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1. Introduction 

In this paper general elliptic difference schemes in Lipschitz regions with Dirich- 
let boundary conditions are studied. It is shown that the inverse of the difference 
operator is a uniformly bounded mapping from the analogue of the Sobolev space 
H~ onto the analogue of H~ for lOl< 1/2 (2m: order of the differential 
operator). This property is important for the convergence proof of multi-grid itera- 
tions applied to difference schemes, since it is possible to obtain optimal error esti- 
mates that are similar to the estimates known from Galerkin approximations. The 
result is also useful for proving g~ stability of difference operators. 

Let Z be the set of all integers, while Z+ contains all non-negative integers. 
Following norms will be used for multi-indices e=(al ,  ...,ed)EZ~_ and v= 
(v~, ..., v~)Ezd: 

I~I = ~l+. . .+~d,  Ilvll -- (v~+...+v~)i/~ (~EZ%, vEZd). 

We define the differential operator 

z) ~ = i -~ ' l (O/Oxl )~ l . . .  (O/Oxg"d (~Ez~). 

Let ~2 be a domain in R a and consider the boundary value problem 

(1.1) L u = f ,  u E/-/a" (ga), 

where L is the differential operator 

(Lu)(x) = Zl,l,llq~_mD~a,t~(x)DPu(x) (xEO) 

of order 2m. For the notation of the Sobolev spaces H"(O) and Ho(g2 ) compare, 
e.g., [11]. The boundary values are given by uEHy(O): (O/;)n)"u(x)=O (0_~v<m, 
xE;)O :=boundary of O, ;)/On: normal derivative). 

Introduce the regular grid GhCR a with size h and the grid (~ncGh of O by 

G. = {x = vh: vEZd}, O h = Gn n O (hE(0, h0]). 
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The boundary value problem is discretized by some difference scheme 

(1.2) LhUh=Jh at X~fkh, Uh=O at x~Gh~Q h. 

For the formulation of ellipticity, consistency and convergence we refer, e.g. to 
Thom6e [17], Thom6e and Westergren [18], Bramble and Thom6e [2] and Stum- 
reel [161. 

Here we are interested in the "regularity" of L h. Under suitable conditions the 
inverse L-1 of the differential operator maps H ~ (f2) = L ~ (f2) onto H 2m (f2) c~ H~'(f2). 
Let Yg'~(f2h) and ~g(f2h) be discrete analogues of HS(f2) and Ho(O ). The counter- 
part of the property mentioned above is 

L~-I: o~~ + o~2"(f2h) C~ Jfg'(g2h) bounded independently of h. 

This is proved even for nonlinear problems in the case where f2 is a rectangle or 
parallelepiped (cf., e.g., D' jakonov [4], Guilinger [6], Lapin [10]). Dryja [5] showed 
the same result for a convex grid. (Note that in general Oh is not convex even if 

is). 
It is well-known that L - l :  L~(f2)+H2"(f~) is not valid in the case of more 

general regions. Nevertheless, L - l :  H~ (101<l/2) is proved by 
Ne~as [13] for Lipschitz regions g2. In this paper we show the analogous result 
L~- 1: ~4~o - , ,  (Oh) +of,0 o + m (f2h) for the difference scheme (1.2) in a Lipschitz region O. 
An important application of this result is the convergence proof of multi-grid itera- 
tions for difference equations as mentioned in Section 4.2. 

It is to be noted that tile regularity of Lh is different from the interior regularity 
studied, e.g., by Thom6e [19], Thom6e and Westergren [18], Shreve [15]. 

In Section 2.1 we recall the result of Ne6as [13] for the operator L of (1.1). 
The difference scheme is introduced in Section 2.2. The discrete analogues of the 
Sobolev spaces H~(R d) and Ho(f2 ) and their norms are explained in Section 2.3. 
The main theorem about the regularity of Lh is contained in Section 2.4. In this 
theorem Lh is assumed to have smooth coefficients. In practice difference schemes 
are often used with quite different discretizations at points near the boundary. In 
Section 2.5 we discuss a discretization of this type. It is shown that regularity can 
be proved for this scheme, too. 

The proof of Theorem 2.2 is given in Section 3. Section 3.1 contains preparing 
lemmata. A convolution operator discussed in Section 3.2 is used in Section 3.3 for 
the construction of an operator Ro. By means of this operator the proof is completed 
in Section 3.4. 

Section 4 contains applications of our results. An optimal error estimate is 
proved in Section 4.1. In the following subsection we explain the application to the 
convergence proof for multi-grid methods. E~ stability of difference operators is 
discussed in Section 4.3. 
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2. Regularity of the Difference Operator 

2.1. Regularity of the Differential Operator 

Before considering the discrete problem (1.2) we recall the properties of the dif- 
ferential operator L. The ellipticity of  L is expressed by 

(2.1) Re~l<=t~l=ma~p(x)~+~>=~lt~il 2~ fo ra l l  xEO, ~ER d (e>O) ,  

where r  t . . . .  ~d and [1~[12=~+.. +~. Here and in the following ~ and C 
denote generic constants. 

Let C"(O) (nEZ+) be the set of functions u with continuous and uniformly 
bounded derivatives D~u (1~1 ~n)  on the closure of  f2, while the n th derivatives of 
the functions of C"+"(~) (nEZ+, 0 < z < l )  are uniformly H61der continuous with 
exponent ,~. 

O c R  d is called a Lipschitz region if there is e>O such that for all spheres 
S,(xo) with midpoint xoEOf2 and radius e the following property holds: There are 
local coordinates (y~ . . . .  , ya )=(y  ' ,yd)=  U.(x -xo)  (U: matrix with det (U)=  1) 
and a Lipschitz continuous function ~: Rd -a~R  such that 

S~ (x0) ~ 0~ : {x0 + V -~ y: y = (y', ~ (y'))} ~ S~ (x0). 

The Lipschitz constant of  e must be independent of x0E0f2. 
The discrete analogue of  the following theorem is desired. 

Theorem 2.1. (Ne6as [13]), Let O E ( - 1 / 2 ,  1/2). Assume (2.1), a~,EL~(f2), a~, 
real if  [~I = [fll =m, 

[1 1 =m 0 >001 
a~pCC'(O) if  / [ ~ [ = [ f l [ = m  , where n : > l O l > O  or n = > O = O .  

t l f f l=m and 0 < 

Furthermore, s is assumed a Lipsehitz region. Then (L + 2I)-t  : H~163 
is bounded for suitable 2ER. I f  a,p (l~l = lfll =m)  /s complex, the same result holds 
as long as ]01 # sufficiently small. 

For the regularity of L in the case of  smooth coefficients and a smooth boundary 
0s compare, e.g., Lions and Magenes [11]. 

2.2. Difference Scheme 

Let hEI0:=(0, h0] be a fixed grid size and define the grids G h and s as in Sec- 
tion 1. Grid functions of  Gh are u=(u~)vczd, where uv=u(vh). In the following 
the subscript h of uh in (1.2) is omitted. Grid functions u of Oh are identified with 

defined on Gh by ~v=u~ if vhEQh, ~Tv---0 otherwise. 
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The translation operator T~ (a<Z a) is defined by 

(T~u)(x) = u(x+eh)  (XEGh) or (T~u), = u~+,. 

The discrete analogues of  3/3xj and i[<D ~ are: 

On.j = h - l ( I - T h~ ' ) ,  ej =jth unit vector ~Z a (1 ~ j  ~ d), 

a~ = a~h ... a~.,~ (c~ ~z~+). 

A general difference scheme discretizing L has the representation 

(2.2") Lh = h-~" ~ ' , ez"  by(-, h)Th r, 

where (b~(. ,h)v)(x)=b.e(x,h)v(x) (x6Gh) and b r=0  except of  a finite number 
of subscripts. The scheme (2.2') can be rewritten in the form 

(2.2) Lh = ~'l,l, lal~_,,, ~'~,,a~z'~ O~,T~r,G~rb( ", h)T~O~, 

where again c,pra vanishes for almost all subscripts. The relationship of  (2.2') and 
(2.2) is discussed in [18]. For the formulation of consistency by means of a,p and 
c, pra compare [18, 19], too. 

Lh is called elliptic if (2.3) holds (cf. [18, Lemma 2.3]): 

d (2.3) Rep(x ,  4) ~ [Z j= l s in2 (~J2 ) ]  ~ 

where 

for all x E R ~, ~ 6 Q = [ -  ~r, hid C R a, 

p(x, 4) = ZI , l= le l=m Z,.~ c,~,,(x, O)e -~~+~ II~1 [1 - e ' q ' , + P , .  

Example2.1. Let d = l ,  m = l ,  Lu(x)-=-[a(x)u'(x)] '+c(x)u(x) ,  i.e. aoo(x)= 
c(x), an(x)=a(x) ,  G p = 0  otherwise. The usual discretization is 

( Lh u) (x) = - h-2 {a (x + h/Z ) [u (x + h ) - u (x)] 

- a ( x - h / 2 ) [ u ( x ) - u ( x - h ) l } + c ( x ) u ( x ) .  

Hence, (2.2) holds with coo0o(x, h)=c(x),  cxlea(x, h ) = - a ( x + h / 2 ) ,  c~a~=0 other- 
wise. Since 

p(x, 4) = - a ( x ) e - i e (  1 - t i c )  ~ = 4a(x) sin 2 (4/2), 

(2.3) is valid with ~=inf  {a(x): xEGa}>0. The generalization to L =  - V - a ( x ) V +  
e(x) is obvious. 

Although we consider the discrete problem (1.2) with homogeneous boundary 
values, the results of this paper hold for the fnhomogeneous problem 

(L~v)~=g~ at vh~f2 h, G = w ~  at vhEGa~12h, 
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too. wE,l l  ~ and gE~/Co e-m yield f :=g-LhwEoCgo~-' .  Let u be the solution 
of (1.2) w i t h f  defined above. Theorem 2.2 will show uEo~t~0 ~247  Hence 

IVlm+O --<-- C'(IWlm+o+lglo-,,,o) 

holds (for the notat ion compare the following section). 

2.3. Discrete Sobolev Spaces 

Throughout  the paper we are only interested in the discrete spaces oet~ = ~S(Ga) 
and ~/g~=~et~(f2h). The discrete analogue of  L2(R d) is ~ 0  consisting of  all complex- 
valued grid function with finite I" [o norm:  

[Ulo = h d/~ [~,v~Z~ lurid] a/~. 

~(0 is a Hilbert space with the scalar product  

(u, v) = h d ~v~Zd Uv~. 

Usually, this Hilbert space is denoted by ~2. The discrete Fourier  transform of  u 
is the periodic function 

a(r = ~v~z~  u~ e~r (r = [ - n ,  re] a c Rd), 

where vr = v141+-.. -4- Vd Cal. Note that  

l ul0 = [h/(2n)] d/2 [I a II L~<Q)- 

Let ~ (sER) be all grid functions with ]u[s< ~ ,  where 

(2.4) ]ul~ = [h/(2rc)J~/~]][l+h-2Z~=isin2(r162 ). 

This is a na tura l  definition since for s = n :  1 it coincides with the usual definition 

(2.4*a) lul* -- [lulo~+Z~=i=n lO~,ul~] ~/~ (nCZ+). 

One easily verifies that  [. In is equivalent to [. [* for nEZ+.  A generalization to 
non-integers s = n + t > O  is given by 

lull* = [[u]*mq-~l,l= n IllO~ulll~m] ~/2 (s : n+t ,  n E Z + ,  0 < t < 1), 
(2 .4%)  

Illvlll* = h -t [~u~Zd.o<,lu,l~_~/h I(I--Z#)vl~/ll#lld+2~] ~zz (~ > 0). 

The equivalence of  t" Is and I" I* follows f rom the representation 

(2n)d i iivlll,~ = h d- 2t f it ) (4)12 [ 2 0  < ,,,,t ~_ ~/h sin2 (#r d + 2t] de. .,Q 

For  negative s, ]. Is is equivalent to 

lul* =- sup {l(u, v)l/lvl*__s: 0 ~ vEX/t "-~} (s < 0). 
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The counterpart of Hg(f2) (s=>0) is 

Ne, o ~ = {u E j f s :  u~ = 0 if vh E Gh\f2h} C ~Vfs (S >-- O) 

endowed with the norm of A"s: 

l-Is,0 = I.Is (s --> 0). 

This choice corresponds to the fact that the extension of  uEHo~(f2) by zero out- 
side is a continuous mapping into H~(R d) except of  s -1 /2EZ  (cf. [11, p. 60]). 
According to the embedding ~ g c ~  ~, the dual space is J foS~Yg -~ with 

luI-~,o = sup {[(u, v)l/IG: o ~ v~ ~,r (s >- o). 

Note that lu[_~,o=0 implies u~=0 only at vhEf2 h. By this definition the opera- 
tor Lh: ~ f , , , j f - m  of  (2.2) can be considered as an operator from ~0  m into ~ f m ,  
too; although u63/fo m does not imply support (LhU)C Oh. TO avoid difficulties we 
sometimes use Lh, o instead of L h, where 

(Zh, oU)v=(Lhu)v at vhEf2 h, (Lh, oU)v=O at vhEGh\Oh. 

As usual we define the operator norms 

IIAIl~er-~o = sup {IAuldlulr: 0 ~ u E~'},  [IAll~rz-~r~ = sup {IAuko/lul~,o: 0 ~ u E~0"} 

of A: ~ ' ~ s  or A: X 4 e o ~  ~, respectively. 
Instead of Lipschitz regions f2 we consider grids f2 h with the following property. 

Property C. f2 h has 'property Ch' if there are numbers 0-<8o < ~,  ex>0, e2>0 
and a function nECm(R a) mapping into the set {xERd: Ilxll=l} of  unit vectors 
such that xEGh\f2h implies C(x+heon(x), n(x), el, ~2) n f2h=0 for the cone 

C(z, n, e~, e2) = {z + yE Rd: (y, n)~[0, e~], IJy-(y, n)nJI <- e~ .(y, n)} 

with axis n and vertex at z. A set of  grids {f2h}hC~o with I0=(0, h0] has 'property C' 
if all f2h's have 'property Ch' with the same constants e0, el, ~2 and functions n(x) 
such that ID~n(x)[ (xER a, I~l=<m) is uniformly bounded. 

The following note shows that 'property C'  is a natural analogue of a Lipschitz 
region f2. 

Note2.1. I f  f2 is a Lipschitz region, {~-~h}h(io (I0=(0, h0], f2h=Ghn f2) has 
'property C'. 

The following lemma is the discrete counterpart of  the interpolation property 
H~(O)=[H~(f2), H~ ( s - 1 / 2 ~ Z ,  cf. [11, p. 64]). 

Lemma 2.1. Let f2 have 'property C'. Define 

Zh F[ ~ d  Ted I'(~ ~21m 
: k - - - ~ ' j = l  h t h,j) .J 

and denote the restriction of La on ~ by Lh,0: d/~o-~Y~'o'. Then the norms [ul~,c 
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and v~/C2m),, (Is lam) are equivalent (uniformly with respect to hEIo=(O, ho] ~ h , O  ~ O, 0 

and Is]<-m), i.e. 

1 
IZ~o 2 < Clul  ( - m  <= s < m, uC ~ ) .  - -  m) U]0 ,0  = s,O C l u L ~  <-- = 

The proofs of this and the next lemma are given in Section 3.5. 

0 0 0 0 0 0 

�9 0 0 ~ /'0 ~.0 0 )611 

0 0 / ~ j  4 ; j ~ . . ~  0 

�9 0 ~ O 0  0 0 �9 

/ 4  S~j 

J 
S 

0~s �9 �9 �9 0 

grid points of f2a: �9 

grid points of Gh/f~h : �9 

Fig. 1. Cone C(x', n(x), ~1, ~2) with x' = x+heon(x), x" = x'+eln(x) 

Lemma 2.2, i) Assume 

{xCOh: distance(x, Gh\Qh) ~ Ch} ~ f2~ c {x6Gh: distance(x, Oh) ~ Ch} 

and let {f4}hc 4 have 'property C'. Then {f2~,}h~x ~ has 'property C', too. 
ii) Let {f2h} hr have 'property C' and assume Fhc  {x6 Oh: distance (x, Gh\Qh)<= 

Ch}. Define the restriction y by (yu)v=uv if  vhCFh, (yu)v=0 otherwise. Then the 
following estimate is valid with C" independent of  u, s, t, and h: 

lu[~,o~ C'ht-~lu[,,o for s, tE[-2m, 2m], hEI  o. 

2.4. Theorem on the Regularity of  a Difference Operator 

A difference scheme Lh (more precisely: Lh, o; cf. Section 2.3) is called stable 
with respect to ~:/go if the inverse mapping Lh.o~: ~~176 is bounded independ- 
ently of h: 

IlZ~,~llJeoo_~g <- C for all hCIo. 
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The main result of this paper is the following counterpart of  Theorem 2.1. It 
will be proved in Section 3. 

Theorem 2.2. Let OE(-1 /2 ,  1/2). Assume the difference operator Lh of (2.2) 
to be elliptic [eft (2.3)] and let {(2h}h~i0 have 'property C'. The coefficients of  Lh must 
satisfy: 

lC,p~(x, h)l <= C for  all x E R  d, hEIo, 

c~,oEC'~(RdXIo) i f  il~l I /~ l=m , where ~ > 1 0 1 > 0  or ~ > - 0 = 0 .  
tlHI m and 0 < 

Finally, assume Lh, o: Aeg"-+Jr = to be stable with respect to afro ~ Then the estimate 

(2.5) IlZf,0~ll~eoo--,_.je~+,- <- C" (hE Io, C" = C'(O)) 

holds i f  the function p(x,  ~) of(2.3) is real-valued, l f  p(x,  0 is complex-valued, (2.5) 
holds for ]OIE[0, O0) with Oo~1/2 sufficiently small. 

2.5. Case of Irregular Diseretizations near the Boundary 

In the previous section we assumed that the scheme (2.2) has smooth coeffi- 
cients for all xE s Usually, the discretization is regular at interior points, while 
the difference equations at the points near the boundary depend on certain distances 
from the boundary. 

In the following we give a criterion for ~0~ of irregular schemes. 
As application two examples are discussed. 

Let Lh be the scheme (2.2) and consider the disturbed scheme 

Lh, o = Lh, o+lh, o �9 

In the following L~-I: ~ o ~  ~ is written instead of L~, 1. By 

j~-i = L~-I(I+ lhL~l)-i  

the inverse j~-i satisfies (2.5) if (I--lhL~l)-a: fffo~ ~ is bounded and if 
L h fulfils (2.5). 

Criterion 2.1. Assume 
1 

I(/,,u, v)l <-- ~lllulll,.lllvlll,., ~ < 1, ~ lUlm ~ lllulll,. -<- Clul,. (u, v ~ g ' ) ,  

where lllulllm:=[Re (Lhu, u)] 1/~ is required to be a norm on ~ o .  Moreover, 
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must hold for some s>0 .  
0 > 0 .  Then 

(2.5*) 

holds for sufficiently small 
A similar criterion can be formulated for O E ( - O  o, 0]. 

Proof. Let Ill" I[-m be the dual norm of }[1" l[]m" From 

]llL;~ulll,, = Re(u, L;Xu)/ll l t;~ulllm <= IllullJ-m 
it follows that 

if ~ + m  are endowed with 

(2.6a) 

hence 

(2.6b) 

Let L n satisfy the assumptions of  Theorem 2.2 for some 

IIr,;lll~e~-,-_.#~,+,, _-< C '  

OE[0, O0), where O o does not depend on hEIo. 

IlLffllla~o~_~eW ~ l 

Ill" I I]• The assumption on la yields 

lit [I < x ;  h aeg'~a~o m : 

Let A h be the positive definite matrix [(Lh, o+L*,o)/2] a/(2m). The equivalence of  
[" Im and II1-I[Im implies the equivalence of  [ult and }l[ull}t:= [A~ulo for all tE[0, m] 
by virtue of Lemma 2.1 and the interpolation theorem (cf. [9, Lemma 4]). We may 
assume s < l / 2  (or s<Oo,  resp.) for s > 0  appearing in Criterion 2.1. Otherwise, 
use again interpolation with (2.6a). Hence (2.5) yields 

(2.6c) ]llhZ;lJ]#e~-,,._,~e~-,, ~ C. 

By equivalence of ['It and Ill'Ill, for t = r n - s ,  the inequalities (2.6b,c) 
prove 
(2.6d) -t -~ t ~ o <= C(t) [lAb lhLh Ahil~eo_~e % 

at t = m  and t = m - s  with C(m)=x,  C ( m - s ) = C .  Interpolation yields (2.6d) 
for all t E [ m - s , m ]  with C( t )= •  (m-~ (cf. Lemma4 of [9]). Because of 
•  there exists OoE(O, s] such that C ( r n - O ) < l  for all OE[O, 00). Hence 

]l(I+lhL;~)-lll~e~--_~e~-m <= C ' / [ 1 - C ( m - O ) ]  <o0 (0 <= 0 <= 690 

and (2.5) yield the desired result. �9 

Example 2.2. Consider the discretization of - A u = f  in f 2 c R  z and u = 0  
on Of 2 by the usual five-point formula at interior points. Near the boundary inter- 
polation is used (cf. Collatz [3, p. 344f]). f2~c Oh is the set of  all 'interior' grid points, 
i.e., x+__hejEO holds for xE l2~ , j= l ,  2. We recall that ejEZ d is thej thuni tvector .  
l"h--~-Oh~,Q ~ consists of  the grid points near the boundary. For all X~I" h there are 

]llhL~lll,~om.~o m <= z < 1. 
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a direction +__e i and a number xE[0, 1) such that xT-hejEf2'n, x+_ghejEOf2, and 
x:khejr  At those points the five-point formula is replaced with interpolation: 

u(x) = 4.  u(x-~ hej)/(1 + ~). 

By these equations all grid points of F h can be eliminated from the system of dif- 
ference equations. It results a scheme i,h that differs from the five-point formula 
at xEF'h, where / ' ~c  12~ consists of the points xT-he i involved by interpolation. 
Defining the spaces Yg0 ~ by means of g2~ instead of  f2 h we shall prove in Section 3.6: 

Note 2.2. Let f2 be a bounded Lipschitz region. The scheme of Example 2.2 
satisfies (2.5*) for 0_-<O<=O0 (O0 sufficiently small). 

Example 2.3 (Shortley--Weller scheme). Discretize the Poisson equation of 
Example 2.2 by the five-point formula at interior grid points xCf2~ and by the 
Shortley--Weller scheme at points xCF h near the boundary (cf. [14], [12, p. 203]). 
It is based on the discretization of  -(O/Oxj)2u(x) (x~Fh) by 

{~@~2 2 U ( X - - g  1 hej) 2 u(x + x2 hej)} h -2 u(x) ~1 (3gl jl_ ~2 ) N2 (~1.t_ ~,8) , 

where ~jC(0, 1] and either x+(-1)i• or ~ i= l .  

Note 2.3. Let ~2 be a bounded Lipschitz region. The scheme of Example 2.3 
satisfies (2,5*) for 0=<O-<O0 (O0 sufficiently small). The proof  is also given in Sec- 
tion 3.6. 

3. Proofs 

3.1. Preparing Lemmata 

Theorem 2.2 is proved in the Sections 3.2 to 3.4. The crux of  the proof  is the 
construction of an operator R~: ~ t + ~ / t ~ t  such that suppor t (Rau)cO h holds 
whenever support (u)cf2 h. It can be shown that the form (LhR2ou, v) is ~/g0 "+~- 
coercive (cf. Theorem 3.1). Then Theorem 2.2 is an immediate result. The properties 
of Ro are proved in Section 3.3. Ro is constructed by means of  operators R~s 
introducted in Section 3.2. 

This section contains five lemmata recalling standard techniques for treating 
variable coefficients. 

In the sequel we shall use the symbol th(u ) ( u E ~  t, t ~ 0 )  as an abbreviation 
of  the following inequality: For all e > 0  there exists C(~)< ~ such that the term 
~t(u) can be estimated by 

[~(u)l 2 <  I 1,2+C()1 10 2 = ~ U  ~ U . 
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For t = 0 the estimate degenerates into It/0 (u)l ~ C l u]0. It is weU-known that 

(3.1) lu[~ = n,(u), [ul~lul, = ~/~(u) if 0 <= s < t. 

The following lemmata are needed. 

Lemma3.1. Igul,<=Cllgllc,(c~)tu], holds for tER, u E ~  t, gEC'(R a) with 
C=C(t)  and ~>[tlCZ or x~I t lEZ.  [/g[Ic~(~) is the maximal value of  [O~g(x)l 
(Ictl~u, XEGh) and the corresponding H6lder constants. 

Proof. The estimate is valid for t = 0  with C =  1. Assume that the estimate 
holds for 0-<__ t -  1E Z and note 

~U O~,(gu) = gob +~'l~t~_l,l-lga0hPU (g, EC~-I'I+IpI(Rd)). 

Hence, IO~(gu)lo<=CIIgllct(ojul, holds for /~l=t, and (2.4"a) proves the inequality. 
I f  O<t~Z the result follows from (2.4"b) by the same argument. For negative 
t u s e  

](gu, v)l = ](u, gv)l <= ]ul~lgvl-, <= CIIgllc,(G~)lul, lvl-,. �9 

Lemma 3.2. Let gkEC~(R a) (kEZ) be a family of  functions with the following 
proper ties: 

1) For all x*ER a and K > 0  there is N(K)<~o such that at most N(K) func- 
tions gk do not vamsh on the sphere SK(X*)={X: [[x--x*I[<=K}. 

2) The diameters of  the supports of  g k are uniformly bounded by O<~. 
3) Ilgkllc.(o~)<=C for all kEZ. 

Then 
Z ~ z  ]gkU[~ <- Clul~ 

holds for uEYf t, 0=<t<z (or O<-t<=xEZ). 

Proof. There is a finite number of subsets l lCZ  (1=1 . . . .  ,L)  such that 
L U~=~I~=Z and that the supports of gk (kElz) have a distance greater than 

2-max(th ,  0 [e>0 from (2.4"b)]. Then (2.4*a,b) shows ~kCz~]gkU]*2= 
Hence L<r  and Lemma 3.1 yield the desired inequality. �9 

Let ekEC~~ d) (kEZ) be a partition of  unity: 

~ke~(x) = 1 for all xER d, 

}lekllCt(ah) ~ C(t) for all kEZ and all t => O. 

Let Uk be the support of ek and fix XkE Uk. It is required that 

0 := sup {llx-xkll: xEUk, kEZ} < ~  

and that all spheres Sx(x*)={x: llx-x*ll<=K} (K>0, x*ER d) have non-empty 
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intersections with only N = N ( K ) <  oo supports Uk. The magnitude 0 will be chosen 
sufficiently small. We recall the following property of the partition {ek}. 

1 
2.<: 2 Lemma3.3.-~[Ul~<:~k~ZlekUlt=Clult (C=C(t, {ek})) for all u~9~*, t>=O. 

Proof. The second inequality follows by Lemma 3.2 stated above. The first 
inequality holds with C = I  for t=0 .  Assume its validity for 0=<t - ICZ.  Let 
{a I= t. Note that 

ekO~U--O~ekU = Z I B I ~ t _  1 gkpO~U for some &~CC=(Ra); 
hence, 

lek a~ul~, <_ C[le~,ul~ + Zi,j~=,-~ Igk, agul]]. 
Summation over kEZ results in 

IO~Ulo ~ = Z ,  le, O~ul~ = c '  [ X ,  le*ul~+Z'~;~ lull] 

by virtue of Lemma 3.2. Using (2.4"a) we obtain 

lu]~ ----- C ' [ Z  k lekUl~-I- Z'-~o [u [~] .  
(3.1) shows 

t - -1  -~=o lul~ -< [1 / (2c ' ) ]  l u l ~ , + c  "" lul,]. 
Together with 

lul~ = Z~ le~ul~ <= ~ k  lekul ~, 

the first inequality of Lemma 3.3 follows for O<=tCZ. For non-integers t>O use 
the norm [']t* and I]lvlltY~-2, lllekvill*~=rl~(v) [cf. (2.4"b); O<z< l ] .  �9 

Lemma 3.4. Let aEC~(Ra), and ek, Xk, Q as defined above. Then 

holds for 0_-<t<x or 0-<t~xEZ,  where e(~o)".,O as 0-+0. 

The proof is obvious. The proof of Lemma 3.3 shows the following result, too. 

Lemma 3.5. }ekOhU--OhekUlt=CluJt+l~l_ 1 for t>=l, uE~' ,  C=C(t, ~). 

3.2. Operators R~ 

Now we start constructing operators Ra, and RaX,. By means of the function 
Z the value (R~u)v depends on only a finite number of components Uv+us. Let e~>0 
be the number appearing in the definition of 'property C'  and choose a real func- 
tion Z(t) such that 

(3.2) Z(t)EC~176 Z(t) = 1 for t =< el/2, Z(t) --- 0 for t-> el. 
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Let sEZ a and 0E[0, 1) and define the operators Ro~ and R~Zs by 

where 

(0 , 
The following note describes the Fourier transform of Ra~u and proves some useful 
estimates. 

Note 3.1 (Properties of  Ro~, R~s). Let tER. (3.3a--d) are valid with C=- 
C(t, s, z): 

(3.3a) (Ra~ u) (() = [(1 -- e -h-'r a (F~), 

(3.3b) I (Ra,-R~)ul t  <= C lu[~ (u E ~'~'), 

(3.3c) Ia~ul~ ~ Clul,+o (u E xr 

(3.3d) [ekR~su--R~(ekU)lt <= C[gkU]t (UE ~f ~t, kEZ), 

where gkE C~ (R d) must satisfy gk (X') = 1 if the distance of  x from Uk = support (ek) 
is less than et [cf. (3.2)]. 

Proof. 1)(3.3a)fol lows from ~ = 0  [ ~ ) ( - z )  u=(1 - z ) a  and 

(r~ u) (~) = e - ~  a (~). 

2) Discrete Fourier transformation of (Ro~-R~s)u yields 

['~;=1 (1--z(#h NsI]))[~/)(--1)~'e - u(h+ies)] h -a 5(~). 
By [l - z ( ~ h  11 sll)[ = Iz (o ) -z (~h  II sll)l <-~hC, 

and (1--e-h)-a~(1 +h)/h the sum in brackets is bounded by 

(01) C h , ~ = l  ~ -  ( - 1 ) " - l e  -"n = Che--h(1--e--h)a--~ <_ C'h  ~. 

Hence, (3.3b) follows from the definition of [-It. 
3) By (3.3b) it suffices to prove IRo~ult<-Clulr instead of  (3.3c). This esti- 

mate is a conclusion of (3.3a) and 

[1 + ~'~=1 h-2 sin2 (r J/2)]-a/z[( 1 --e-h-i~s)/hl a <= C. 
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4) Note that the left-hand side of (3.3d) depends only on u v with distance 
(vh, Uk)<=el . Therefore, u may be replaced by gk u. Thus, it is sufficient to show 
(3.3d) with Clult on the right-hand side. ekR~su--R~(eku) has the representation 
7__~~ where 

(Y~,u)~ = h-~c~,e-Uh[ek(vh)--ek(Vh+#sh)]u~+us, c u = (O#)(_ 1)"z(#hlls]l). 

Lemma 3.1 implies IY~,ul,<=fha-~#ct, e-~'hlu[,. As in the proof of (3.3b), 

<= Ch ~u=l  ( -1)u-le-~hlul~ <= Clult 

yields the desired estimate. �9 

3.2. Operator R~ 

(R~u)~ depends only on u~+us with 0-<_#~ex/(L[ sLI h). In (3.5) we shall define 
R~ as a combination of those R~s so that all appearing grid points (v+#s)h are 
contained in a certain cone C. Therefore, the coefficients o- s of R a must vanish if 
(v+#s)hr Let S c Z  d be a finite subset with I=~[ts[I<_--CR for sES. In the 
sequel we need functions as(x ) for all sE S with following properties: 

(3.4a) asECm(Rd), as(x)>--O, ~s~sas(x)=l  for all xER a, 

for all xEG h there is a subset So=So(x)cS  such that 

(3.4b) as(x)~C~a>O for sES o and such that 4=0  is the only common zero of 
sin(~s/2) (sES0) in Q=[--~,~]dCR a. 

A third condition on the support of as(x) is formulated in the following note. 

Note 3.2. i) Let C(x, n, e 1, ez) be the cone mentioned in the definition of 
'property C'. Choose as(x)E C m (R a) (sE S) according to (3.4a) so that 

as(~) = 0 if she C(heon(X), n(x), 0% ~), 

as(x ) >-- C~ d if shEC(heon(x ), n(x), ~,~J2).  

If  1/C g and h are small enough, (3.4b) is valid. 
ii) (3.4b) implies 

d (3.4b') ~ses  as(X) sin ~ => [ ~ j = l  sin 2(~J2)] a/2 

with e=e(CR)>O for all ~EQ, 0E[0, 1). 

Proof. i) Choose C R so that d+  l indices {So, s~ . . . .  , se}c Zd\{0} with 
sj=so+ej ( l<- j~d ;  ej: jth unit vector) belong to So:=S~ C(heon(x), n(x), ~o, e2/2). 
Assume ~EQ a zero of sin(~sj/2)(O<=j<=d). Then ~so-~sj (mod2~) holds. 
Hence, ~j=~ej=~(s j -so)-O (mod2~z) and ~EQ prove ~=0. 
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ii) Since ~ = 0 is the only zero of the left-hand side of  (3.4b'), 1.h.s. _-> e' l~ I ~ r.h.s 
follows. 

By means of o- s (x) we define the operators 

(3.5) R~ = Z s c s  Gs(')R~s, R~(xk) = Z s c s  ~s(xk)R~ 

for kEZ, 0<=B<I, where XkEUk is defined above. The symbol a s ( ' )  means 
(as(')u)(x)=as(x)u(x). Ra(Xk)is the operator Ro 'frozen' at Xk. Note that Ra(xk) 
is a convolution operator, whereas Ra is not. The properties of convolution operators 
can be analysed by means of  Fourier transformations, 

Note 3.3 (Properties of  Ra, Ro(Xk)). Let BE[0, l) and c,pra as in Theorem 2.2 
( O = - 0 / 2 )  and assume 'property C'. If  as is chosen according to Note 3.2 the 
properties (3.6a--e) hold: 

(3.6a) support (u) c O h implies support (Rau) ~ Qh, 

(3.6b) IR~ult <= CIult+a, IR~(Xk)Ult <= Clult+o (uE J~f t+~, [tl <= m), 

(3.6c) Re(Rou, u)>=e]ul~/=-Clu[~ ( e > 0 )  foral l  uEoUg ~/2, 

(3.6d) ](T X OT, c,e,o(., o) r~ OahR~u, u) 

- Zke  z (IX O~, c~,~ (Xk, O) T~, O~hRa (Xk) ek U, e k u)] 
u 2 2 ~- e(e) l  I,,+a/~+,7,.+~/~(u) (l=l = lfll = m, e ( o ) " x 0  as ~ ~ 0 ) ,  

(3.6e) Re(LkRo(Xk)U, u) ~ eluI~+~/~-Clulg (~ > o, uE~"+a/~),  
where 

(3.7)  Lk = ~1~I  = IPl =m X,, ,5 Tff O~r O)T~ 0~. 

(3.6a), (3.6c), and (3.6e) are the characteristic properties of  Ra. By virtue of  
(3.6d) estimates involving Ra can be replaced with those involving Ra(Xk). 

Proof. 1) Let x = v h ~ ( 2  h. Because of (3.2) and the choice of as (cf. Note 3.2) 
(Rau)~ depends only on u~+ u with phEC(heon(x),n(x), e~, e2). By definition of 
'property C' this cone belongs to R d \ O .  Therefore, xEf2 h implies u~+,=0 and 
(Rau)~=0. 

2) (3.6b) follows by applying Lemma 3.1 and (3.3c). 
3) Lemmata 3.1 and 3.4, and (3.6b) yield 

I(Rau, U)--,~k (e~,Ra(Xk)U, u)] <= e(0)lul~/z. 

Choose gk appearing in (3.3d) so that Lemma 3.2 applies: 

]~k (ek Ra (Xk)U -- Ro (Xk)ek U, e k u)[ 

<-- Z k  I(ekRs(Xk)--Rs(Xk)ek)ulo[ekU]o 

ClOak IgkU[20]ll2[,~ak lekul~] v2 <= C'lul2o = ,7g/~(u). 
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Assume that 

(3.6c') Re(Ro(Xk)V, v) >= 5'lvl~/2-C'lvl~ (e" > O) 

holds with e' and C'  independent of kEZ. Substituting v=eku and summing 
over kEZ one obtains 

Re Z k  (Ra(Xk)ekU, ekU) >= 5"IuI]/2--C'IuJ~ (e" > O) 

by means of Lemma 3.3. Choose ~ so that e(Q)<5". Then the three foregoing 
inequalities result in (3.6c) with 0<5<5"-5(Q). 

It remains to show (3.6c'). Thanks to (3.3b) it suffices to prove (3.6c') with 
Rk:=Y_.se s as(Xk) Rs~ instead of Ra(Xk). Note that [arg (1-z)l<~z/2 (]zl<l)  implies 

Re [(1 - e-h-iCS)/h]~ >= cos (c%z/2)r(1 -- e-h-ir ~ 

=> 511+h -~ sin ~ (J~sl/2] with 5 = e(O) > 0. 

Hence, (3.4b') proves 

Re Rk (4) => d [1 + h-2 ~'~=1 sin~ (~/2)] ~/2, 

where / ~ k ( ~ ) = ~ e s  a,(Xk)[(1--e-a-i~)/h]~. (3.6c') follows from 

(Rkv, v) = [h/(2rc)] a fe &(r d~ 

[cf. (3.3a)1. 

4) Lemmata 3.4 and 3.1, and (3.6b) ( t = - O / 2 )  show 

I(r~ O~,c,o,a(., o)T~ ;)~Rau, u)- -Zk (ekc,p,a(Xk, O)T~ O~Rou, ek(r{, O~,)* eku)l 

Applying Lemma 3.5 to gkR~U and gku with gk as in (3.3d), we obtain that each 
term of the last sum differs from 

(c~B,a (Xk, O) T~ O~ ek R~ u, (T[, O~,)* ek U) 
by 

C[lek R~Ul,.- ~/~[gkul,.-l + ~/2 + lgk RauI,.-~-.~/~lgkul,.+ ~/2]. 

Using [ekRaUI,,,_O/2<=ClgkU[,,,+~/2 [cf. (3.4b)] and IgkR~Ulm_l_O/2~Cl&Ulm_l+O/2 
with gk similarly defined as &,  this bound becomes 

2 2 ~ ~]m+O/2(gkU)"t"l'lm+oa/Z(gkU) 
[cf. (3.1)]. Summation over k and application of  Lemma 3.2 yield 

2 k  I(e~ c-~, (X~, 0) V~ ~ ag g~ u, ek (r~ a~)* u) 

- ( c , ~ , a  (Xk, 0) T~ ag ek R~ u, (T[, O~)* e, u) l = t1~+o/2 (u). 

Thus, (3.6d) is proved. 
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5) Let R k as in 4). 

[(LkRu(Xk)U, U)--(LkRkU, U) I -<-- Clul~ = t/m+3/2(2 U) 

can be concluded from (3.3b) and (3.1) if 8>0 .  In the case of 0 = 0  the difference 
vanishes because of Ra(Xk)=Rk=L Hence, it suffices to prove Re (LkRkU, U)_>= 

2 e]u[~+~/~. This estimate follows for 0=<0<1 as in the proof of (3.6c'), if P(Xk, ~) 
is real, Otherwise, (2.3)implies ]arg(p(x, r (~>0) for all x, ~ R  ~. 
Hence, holds for 0 ~ 0 < 2 O o  with sufficiently small 
0o~(0, 1/2]. Ii 

3.3. Proof o f  Theorem 2.2 

The proof of Theorem 2.2 is prepared by two lemmata. The first one allows 
to estimate I[A-1[[ by means of H(A-2I)-I[I. The second one is the trivial remark 
that ( A - 2 I )  -1 is bounded for coercive forms (Au, v). 

Lemma 3.6. Let A be an (unbounded) operator with dense domain in j fo  and 
- - i  0 0 "~:z assume IIA II ,~o.~o=C, (stability). Then 

II(A+,~I)-all~effs-~.o; --< Ca (s, r _--> 0) for some ),~R 
implies 

I[A-11[ge, ff-_.atg ~ C 3. 

Proof. Set A z : A - A L  A- I :A- i l - -2A-1A- ;  1 shows IIA-111~eZs_jeg<=C':= 
C~+I;(]C1Ce by virtue of ]-[o-<_[. It- Hence, A - I = A y l - - 2 A ~ I A  -1 proves 

IIA-11l~zs.,rg ~= C2+l,~l CraG" =: C~. [] 

Lemma 3.7. Re (Au, u)>=e ~ 2 luls,21U[o (e>0, 2ER, s>0)  for all u~Yf~ implies 
El (.4 + ,~I)  - '  Irs~s_~r~ <= 1/~. 

As announced in Section 3.1 we show 3r176 of LhR2o. In the 
proof we apply the partition of  unity and use the fact that LkR2o(Xk) is coercive 
[cf. (3.6e)]. 

Theorem 3.1. Assume the conditions of  Theorem 2.2 for O = - 0 / 2 ~ ( - 1 / 2 ,  0] 
except of  the stability. Then there is e>0  with 

Re(LhRau, u) ~-e u ~ t'lu]o 2 for all uE~d  "+~12. 

Proof. Set R:=Ra and Rk:=R~(xk) (kEZ). In order to show that the prin- 
ciple part 

L~ = Zl~l=i~l:., Z , , ~ z .  T~ O~c~p,~(. O)T,~,O~ 
of Z h satisfies 

(3.8a) I(LhRu, u)--(L~Ru, u)l ----- qz~+~/~(u) for all u ( ~  "+a'2 
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three cases are to be discussed. If  f~l<m and lfll=m 

}(T~r a~c.p~( ., h) T t  ,ggRu, u)[ 
2 

[cf. (3.6b), (3.1)] follows from Lemma 3.1 and c~,araEC~(Ra). In the case of I=]----m 
and }ill <m,  the boundedness of e,ar~ yields 

{(Z~ O~,c~,ae~(. , h)Z~ OgRu, u)] ~ C IRulm_ ~ ]ulm <---- C lUlm_x+a }UIm ----- n2m+a/2(U) 

[cf. (3.1)]. If  ]~]=lfl]=m, the H61der condition 

Ic~,~(x, h ) - c , , ~ ( x ,  0)t <= Ch ~/2 
implies 

[(T~ O~,(%ar,(., h)-%flra(., 0))Z~ 0gRu, u)] ~ Ch ~/z IRul,, lul~ 

~ H U 2 < C'hO/2lulm+~lul,. -~ C lul~+~/21 {m = qm+~/~(U) 

by virtue of  (3.6b), h'[. [t+~<=CI. I,, and (3.1). Hence, (3.8a) is proved. 
Define Lk by (3.7). (3.6d) implies 

(3.8b) I(LVhRu, U)--~k~z(L~Rkeku, ekU)t ~ e(Q)lUl~m+al2+rl~+,~12(u) 

for all uEo,'ff 'n-~ where e ( Q ) \ 0  as ~ 0 .  (3.6e) and Lemma 3.3 result in 

(3.8e) Re~t~(LkRkekU, ekU ) > ~ , k [ e '  e ~ > = I ~,ul.,+~/~-C{ekul~] = d'lu{~+~/~-Clulo ~ 

' e ">  0. with e ,  
Choose ~ so small that e(Q)<_-e:=e"/3. T he  estimates (3.8a, b, c) yield 

Re(LhRu, u) e 2 e 0) foral l  uEg4f "+~t2 

2 By definition of  tff(u) the right-hand side can be replaced with e]U[,n+o/2-Clu[~. 
Restriction of  this inequality to uEo~cf0~+a/2~+a/~ concludes the proof  of Theo- 
rem 3.1. II 

By repeated applications of  Lemma 3.6 we finally prove: 

Note 3.4. Let Lh be stable with respect to oVfo~ Then Theorem 3.1 implies Theo- 
rem 2.2. 

Proof. 1) Case of O =0. Use Ro=I and apply the Lemmata 3.7, 3.6. 
2) Case of  O < 0 .  Set 3 = - - 2 O E ( 0 ,  1). (3.6a, c) and Lemma 3.7 yield 

[l(Ra+ 2I)-~ll~e~/~-~w~/~ <= C (;~ sufficiently large). 

In particular, Ra+2I is stable with respect to ~ o  ~ 
Since I ( L h  U, < 2 2 u)l=Clu},,,=rl,,+o/2(u), Theorem 3.1 yields 

g U S me(Zh(Ra+ 21)u, u) >= .-f l I,,,+~/~-C'lul~ (uE ~f'g+~/2). 
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Applying Lemma 3.6 to this estimate one obtains 

]l[Zh(Ra+2I)+2"I]-~ll~eff,~-~/~_~e;,+~/, <- C (2" = C'). 

Since Lh (more precisely Lh,0) and R a + 2 I  are stable, Lemma 3.6 yields 

[l[Z (R +2h]-Xll ~-~/~_~ = h ~ a~o ~,+a/2 < C.  

By virtue of 

fIR +2111 ;'+~/~-~Je [l[t (R0+&/)]-'l[ - - ~ / ~ #  C 

[cf. (3.6a~ b)] the estimate (2.5) of Theorem 2.2 follows. 
3) Case of O > 0 .  Since ~o  -t  is the dual space of  5~fg the estimate (2.5) is equiv- 

alent to the estimate 

(3 I I(C*) < c .9) -~ll~c~-O +~er-~ = 

involving the adjoint operator. L~ is again of  the form (2.2) with c~ar~ replaced by 

* = (_ 1)I~I§ Ca#~ C#,et, p-r},a-~ �9 

Applying the foregoing part 2) to L~' we obtain (3.9). �9 

3.5. Proof of Lemmata 2.1, 2.2 

Proof of Lemma 2.2. i) Choose e0, el, eg suitably, ii) By the arguments of the 
proof of [17, Lemma 3.4] the estimate follows for the case of s=0 ,  t=2m. The 
result is trivial for s---t=O. Noting T=T* and applying interpolation (cf. [9, 
Lemma 5]) we obtain the general estimate. �9 

Proof of Lemma 2.1. 1) It suffices to prove the inequalities for sE[0, m], since 
they imply the same estimates for - s .  

U " ~  a 2) Set a=s/(2m). At first we prove the first inequality, I [s,o=ClLh, oulo, o. 
Denote the extension by zero outside of  t2 n by co: ~ r 1 7 6  ~ co*: Xe~ ~ is the 
restriction to Oh. Since Iris= IZ~vl0 [vE~  s, cf. (2.4)] the assertion holds if and only 
if IILnogZh, oll = C ,  where 0<_-a<-l/2 and II �9 II =1[" II~e~e ~ This inequality becomes 
[Iogll-<_l for a = 0  and 

1 / 2  - - 1 / 2  -~- = ][Lh coLn, o[I = [[L~/%J* Lho9L~,~t2[[Ile I[111 I/2 1 

for a =  1/2 because of  Lh, O=Og*Lho9. By interpolation the estimate is valid for all 
irE[0, 1/2] with C = I  (cf. [11, p. 19]). 

3) In part 4) we shall show the existence of  F:  ~ s  ~/fg (O<=s<=m) with 
IIZ~,oFLh~ll <=C (a=s/2m) and Fo9=identity on oYg0". Thus, IL~,oFvlo, o<-ftL~v[o 
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holds for all vEerY ~. Substituting v=ogu we obtain 

ILLoul0,0 = IL~,or~Ulo, o <- C ILg o~ulo = C lcoul~ = Clul~,o. 

Thus, the second inequality is proved, too. 
4) Define F=co*r~p as follows. By means of finite elements of sufficiently 

high order define the prolongation p: W ~ H S ( R  a) (O<=s<=m). The restriction 
r: HS(Rd)~W ~ is the projection defined by IFpru--Ulrl~O(Rd)<=[Ipw--ullHo(R d) (for all 
wEJ/g ~ uEH~ 

Note that rp=L p can be chosen so that p: ~Vf~HS(R d) and r: H~(Ra)-~ef ~ 
(O<=s<=m) are uniformly bounded (i.e. independently of hE/o). I f  UEWo ~ the sup- 
port ofpu  is contained in 

O" = {xERd: distance(x, Oh) <= C'h} for some C '  = C'(m) >= ]/-d/2. 

By 'property C' of O h there is a grid O h' with 

O h C G h ~  (2" C Oth ' C {XEGh: distance(x, Oh) ~ C'h}  (C* >- C') 

such that O h' has 'property C' with e0 = 0. Then there is 

O" c {xERa: distance(x, Oh) <--_ C"h} with 0'  h' = t u n  G h and O" D O' 

such that R d \ O  " satisfies the requirements of the Calder6n extension theorem (cf. [1, 
p. 91]) uniformly for all hEI o. Thus, there is an extension operator E: Hk(Rd~O~r)  ~ 

Hk(R a) with 
E u = u  in R a \ O  ", 

IIEull~(ad) <- Cllullu~(a~\o,,) for k = 0, m, u ~ H k ( R d ~ O " ) ,  h EI o. 

Hence, ~ := restriction of I - E  on O" is a uniformly bounded mapping from 
Hk(R a) onto Hk(O ") (k=0,  m) with ~,u=u for uEHk(O"). If  uEH~(O"), the 
support of r~ (~7---u in 0", ~7=0 otherwise) is contained in 

ttt 
0 h c {XEGh: distance (x, Oh) <= C ' h }  

$ I i i  I i 1  
for some C".  Let Jfo (Oh) be defined as aft o but with O h instead of O h. By Lemma 2.2 

V k ~ U O ~_ bl .,~ .Q ) 

k ,','1 I t , "  holds for uE~o (Oh) (k=O, m) and v:--u-a~*u, i.e. v~=u v at vhEOh \ O h  and 
v,=0  otherwise. Therefore, co*: ~0~ff~k{o""~k"~h ]--~O?ff~k (k=0,  m) is uniformly bounded 
for all hEI o. It follows that F:  ~k~Jfok (k=0,  m) is uniformly bounded, i.e. 
IIL~,oFLh'II<=C holds for o-=0 and a = l / 2  with Cr Interpolation yields 
the same bound for all trE[0, 1/2]. The proof is concluded by the observation 
that uE~f~o k implies 7pcou=pcouEH~o(O ") and therefore Fu=og*rpcou=co*~ou=u. �9 
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3.6. Proof of  Note 2.2 and Note 2.3 

Proof o f  Note 2.2. Let f2h=f2 ~ U F h and F~cf2~ as in Example 2.2 and define 
24~ by means of f2~. In order to apply Criterion 2.1 we denote the five-point formula 
(restricted to f2h) by Lh and define lh=Lh--Lh. By Note 2.1 and Lemma 2.2, {f2h}het0 
has 'property C'. Thus, Lh satisfies the assumptions of Theorem 2.2. 

Since f2 is bounded, ]. I1 and Ill" ]ll~=(Lh u, u) 1/~ are equivalent norms on 2/gd. 
The support of lhu is contained in F~. Hence, Lemma 2.2 implies 

i.e. the estimate required in Criterion 2.1 holds with s =  1. 
Let x~-vh6F' h, y=x+__hej6F h and y+__~hejCOf2. Then the term - h - 2 u ( y )  

of (LhU)(X) is replaced in (~hU)(X) by -h-2xu(x) / (1  +~). A more general represen- 
tation is - h  -2 ~lLh~l~; Wv~U#, where w~,-~wv,(• Thus, the estimates 

(3.10) ,rvlw~u(+ej)l<=ca, Z .  lw~u(+_ej)l<=C~, 2 C I C 2 < 1  ( j = l , 2 )  

hold wilh C1=C2=1/2. 
Finally we prove that (3.10) implies I(lh u, v)]<= ~ll[ullllll Iv]Ill with x-~ 1/2C~C2< 1. 

Split l h into lh~+lh,_l+lh2+l~,-3, where 

(lh,+_jU)v=~vhcr;Wvt~(q-ej)u~, if vhEF~, (lh,+_jU)v-~-O otherwise, 

and let l] �9 lip (P--- 1, 2, ,~) be the matrix norm corresponding to the vector norm 
[ulff =Z~ lull ~, Ilullt--sup~ Iuvl Since (lhjU)v=O or (v+ej)hr s h we have 

(lhj u)~ ~ = -- (lhj u)~ h (~hj V)~ + ej 
(3.11) (j = 1, 2). 

(lh, - j u)~ ~ = (lh, - j u)~ h (Ohj V)~ 

The inequalities (3.10) imply 

hZtllh, +_~]1~ <= hZ{lllh, +_jIIx IIlh, +_jlI~P/~ <= t / c ~ .  
Therefore, summation of (3.11) yields 

I(lhu, v)l <= ~/C1C2h-lly'Ulo (lOhlVlo+lOh2Vlo), 

where 7'u is the restriction of u to F~: (y 'u) ,=u,  if vh6F'h and (y'u)~=0 other- 
wise. F r o m  ]OhlV[~+lgh2vI~=ltl~lll~ and I/uio<=hl]lultlx it follows that 

[(lhu, v)l ----< l/-~xC2111ulllllllvlll~, I / ~  < 1. 

Thus, all conditions of Criterion 2.1 are satisfied and Note 2.2 is proved. II 

Proof o f  Note 2.3. Split the right-hand side of LhU= f into f ' + ~ f  where sup- 
p o r t ( f ' ) c O ~  and ~=restriction to Fh: (yu)~=u v if vh6Fh, (~u)~=0 otherwise. 
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By ~'~o ~ we denote the discrete Sobolev spaces corresponding to f2~ (instead of f2h). 
By the same arguments as in the proof of Note 2.2 we show 

_< I �9 
(3.12) [L h--If�9149 < C ~ t e ' � 9  J 19--1,0 for OE[0, Oo), 0 < O o = - ~ ,  support(f ' )  c f2h. 

where 1" I~,0 is the norm of ~ o  s. The only difference to the proof of Note 2.2 is 
the fact that the equations (LhU)v (vhEFh) involve not only components u. (/~hEF~) 
but also u. (r#/~, phEFh). Therefore, we obtain a general representation 

(lh, +_iu)~ = -- h-2 ~uh c r; wvu (4- ej)uu (vh E F;,) 

as mentioned in the foregoing proof. The coefficients w,, are non-negative. Let 
x=vhEF" h and x+helEFh. The sums ~ v w , , ( e O  and ~ w ~ ( e x )  are maximal 
in the case of the following shape of the boundary: x + ehe2E F'h, x + he1 + ehe2E Fh, 
x+2hel+ehe2EOf2 for all eEZ. Then ~ , w , , = ~ ' ~  w~,=l/2 follows. Therefore, 
(3.10) is fulfilled with C~=C~= 1/2. 

Let 7' be the restriction to F h. Since IVLh f 10=Cl~ L f [o, Lemma 2.2 
and (3.12) yield 

(3.13a) lyL~'1f'11+19 <_-- C h - l - ~  f ' lo <- C ' h - l - O l y ' Z ; l  f'l~ 

Define 7":=7+7" and note that LhL~IT:])Lh~�9 where L h is the five-point 
formula (restricted to I2h). The inequality 0--</,~-~==_L~ -~ holds for all entries of 
the matrices and implies 

t e L  1 ~:: �9 - 1  r ; ~fl0 = JiLl. = 17 th 7glo, where g~ 

Hence a repeated application of Lemma 2.2 shows 

(3.13b) IL~-lyfl, : [L~1LhZff17fls = [Lf lTLh?"L;17fl, 

H~_I i,, ~ _ 1  <- Cl17Lh7 Lh Tfl.-z,o <= C2iLh7 Lh Yfi.-2,o 

=< CalY"Z~Yf[ ~=< C4h-~lY"L~yf l  0=< C4h-slv"L;XTg[ o 

< Cs[?"L;Xyg[ < C~]L~Tgl < CTl~g[ < Csh2-~IygIo = $ = $ = -  $ ' 3 , 0  = 

= Csh~-'17fl < Cgl7fl < CI [fl 0 = s - - 2 , 0  : 0 s - - 2 , 0 ~  

where s = 1 + O .  Finally, we note that 

(3.13c) ' � 9  ' = ER, f E~Y~; ). I f  I~,o < I f  1~,0 (s " '~ 

By virtue of (3.12) and (3.13a, b, c) the desired estimate (2.5*) follows: 

<_- 17~-1f'1~+19 + IE;lf'I;+19 + [J~h-1 ~ f [ l +  O 

�9 �9 t 
<- C[[f  [e-x,o+lf119-x,o] -< C [fJ19-1.0. �9 
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4. Applications 

4.1. Optimal Error Estimates 

The estimate Itu-uhll~l~<m<=Ch'-~llull~,o<m (m<=s<=t<-tm~) is well-known for 
finite element approximations Uh to the exact solution of L u = f  Using IlullH~<m- < _ 
CIIfll~-=,-(m for t=m+O (cf. Theorem 2.1) we obtain the optimal estimate 

l l u -  uhll~r-o't~) <= Ch ~247176 I l f l l~o-~m.  

A similar estimate can be obtained for difference approximations, too. 
Let Ph: ~ be a suitable prolongation satisfying 

(4.1) Ilehll~_~n~<m<_-C for O ~ s ~ m + O o  (OoE(O,-~)fixed). 

If  we define the restriction Rh: H-m(o)--'~o -m by Rh=P ~ also (4.2) is fulfilled: 

(4.2) IIRhll/t-~(m_,~e~ <_- C for 0 <= s <= m+Oo. 

For a suitable choice of  Ph and R h the product PhRh approximates the identity: 

(4.3) llI-PhRhllng(m_~*o(~) <= Ch ~-' for s, tC[0, m+Od. 

The Galerkin approximation related to the subspace Ph~,~g"cH~(f2) leads us to 
the scheme RhLP h (if Rh=P~). Since Lh must be consistent, the difference 

(4.4a) 6 h := RhLPh--L h 
should satisfy 

(4.4b) [16hll~rr+o_.,r;~-o' <_- Ch ~247176 O, O'C[0, O01. 

Note4.I. Assume (2.5) and L• H+~+~176 for IOl<_-o0 (cf. 
Theorems 2.1, 2.2). Define the right-hand side of  (1.2) by fh=Rhf  w i t h f f r o m  (1.1). 
Then (4.1), (4.2), (4.3), and (4.4a, b) imply 

(4.5) I lu-  Phuhl[n'd,-o'<m <= Ch ~176 Ilfll~/o-,-<m 

for O, 0"~[0, O0] and fCH~ where u and uh are the solutions of (1.1) 
and (1.2), respectively: Lu=f, Lhuh=fh. 

Proof. Abbreviate I[" [In~(m~n~<m, I['[[u~(m-.~r~, I[" [l~r~u~(m, and [[. [l~r 
by II �9 I1~,,. The estimate (4.5) can be rewritten as 

[IL-X--PhL~lRhll~,t~Ch ~176 where s = O - m  and t = m - O ' .  

Noting [I--PhL~RhL]Ph=--PhLE~6, we obtain the result by means of the fol- 
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lowing splitting: 
IIL-1--PhL;1RhIIs, t = II[I-PnL;X RhL]L-XlIs, , 

= II[I--PhL;~RnL][I--PhRh]L-~--PnL;X6hRhL-l t Is ,  , 

{1 +llPhll,,tllL;Xlit_2m, tllRhil,_2m, t_mml[LIIt, t_mm} 

• 
+ llPhllt,,[IZ~Xl[t_ zm, tll6hll,+ mm, t_ mmllRh]l,+ zm,,+ zm[lZ-llls,~+ mm ~ Ch e+o' .  �9 

4.2. Convergence Proof of  Multi-Grid Methods 

The multi-grid method is a widely applicable and very fast iterative process 
for solving systems of linear (or nonlinear) equations arising from difference or 
Galerkin approximations (cf. [7, 8, 9]). It consists of a smoothing step and a correc- 
tion by means of approximations corresponding to coarser grids. Accordingly the 
proof of convergence requires a 'smoothing property' and a 'approximation prop- 
erty'. The latter is similar to (4.5): 

(4.6) lUh--Phh'Uh'lm-e ' ~ Ch~176 0 ~ 0, 0 ' =  ~ 0, 

where uh=L~fh ,  h'>h, Uh,=th, afh ,, fh,=rh, hf.  Phh" and rh, h are prolongations 
and restrictions acting on the discrete Sobolev spaces with grid widths h and h'. 
It turns out that the convergence of the multi-grid method requires O + O ' >  0. Thus, 
the introduction of ~ with s r Z cannot be avoided. 

4.3. Stability with respect to f~  

As mentioned above ~0 ~ is usually denoted by f~. f=  is the space endowed 
with the supremum norm 

Ilulle~ = sup {lull: vhEOh}. 

A scheme Z h 1S called stable with respect to f=  if IlL~-ll[t ~e ~ C .  f~  stability 
can be proved by virtue of the M-matrix property or related properties (cf. [2], 
[,12, p. 197]). Here we show: 

Note 4.2. Assume m ~ d / 2  and let f 2 c R  d be a bounded domain. Under the 
requirements of Theorem 2.2 (for some 6)>0) stability with respect to f~ implies 
stability with respect to f= .  

Proof.. By assumption the number of grid points of f2 h is proportional to h -a. 
Hence 

[fle-m,o ~ If[0 = Ilflle~ ~ Cllfllt= 

is valid. Thus, f2 stability implies 

[ t ;~ flm+O <= Cl f lo - . , . o  <- C' l l f l l t~ .  
The proof is concluded by l lull~<=C(s)lG ( s > d / 2 )  since we may choose u = L ; a f  
and s = m + O > d / 2 .  �9 
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