, e)) < + ~ .  
x E E  

Then there is a finite partition (Ek)~,=l o f  E such that 

i n f {d (x , y ) :  x, y E E  k, x r y} >- 2 - " . ~  

for  every k, kE {1, 2, ..., n}. 
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Proof. Let (D(x, e/2))~eal be a maximal family of  pairwise disjoint balls such 
that A 1 c E  and 

Card (E ca D (x, ~/2))  ~- n. 

The existence of the family is a simple corollary of Zorn's lemma. 
It follows from the triangle inequality that 

G c~ D(x,  e/2) = 0 (3) 

for G=(J, ,~A1D(x,e/2 ) and for every x in E \ G .  This implies the inequality 
d(x, y)~_~/2 for every x in E ~ G  and for every y in G c~ E. Another consequence 
of (3) is that 

Card ((E c~ G) c~ D (x, e/2)) =< n -  1 

for x in E \ G .  Indeed, the opposite inequality contradicts the assumption of the 
maximality of the family (D(x, ~/2))x~A1 if it holds for  some x in E \ G .  

We see now that our construction can be proceeded by induction. We get after 
the n step induction procedure the family A1, A2, ..., An of subsets in E satisfying 
the following conditions: 

(a) U 
k = l  x ~ A  k 

(b) Card(Ec~D(x,  e-2-k)) ~ n - - k  for every x in Ak; 

(c) the distance between different balls of the family 

def {D(x, e-2-k): XEAk, k~{1, . . . ,  n}} 

is more than 2-%. Let now E 1 be a subset of E which has at most one point in com- 
mon with every ball of the family ~. The set E2 is then a subset of E \ E  1 with 
the same property. The induction completes the construction of the partition (E,)~ =l- 

Corollary 3.2. Suppose a sequence a satisfies (2) with some positive constant e. 
Then a is the disjoint union o f  a finite number o f  separated sequences. 

Proof. We may assume without loss of generality that a , r  m if n r  To 
finish the proof it is sufficient to apply Lemma 3.1. to the metric space D with the 

1 +~(~, w) 
non-euclidean metric d(z, w)= log and to the set E =  {an: n =  1, 2, ...}. 

1 -  q(z, w) 

Corollary 3.3. Let p~ be a Carleson measure. Then the sequence a is a finite union 
of  the interpolating sequences. 

The proof follows immediately from the corollary. See [11] for other proof. 

Lemma 3.4. Let a be a Frostman sequence in D, Then #~ is a Carleson measure. 
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The proof  hinges on a simple inequality: 

#,(D(~, r)) = T ~  r 1-la"lS <_-- ap(a).r .  �9 
r 

Let 0<e<z~/2 and let ~ET. Let us recall that the Stolz domain f2~(~) in D is the 
interior of  the convex hull of  ff and the circle {zEC: [zl=sin c~}. 

Lemma 3.5. Let a be a Frostman sequence in D. Then 

Card {n: a,Ef2~(~)} _-< (1--sin c~)-xaE(a) 

for every Stolz domain f2~ (~). 

Proof. It follows from the identity 

Izl 2 = 1 + I z - ~ l ~ - 2 1 z - ~ l  cos 0 
that 

1 - 1 z l  ~ 
= 2 c o s  O-Iz-~l. 

Iz-~l  ~ 

The length of  the chord of  T passing through the points ~ and z obviously equals 
to 2 cos 0 and the radius of  the circular part of  0f2~(~) equals to sin e. Therefore 
2 cos 0 -  [z-~l_-> 1--sin ~. �9 

def {Z 
Lemma 3.6. Let a=(a , ) ,~ l  be a sequence in C+ = : I m z > 0 }  satisJ)~ing 

c(c 0 = sup Card {a, Ef2~(t)} < + ~ .  (4) 
tel l  

Then #a is a Carleson measure. 

Remark. A similar lemma holds for the case of  the unit disc. 

Proof. Let J ,  denote the interval (Re a,,-- lm a , .  tg c~, Re a, + I m  a,-  tg e) (see 
Fig. 1): 

~c 

Fig. 1 
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The condition (4) implies that 

Card{n: x~ J.} <= c(cO. 

Let now 1. denote the indicator function of the set J .  and let t be a point in R. Then 

1 
pa(D(t, r)) ~ 2 tg ~"  Zs~cCt-,/~o~,, t+r/cos~)mJk 

_ 1 ft+,/cos~ < _ _ 1  .e(~) __2r _ c(c O . - r  �9 
2 tg ~ J t-~/co~, ~ = 1  1~ dt = 2 tg ~ cos ~ sin 

To finish with the Frostmau condition let us remark that o'r(a) coincides with the 
norm of the embedding operator of the space K into L x(/~a). 

We shall need also the following lemma concerning conditions (C) and (R). 

Lemma 3.7. Let a - -  be a sequence in a Stolz domain f2~ (~). Then the conditions 
(C) and (R) are equivalent. Moreover the constant 6(a) depends on ~ and s(a) only. 

See [9] for the proof. 

w 4. The proof of Theorem 1 

4.1. We shall prove at first that BaE~gl=~a~(F) assuming a is interpolating 
sequence. The proof is based On the following lemma. 

Lemma 4.1. Let a=(a.)._~l be a sequence in D, let (x.)._~x be a sequence sat- 
isfying z~.~_l Ix.l(l--la.I) < +o% and let ~p be a function in H = such that 

1 - [a . [  z 
~o(z) = ~._~ax. .  1 - 8 . z  ' [z[ < 1. 

Then the following inequalities hold 
1-[a.[  2 

1 ~ I[~o[]~, <= []~0[[=+supZ.~l[x.I .]a.[- 11-8.~1 ' 
~ T  

1--[a,[ 2 
2 ~ sup Z ,  [x,[. [ a , [ - - -  <-- Const. (6(a) -1 log 6-~(a)+ 1). ][~o[]~. 

~ T  I I - - ~ . ~ l  - -  

The lemma has been proved in [4]. We shall give its short proof for the sake 
of completeness of exposition, but let us stop for a moment to explain why this 
lemma implies the assertion stated at the beginning of the paragraph. If  a is an inter- 
polating sequence the Blaschke product B a is the sum of the simple fractions: 

B.(z)  l___l__ ~,_~t 1 1 1-[a .[  ~ (5) 
B(O) B.(a.) la.] ( 1 -~ . z )  
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The required statement follows now from 2 ~ with x,=(Bn(an), ta, l) -1, nE {1, 2, ...}. 
Conversely, if o'F(a)< + ~ then it follows from 1 ~ and (5) that 

IlBa[l~ot <= 1 +fi(a) -1. ap(a). 

The sufficiency part of Theorem 1 follows from this inequality and from Lemma 3.4 
and Corollary 3.3. 

Let us remark at last that the family ((1 - [a,[2) �9 (1 - ~,z)-X).>_~ forms an uncon- 
ditional basis in its closed span in 911 and an unconditional basis in the weak-star 
closure of this span (we mean weak-star topology of 911) if  a is an interpolating se= 
quence. These facts are easy corollaries of Lemma 4.1. In this connection the follow- 

1 
2 

ing formula is useful: I = ( 1  + 121) 2, 2ED. The coefficient space of every 
4 

weak-star unconditional basis formed by the rational fractions 

in their weak-star closed linear span in ~Jl is isometric to the Banach space of all 
complex sequences satisfying 

sup ~n=~l IX, I" 1 --{a.[ 2 
~CT 11 --8, ~---------~ < + ~" (6) 

The analogous coefficient space for the unconditional basis is the closure of the 
family of all finite sequences x=(xn),_~ in that norm. 

The proof o f  Lemma 4.1. It is easy to verify that 

1 

for every 2 in D and for every f in H =. If  follows from this formula that 

1 - [ a . I  ~ 
Hcof(~) = Z ,  an' "Y, f (a , ) .  ~. (l --~,~) " (7) 

The proof of 1 ~ is now finished by the following inequalities 

1 - l a . I  ~ 
I[~oll~ = IlToll --< II~oll=+ sup ]lH~f[l~ <= II~0ll=+supZ, Ix, I "la,I I I -a ,~} " 

I l f l l ~ l  ~ET 

To prove 2 ~ we use (7) and Carleson interpolation theorem: 

sup Z ,  a,N,~,~ 1 - [a , I  e I sup Z ,  [a,[. Ix,{. 1 -[a ,[  2 _ sup ]~a--~ 

-<_ HHoH- Const. (6(a) -~ log 6(a)-~+ 1) 

_<- Const.(60)-llog6(a)-~+l)([{~o{I.+ll~011~). �9 
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4.2. The second step of  the proof  is to prove that the sequence a is the union 
of  a finite number of  separated ones if B~EgJI. 

Lemma 4.2. Let  0 < e <  10 -n, let n > 2 7  be an integer and let B be a finite Blaschke 
product with n zeros (counted with their multiplicities) in the disc {zEC: ]z[<e}, 
and non vanishing outside this disc. Then 

~-log n <- 1 lne log n + IIBII~ �9 

Proof. It follows from 2.2 and 2.3 that 

~-~ log n <= lIB(l) z"l/~ <= liB(l)  z " -  Bll ~ + IlBll 

1 
-<- n II n ,  B ( 1 )  z " - 1 -  B'[[.o + l IB( l )  z " - B l l =  �9 l o g  ne + [[Blr ~ .  

Let al,  ..., a,, be the full list of  the zeros of  the Blaschke product B. Then for every 
z in T we have 

' . 1 - - lak[  2 
n. B(1)- zn- l - -  B''B B = n z n - t B ( 1 ) - z - l B  �9 Zk=l lak_zl  2 

1 --[ak[~.~ 
= n z - ~ { B ( 1 ) z " - B } + z - l S [ ,  n - ' ~ = l  la~,--zt 2 l" 

Therefore 

]lnB(1)zn-l--B'l[~ "~- nIiB(1)zn-B][~-~-~,: 1 1 1-[ak[2 l[ 
= lak_zl2 = 

2ne 
<-- n l[B(1)zn-n l l~- t  l - - e "  

To estimate the norm []B(1)z"-Bl].o observe that B~-b I . . . .  .bn, b k being the 
Blaschke factor corresponding to the point a k, kE{1 . . . . .  n}. Then the triangle 
inequality gives 

IIn(1)z"--gl l~ <= Z~,=~ I[zbk(1)--bkll~ �9 

It is easy to check that 

[zb~(1)_bd = l ak--1 ak - - z  l _ < 6e 
1 - ~ ,  z -  1--KRZ = ( l - -e)  2" 

The last two inequalities together imply that 

6he 
IIB(1)z"--BII~ <= (1--~)2" 
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Hence 

2~ 
liB(l) z" -B[ ]~  ~ - - + l l B ( 1 ) z n - B I l ~  log (eZn) 

1 - e  

2e 6ne 
"<= 1 - e  + ~ log (e 2 n) <- 11 ne log n, 

where eE(0, 10 -n) and n>27.  �9 

Lemma 4.3. Let B be a Blasehke product in 9Jl. Then every dise in D with pseudo- 
euelidean radius exp ( -  100. lIB ][~) contains not more than exp (100. liB II~) zeros 
of B (counted with their multiplicities). 

{ } Proof. Let A=  zEC: ~ <e  be the disc with the non-euclidean center 

and with the pseudo-euclidean radius e, and let 7 be a conformal automorphism 
of  D mapping A onto the disc {zEC: tzI<e}. Then it follows by Lemma2.4.  
that BoT-1EgJI and 

IlOo~-lll~ <_- 4.  IIBl[~. 

It is clear that the number N of  the zeros of Bo7-1  in {zEC: Iz[<e} is equal to 
one the Blaschke product  B has in A. Let now ~=exp (-100lIB 1]~). The inequality 
I=IIBII~<--IIBII~ shows that e<10  -6. Suppose now that N>-l/,s. 

Let B* be a Blaschke product corresponding to n zeros of Bo7-1  in the disc 
D(0, ~), n being the integer equal to [1/99@ 

We have by the division theorem (see 2.5) that 

IIB*II ~ <= liB o7-111 ~ <= 4.  IIBII ~.  

Lemma 4.1 can be applied to the Blaschke product B* now. It follows that 

< z  l 
-~log n ~ lln~ log n+llB*ll~ = ~ log n + 4 .  IIB[I~ 

and therefore 

[ 1 ]  e7211B[l~; l e721iBtl~;e,>.e_tOO,iBtl ~ 
: n <-- 100e < 

The last inequality contradicts our choice of  the number e. 
Lemma 4.3. together with Corollary 3.2. show that the zero sequence of  every 

Blaschke product in 9Jl is a finite union of  separated sequences. 

4.3. We are prepared now for the proof  of the implication BaE~II=*aE(F). 
If  BaEgJI then it follows from 4.2. that the sequence a is a finite union of  separated 
ones. Therefore we may assume without loss of  generality (by the division theorem) 
that a is a separated sequence. 
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Let 12~/4(( ) be a Stolz domain in D and let B* be the Blaschke product with 
the zero set {a,: a.~12~/4(()}. It follows from Lemma 3.7. that the sequence of the 
zeros of B,* forms an interpolating sequence and therefore 4.1 showes that 

o-e(a* ) ~ Const. (1 +6(a*)  -1 log 5-1(a*)).  IlBall~. 

a* being the zero sequence of  B*. We apply Lemma 3.5 now and see that 

Card {n: a, E 12~/, (0} ~ (1 - 1 / 1/2)-1- ae (a*) < + ~o. 

Then Lemma 3.6 implies t ha t /G  is a Carleson measure and the second application 
of  4.1 gives us the desired inclusion a~(F). Moreover it is easy to see that there 
is an increasing function O, defined on the half-line R+=def{xER: x_>0} sat- 
isfying 

(rF(a) ~ ~(llBall~). (8) 

4.4. All we have now to prove is that no singular inner function belongs to 9Ji. 
Suppose that this were not the case. Then we could find a nontrivial singular inner 
function 

I(z) ---= exp ( T ~ - -  Z 

in the space ~1. By the Frostman theorem (see [8], p. 58) it is possible to find a se- 
I - -  ~, 

quence (a,),~0 tending to zero such that every function 1 7 , -  - -  is a Blaschke 
1 - ~ . I  

product. We may assume that ]a,I-11II1~<2 -1 for every n in {1, 2, ...} and the 
simple computations with the Taylor series show that 

I I I - / / . [ l =  <= 11I-/7.11~ < 4 .  I ~ . 1 - [ l l I l ~ .  

To simplify the notation let o-r(B)=deffff(a ) for B=B a. Then it follows from 
(8) that 

supa r ( / / , )  < + o o  and l iml l I - /7 , l l~  = 0. (9) 

Let ~3 denote the set of all Blaschke product. It is convenient to include in ~ ,  the 
function 1 equal to 1 identically, assuming that 1 is the Blaschke product  with the 
empty zero set. 

def 
Lemma 4.4. The set ~3~= {BE~3: o-v(B)_-<c} is the weak-star closed subset 

of H~ for every c, c>0 .  

Remark 1. The lemma together with (9) implies that the assumption IEgR leads 
to the contradiction. 

Remark 2. Caratheodory has proved [12] that ~B is a dense subset of  the unit 
ball of  H = in the weak-star topology. 
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The proof of Lemma 4.4. Let (B.).~I be a sequence in ~c and let lim. B .=  
B - S .  F in the weak-star topology of H =. Here B denotes a Blaschke product, S 
denotes the singular function with the singular measure 7s and F denotes an outer 
function. It is convenient to consider two measures v. and Y. determined by the 
zero sequence (~)k_~l of B.: 

d e f  def  

Let (v, 7) be the same pair of measures for the Blaschke product B. It follows from 
the maximum principle for the subharmonic functions that 

L f .  av.(0 < c < + ~  dT. <= sup ~ = 
z~T II-z(I  

and, in particular, that B - F .  S ~  0. Let 7" be a limit point for (7.).~1 in the weak- 
star topology of the space of all bounded measures in the dosed disc {]z]=<l}. 
We observe at first that 

7" = ~+7~+log IF{ dm (10) 

This fact was proved in [13], but for the reader's convenience we shall give here 
, I I - ~ z l  

its simple proof. Let G(r z) denote the Green function ,og 17~1 for the disc D. 

1 -  Izl ~ (ET, zCD is equal to the normal derivative The Poisson kernel P z ( 0 = ] l  ~z?' 
of G and therefore for every ~ in T and for every z in  D we have 

lim G(~, z) _ P=(0. 
r162 1- l r  

This equality and the equality 7 * = ( . ) - l i m .  7, imply that 

lira fo a(r ~) dv.(0 = l~m f .  a(r z) d7.(0 
i--ia 

a(~, 0 
= fb 1--1r dT* + f ,  P=(0d7*. 

for every point z in D satisfying y {z} =0. It is clear that log IB.(z)l-x= fD G({, z)dv. 
and that 

lira log IB.(z)l--1 = log IB(z)1-1+log IS(z)l-*+log IF(z)l--1. 

Therefore we get the identity 

fD a(r o dv(O+fT Pz(O {dT,(()+log IF[ din(O} 

= f ~ d Y * ( o + f  Pz(Odv*(O 
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holding for every non-zero point z for B in D. T h e  application of the Laplace 
operator to the both sides of the above identity shows that 7*]D =7 and then (10) 
follows from the uniqueness of the Poisson integral. 

Now the weak convergence of the sequence (7,) to 7* implies that 

f( 1+1~1 sup dT*(~) <= C 
zET 1~[-~1} [1-~zl 

and therefore av(B)<:C. It is clear that fT --dm(z) _ ~-~ for every ~ in T. This 
II-z~l 

shows, obviously, that 7s+log ]Fidm_~O. Therefore S ~ F = - I  and the set ~ is 
weak-star closed. 

w 5. The proof of Theorem 2 

The proof depends on two geometric lemmas. 

Lemma 5.1. [9] Let a:-(a,),~_l be a sequence of  points o f  D\{0}  and let 
(e,),~_l be a sequence of  points of  the interval (0, 1) such that the following condi- 
tions hold: 

, e ,  n D  ,Sin = 0  for n e r o .  

Then crr (a)< + ~o and a is separated. 

Lemma 5.2. Let A be a subset of  D. Then the set A can be covered by a finite 
number o f  Stolz domains i f  and only i f  ae(a)= + co for every infinite sequence a 
of points of A. 

Proof. The necessity of the condition a t ( a ) =  +co is obvious. To prove thz 
sufficiency let us assume that it is impossible to cover the set A by a finite number 
of  Stolz domains. The two cases are possible: the set T A Clos A is infinite and 
Card (T n Clos A)< + o~. If  the first of these possibilities takes place then there 
is a sequence (~,),_~1 in T n Clos A and a point 40 in T such that 

Ir162 <~1~0-~,1 no{l, 2 

Given such a point ~,, we may find a point 2, in A satisfying 

I'~n--r :<2-"'1~0--~,1, hE{l,2, ...}. 

If  to put now a,=An, e ,=I r  I �9 16 -1, nE{1, 2 . . . .  } then Lemma 5.1 shows that 
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We turn to the case C a r d ( T n  Clos A ) < + c o .  Then there exists a point 
~0ET n Clos A with the property (D(~0, 5) nA)  n (D\f2~(~0))#0 for every positive 
e and for every number ~ in (0, re/2). This implies the existence of  the sequence 
().n)n=~l in A satisfying 

1-12.1 <-2-" '1~o-2.1 ,  I~o-,~.+ll <=2-~'1~o-2.1, nE{1,2, ...}. 

The second reference on Lemma 5.1 (with e . = 4  -~ �9 ]4o-2.1) finishes the proof. 

Let -tl---~[1-12[ 1 --1 ~Z--}2 E A be a family of  rational fractions in the unit sphere 

of the space ~ and suppose it forms an unconditional basis in its closed linear span 
in 9Jl. Then the set A is separated. The proof  of  this assertion is the main task of  
the following lemma. 

Lemma 5.3. Let E be a Banach space of  holomorphic functions in D and suppose 
the following conditions are fulfilled: 

1 ~ z"EE, nE{O, 1,...} and i ~  [Iz"ll 1/" = 1; II 
2 ~ the evaluation functionals f--,f(2) are bounded on E for every A in D; 

3 ~ ? --~ sup < + oo. 
3~ED, IlfllE~l E 

( ~  ~f  II (1 - I z ) - i l l ~ ,  ~E A ~ O )  of rational frac- I f  the family (0~2"(1--~Z)--I)).EA 
tions is separated in E, that is 

~'~ ~ E } 
inf ~ 1--~z : 2,~EA, 2 # ~  > 0  

then 

i n f { 1 2 _ ~  : 2,~EA, 2 # ~ } > 0 .  

Proof. We may assume without loss of generality that polynomials are dense 

( ~ )  implies the existence in E. The separation condition of the family ~ ~EA 

of the family (#~)~a  of  functionals on E with the properties: 

z~a 0, ~ # ~, )~, ~EA. 

The holomorphic function R~z(t)dr #x ( (1 -~z ) -  0 is obviously equal to zero at 
the point ~ (~EA, ~#2) .  Accordingly, we have by the condition 3 ~ 

1 - ~ z  
$ 1 ~  z-----~ - ~1~o~,r I1~0~,,11 -<- ~. I1~11 ~- ~" l < + ~o. 
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It remains only to remark that 

1- 2 

We have now all what is needed for the proof  of  Theorem 2. The suffi- 
ciency is evident in view of  Lemma 4.1. I f  now the family (az. ( 1 - 2 z ) - 0 ~ c a  forms 
a symmetric basis in its closed linear span in ~ then it forms an unconditional 
basis as well. It follows from the Lemma 5.3 that the set A is separated. The coeffi- 
cient space I (A)  is the closure of  the set of all finite sequences x, xEF~ in the 
norm 

1 -[AI 2 
sup s u p  Z 2 E A  [X~r,~l - -  < 71- oo. 

I f  it is possible to cover the set A by the finite number of Stolz domains then the 
case 2 takes place and therefore I ( A ) = P ( A ) .  I f  it is not the case then by Lemma 5.2 
there is an infinite subset A= of  A satisfying the Frostman condition. This implies 
the equality I (A~)=eo(A~) .  The desired assertion I (A)=co(A)  follows now from 
the symmetry condition. 

We have compared in the introduction Theorem 2 with one unpublished result 
of  S. A. Vinogradov (see however [4]). Now we shall give a sketch of  its proof. 

Theorem 5.4. The family ((1 -]a~l ~) (1 - ~. z) - l) .  __> 1 forms an unconditional basis 
in its linear closed span in H ~~ if f  a is a separated Frostman sequence. 

Proof. The sufficiency of  the condition of  the theorem may be proved with 
the help of techniques we have used for the proof  of Lemma4.1. If  now 
( ( 1 -  ]a,]~)(1--~,z)-~)n~a is an unconditional basis then the standard duality argu- 
ments show that a is an interpolating sequence. The coefficient space of the basis 
is described by (6). It is dear that the function Ba-B"(O) -1 is bounded and (5) 
shows that its coefficients in our basis are bounded from below. It follows now from 
(6) that a is a Frostman sequence. 

w 6. The proof of Theorem 3 

Let (A,),_~ 1 denote the sequence of  the complementary arcs of  the closed no- 
where dense subset E of  the circle T numbered so that their lengths decrease. Let 

~0 be the center of  the arc A, and let a,--~ 1 2" ) ~"' hE{l, 2, ...}. We shall 

prove that the Blaschke product B" satisfies all conditions of the theorem. It fol- 
lows from Lemma 5.1 that oF(a)< +oo and therefore BaE~II. On the other hand 
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it is clear that 

1 - l a . + : l  mA,,+l  1 1 

1-1a . I  m A .  2 --  2 

and therefore /~a(n)=Ol-n--}, n ~ + ~  (see [14]). We see that the partial sums 

of the Fourier series of B a are bounded uniformly on the circle T. The condition 
a~,(a)< +oo implies obviously the convergence of the Blaschke product at every 
point of the closed unit disc. The limit limr-,1-0 B"(r{) exists at every point ~ of 
the circle T (we use the inclusion BaE 9Jl) and is equal to Ba(~) a s  the proof of the 
Frostman theorem shows (see [8], p. 54---55). The Tauberian theorem of Littlewood 
([15], p. 137) yields the formula 

lim n ~a k Z~=o B (k)~ = B(~) 

for e v e r y ( i n T  [we recall that /~a (n )=O(1) ) .  Clearly B" is analytic at the points 

of T \ E  and because every point of E is a limit point of the sequence a it is 
clear also that E is the set of  all discontinuity points for BAIT. 

Corollary 5.1. Let E be a set of the first category on T. Then there is a function 
f in H ~ such that 

l~ fEg~, f (n )=O ( 1 ) ,  the partial sums of the Fourier series of f are uniformly 

bounded on T; 
2 ~ the Fourier series o f f  converges everywhere on T; 
3 ~ every point of E is the poim of discontinuity for f.  

Proof. Let (F.).c z be a sequence of nowhere dense closed subset of the circle 
T satisfying 

F k n F . = O ,  k e n ;  E c  U F.. 
n>= l 

Theorem 3 does the rest now. Indeed, let B, be the Blaschke product for the set 
F, constructed in the Theorem 3. Then 

d~f 1 B 
f = 2n=~l '~  " n" IIB, II2,1 

satisfies l~ ~ . 
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