On the regularity of difference schemes
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1. Introduction

In this paper general elliptic difference schemes in Lipschitz regions with Dirich-
let boundary conditions are studied. It is shown that the inverse of the difference
operator is a uniformly bounded mapping from the analogue of the Sobolev space
H®~™(Q) onto the analogue of HZ*™(Q) for |@{<1/2 (2m: order of the differential
operator). This property is important for the convergence proof of multi-grid itera-
tions applied to difference schemes, since it is possible to obtain optimal error esti-
mates that are similar to the estimates known from Galerkin approximations. The
result is also useful for proving ¢ stability of difference operators.

Let Z be the set of all integers, while Z, contains all non-negative integers.
Following norms will be used for multi-indices a=(yy, ..., )€Z% and v=
1y ..., VYEZS:

lo] = ay+...40y, [V =24+ (€Z4, vEZT).
We define the differential operator
D* = i~ 18 (@Q)ox )" ... (90x)%  (w€Z2).
Let © be a domain in R? and consider the boundary value problem
(1.1 Lu=f ucHQ),
where L is the differential operator
Luw)(x) = 3o, 1p12m D*ayp () DPu(x) (x€Q)

of order 2m. For the notation of the Sobolev spaces H*(Q) and H;(Q) compare,
e.g., [11]. The boundary values are given by u€H["(Q2): (9/on) u(x)=0 (0=v<m,
x€0Q:=boundary of Q, d/dn: normal derivative).

Introduce the regular grid G,c R? with size h and the grid 2,cG, of Q by

G, ={x=vh: v€Z?}, Q,=G,nQ (h€(0, hy).
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The boundary value problem is discretized by some difference scheme
(1.2) Lu,=f, at xcQ,, u,=0 at xeG \Q,.

For the formulation of ellipticity, consistency and convergence we refer, e.g. to
Thomée [17], Thomée and Westergren [18], Bramble and Thomée [2] and Stum-
mel [16].

Here we are interested in the ’regularity’ of L,. Under suitable conditions the
inverse L~ of the differential operator maps H°(Q)=L2(Q) onto H™™(Q)n H(Q).
Let 2#°(Q,) and #;(Q,) be discrete analogues of H*(Q) and H; (). The counter-
part of the property mentioned above is

Lt #°(Q) — HP(Q) n A(R,) bounded independently of &.

This is proved even for nonlinear problems in the case where Q is a rectangle or
parallelepiped (cf., e.g., D’jakonov [4], Guilinger [6], Lapin [10]). Dryja [5] showed
the same result for a convex grid. (Note that in general Q, is not convex even if
Q is).

It is well-known that L~': L2(Q)-H?®(Q) is not valid in the case of more
general regions. Nevertheless, L~1: H™"(Q)>H2 " (Q) (|#|<1/2) is proved by
Nedas [13] for Lipschitz regions €. In this paper we show the analogous result
LY #9™(Q)~H#P+™(Q,) for the difference scheme (1.2) in a Lipschitz region Q.
An important application of this result is the convergence proof of multi-grid itera-
tions for difference equations as mentioned in Section 4.2.

It is to be noted that the regularity of L, is different from the interior regularity
studied, e.g., by Thomée [19], Thomée and Westergren [18], Shreve [15].

In Section 2.1 we recall the result of Nedas[13] for the operator L of (1.1).
The difference scheme is introduced in Section 2.2. The discrete analogues of the
Sobolev spaces H*(R?) and H;(Q) and their norms are explained in Section 2.3.
The main theorem about the regularity of L, is contained in Section 2.4. In this
theorem L, is assumed to have smooth coefficients. In practice difference schemes
are often used with quite different discretizations at points near the boundary. In
Section 2.5 we discuss a discretization of this type. It is shown that regularity can
be proved for this scheme, too.

The proof of Theorem 2.2 is given in Section 3. Section 3.1 contains preparing
lemmata. A convolution operator discussed in Section 3.2 is used in Section 3.3 for
the construction of an operator Ry. By means of this operator the proof is completed
in Section 3.4.

Section 4 contains applications of our results. An optimal error estimate is
proved in Section 4.1. In the following subsection we explain the application to the
convergence proof for multi-grid methods. ¢, stability of difference operators is
discussed in Section 4.3.
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2. Regularity of the Difference Operator
2.1. Regularity of the Differential Operator

Before considering the discrete problem (1.2) we recall the properties of the dif-
ferential operator L. The ellipticity of L is expressed by

(21) ReZy=ip=m Gap(X)EFE =8> forall x€Q, ECR! (e>0),

where ¢*=¢0.. 8% and |E)|*=¢Ef+...+ &2 Here and in the following & and C
denote generic constants.

Let C"(Q) (n€Z,) be the set of functions » with continuous and uniformly
bounded derivatives D*u (Ja|=n) on the closure of Q, while the n' derivatives of
the functions of C*"™*(Q) (m€Z,, 0<x<1) are uniformly Holder continuous with
exponent x.

QcR? is called a Lipschitz region if there is ¢>0 such that for all spheres
S, (xy) with midpoint x,£0Q and radius ¢ the following property holds: There are
local coordinates (py, ..., y)=(, y)=U-(x—xy) (U: matrix with det(U)=1)
and a Lipschitz continuous function «: R*™*—R such that

Ss(xo) [ ag = {x0+ U_ly: y = (y/’ (X(y’))} M Sa(xo)'

The Lipschitz constant of o must be independent of x,€9Q.
The discrete analogue of the following theorem is desired.

Theorem 2.1. (Necas [13]). Ler O¢c(—1/2,1/2). Assume (2.1), a,z€ L7 (Q), a,
real if |u]=|B{=m,
el =m and @ =0
A €C*(Q) if Jul=1{fl=m , where #>10|=0 or =60 =0.
Bl=m and © <0

Furthermore, Q is assumed a Lipschitz region. Then (L+.1)"1: H®~™(Q)~HZ*"(Q)
is bounded for suitable ACR. If a,; (la|=|p|=m) is complex, the same result holds
as long as |@) is sufficiently small.

For the regularity of L in the case of smooth coefficients and a smooth boundary
0Q compare, c.g., Lions and Magenes [11].

2.2. Difference Scheme

Let hely:=(0, hy] be a fixed grid size and define the grids G, and Q, as in Sec-
tion 1. Grid functions of G, are u=(u,),.zs, where u,=u(vh). In the following
the subscript /4 of u, in (1.2) is omitted. Grid functions u of @, are identified with
i defined on G, by #,=u, if vhcQ,, #,=0 otherwise.
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The translation operator Tf (x€Z%) is defined by
(TEuw)(x) = ulx+ah) (x€Gy) or (THu), = Uyy,.
The discrete analogues of 9/dx; and i ll p* are:
On; = hYI-=T;%), e;=j" unitvector €Z? (1 =j=d),
0 = 0%y ... O3y (x€eZs).
A general difference scheme discretizing L has the representation

(22,) Lh :h—ZMZyEZd by("h)Thy’

where (b, (-, Mv)(x)=b,(x, Hv(x) (x€G,) and b,=0 except of a finite number
of subscripts. The scheme (2.2) can be rewritten in the form

(22) L,= Zlal,]ﬁ]ém Zy,&ezd HhTy caﬂy&(' > h) T}:’ aﬁa

where again c,p,; vanishes for almost all subscripts. The relationship of (2.2°) and
(2.2) is discussed in [18]. For the formulation of consistency by means of a,; and
Capys Compare [18, 19], too.

L, is called elliptic if (2.3) holds (cf. [18, Lemma 2.3]):

(2.3) Rep(x, &= 8[2‘];1 sin? (¢;/2)]" for all x€RY, é€Q =[-m, nJf C R,
where

p(x, &) = 2|u|=|ﬁ|=m Zy,a Capys(x, Q) e 0FD ﬂj:l [1—e]ths.

Example 2.1. Let d=1, m=1, Lu(x)=—[a(x)u’ ()] + c(x)u(x), ie. agux)=
c(x), ai(x)=a(x), a,;=0 otherwise. The usual discretization is
Lyw)(x) = —h~*{a(x+h/2) [u(x+h)—u(x)]
—a(x—h/2)[u(x)—u(x—h)}+c(x)ux).
Hence, (2.2) holds with cgee(X, A)=c(X), Cy161 (%, H)= —a(x+h(2), c,p,,=0 other-

wise. Since
p(x, &) = —a(x)e ?(1—€%)? = 4a(x) sin? ({/2),

(2.3) is valid with e=inf {a(x): x¢G,}=0. The generalization to L=—V-a(x)V+
¢(x) is obvious.

Although we consider the discrete problem (1.2) with homogeneous boundary
values, the results of this paper hold for the inhomogeneous problem

(Lyv), =g, at vheQ,, v,=w, at vheG £,
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too. we#®*™ and geAP™ yield fi=g—L,weH ™™ Let u be the solution
of (1.2) with f defined above. Theorem 2.2 will show u€#2+™. Hence

[Vlmso = C-(Wlur0+18lo—mo0)

holds (for the notation compare the following section).

2.3. Discrete Sobolev Spaces

Throughout the paper we are only interested in the discrete spaces #°= #*(G,)
and #y=#;(Q,). The discrete analogue of L2(R?) is #° consisting of all complex-
valued grid function with finite |-|, norm:

lul = h2[ 3, ¢ 7a lu,[*]2.
H° is a Hilbert space with the scalar product
P p
(u, v) = h? Sveza D,

Usually, this Hilbert space is denoted by #,. The discrete Fourier transform of u
is the periodic function

ﬁ(é) ZZVEZduveivé (éEQ =[—TE, T[]dCRd),
where vé=v & +...4v,&;. Note that
[ulo = [A/QRr)I2 4] 2gy-
Let #* (s€R) be all grid functions with |ul,< oo, where

2.9 |ule = [h/Qr)F2|[[14+h2 34_, sin? (/]2 4(8)] |12y -
This is a natural definition since for s=n=1 it coincides with the usual definition
(2.4%) fuly = DR+ 3y, 105uB]? (n€Z,).

One easily verifies that ||, is equivalent to |.[* for n€Z,. A generalization to
non-integers s=n-+t=>0 is given by

lald = [+ 30y NOGUIIETY (5 = ntt, n€Z,, 0=t <),
(2.4*b)
il = b~ [ZuEZd,0<IIuI] =s/h I(I—Th“)vlﬁ/”y]ld+2‘]”2 (e=0).
The equivalence of |-|; and |.|¥ follows from the representation
@Y lolllF® = 1= [ 10O TS o< yunman Si0® (u/ D/ *+*] .
For negative s, |-|; is equivalent to

uly = sup {I(u, D)l/Io}Zs: 0 = v€H} (s <0).
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The counterpart of H;(2) (s=0) is
Hy ={ucH*: u, =0 if vhieG N} H#* (s=0)
endowed with the norm of #°°:
[lso=1+1s (s=0).

This choice corresponds to the fact that the extension of u€Hg(Q) by zero out-
side is a continuous mapping into H¥(R?) except of s—1/2¢Z (cf. [11, p. 60]).
According to the embedding ;. #”, the dual space is #, *DH#~° with

lul 5,0 = sup {I(u, V)l/lv]s: O #vEAT} (s =0).
Note that |u|_; (=0 implies u,=0 only at vhA€Q,. By this definition the opera-
tor L,: #™—>#"™" of (2.2) can be considered as an operator from ;" into A ™,
too; although ucs#" does not imply support (L,u)<€,. To avoid difficulties we
sometimes use L, 4 instead of L,, where
(Lh,Ou)v = (Lhu)v at vh €‘Qh, (Lh,Ou)v =0 at VhEGh\Qh'
As usual we define the operator norms

I Al o= = sup {| dulflul,: 0= u €7}, || Alag—ses=sup {|Auls,o/lul.o: 07 u €A}

of A: H"—>H#° or A: H,—~H;, respectively.
Instead of Lipschitz regions Q we consider grids Q, with the following property.

Property C. Q, has ‘property C,’if there are numbers 0=gy<<co, >0, &>0
and a function n€C™(R? mapping into the set {xcR?: |x|=1} of unit vectors
such that x€G,\Q, implies C(x+heon(x), n(x), &, &) N 2,=9 for the cone

C(Z5 n, e, 82) = {Z‘H’E Rd: (,V, H)E[O, 81]5 ”)’—(y, n)n” = 32‘()& n)}

with axis # and vertex at z. A set of grids {@,},c;, with Io=(0, A,] has ‘property C’
if all ©,’s have ‘property C,” with the same constants &, &, & and functions z(x)
such that |D*n(x)| (x€RY, |x|=m) is uniformly bounded.

The following note shows that ‘property C’ is a natural analogue of a Lipschitz
region Q.

Note 2.1. If Q is a Lipschitz region, {Qu}ycs;, (o=(0,hl, 2,=G, Q) has
‘property C”.

The following lemma is the discrete counterpart of the interpolation property
Hy (2)=[H;" (2), H(Q)]/m (s—1/2QZV, cf. [11, p. 64]).

Lemma 2.1. Let Q have ‘property C’. Define
L,= [1—2?=1 Ty (0, "1™

and denote the restriction of L, on #)" by L, o2 H'~Hy ™. Then the norms |uls



On the regularity of difference schemes 77

and |L;I™uly, (|s|=m) are equivalent (uniformly with respect to hel,=(0, hy]
and |s|=m), ie.

1
rel luls,o = LG uly o = Clulge (—m =5 =m, u€Hy).

The proofs of this and the next lemma are given in Section 3.5.

¢ o) o o] le] o) o
grid points of Q,: @

grid points of G,,/Q,: O

Fig. 1. Cone C(x’, n(x), &, &) with x" = x+hen(x), x” = x'+&n(x)

°
p
[

Lemma 2.2. i) Assume
{x€Q,: distance (x, G\ Q) = Ch} < Q; C {x€G,: distance (x, Q,) = Ch}
and let {Qu}yc;, have ‘property C'. Then {Qi}yes, has ‘property C’, too.

i) Let {Qu}e 1, have ‘property C’ and assume I',C {x€ Q,: distance (x, G\ Q)=
Ch}. Define the restriction y by (yu),=u, if vhel,, (yu),=0 otherwise. Then the
Jollowing estimate is valid with C” independent of u, s, t, and h:

[ulg,o = C'W~*ul,,y for s, t€[—2m;2m], hel,.

24. Theorem on the Regularity of a Difference Operator

A difference scheme L, (more precisely: L, o; cf. Section 2.3) is called stable
with respect to o7 if the inverse mapping L,3: #y—~5#, is bounded independ-
ently of A:

ILi il #9nt = C forall hel,.
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The main result of this paper is the following counterpart of Theorem 2.1. It
will be proved in Section 3.

Theorem 2.2, Let O¢(—1/2, 1/2). Assume the difference operator L, of (2.2)
t0 be elliptic [cf. (2.3)] and let {Q}¢;, have ‘property C'. The coefficients of L, must

satisfy:
leapys(x, ) = C  for all x€RY, he€l,,

ol =m and @ =0
Caprs EC*RIXT) if ldl =|Bl=m , Wwhere x>|0|=0 or »=06 =0.
fl=m and @ <0

Finally, assume L, o: Hy'—~Hy ™ to be stable with respect to H#;. Then the estimate
2.5 ILidleg-mpgem = C” (hedy, C"=C'(0))

holds if the function p(x, &) of (2.3) is real-valued. If p(x, &) is complex-valued, (2.5)
holds for |@|€[0, ©,) with Oy=1/2 sufficiently small.

2.5. Case of Irregular Discretizations near the Boundary

In the previous section we assumed that the scheme (2.2) has smooth coeffi-
cients for all x¢,. Usually, the discretization is regular at interior points, while
the difference equations at the points near the boundary depend on certain distances
from the boundary.

In the following we give a criterion for #2*™-solutions of irregular schemes.
As application two examples are discussed.

Let L, be the scheme (2.2) and consider the disturbed scheme

zh,o = Lh,o+lh,o~
In the following L;': #J—~#, is written instead of L;g. By
Lit =L (I+ 4Ly~
the inverse L' satisfies (2.5) if (I—IL, Ly A2 ™A™ is bounded and if
L, fulfils (2.5).
Criterion 2.1. Assume

[(lpu, o) = welilulllnlllvllln, %<1, —Cl,lulm = lulll, = Clul,  (u, vEAT),

where {||u]|],:=[Re (L,u, w)]*'? is required to be a norm on J#7". Moreover,

Nl segptsaspg-m = C
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must hold for some s>0. Let L, satisfy the assumptions of Theorem 2.2 for some
©=0. Then
(2.5% 1L g gpgem = C”

holds for sufficiently small ©¢[0, @,), where @, does not depend on A€l,.
A similar criterion can be formulated for @¢(—0,, 0}.

Proof. Let [||+]{|-, be the dual norm of [||-]|},,. From

MLy ulll,, = Re(u, L *w)/ILy ulll,, = |lulll -
it follows that

MLy Moo =

if #t™ are endowed with |||+ 1]|+,,- The assumption on /, yields

(2.6a) [l g~ oesm = %;
hence
(2.6b) MaLi Hogmoym =2 < 1.

Let A, be the positive definite matrix [(L, o+ L 0)/2]"®™. The equivalence of
[+, and [||-]]|, implies the equivalence of |u|, and |||u]||,:=|A}u], for all 7€]0, m]
by virtue of Lemma 2.1 and the interpolation theorem (cf. [9, Lemma 4]). We may
assume s<1/2 (or s<@,, resp.) for s>0 appearing in Criterion 2.1. Otherwise,
use again interpolation with (2.6a). Hence (2.5) yields

(2.6¢) 1Ly Yaeg-mo ey = C.

By equivalence of |-|, and l||-lj], for t=m—s, the inequalities (2.6b,c)
prove
(2.6d) 143 L L AL o e = C(2)

at t=m and t=m—s with C(m)=x, C(m—s)=C. Interpolation yields (2.6d)
for all t€[m—s,m] with C(t)=x-[C/x]™ 9 (cf. Lemma4 of [9]). Because of
%<1 there exists ©y€(0, s] such that C(m—0)<1 for all @¢[0, @y). Hence

I+ LL) Hwg-mowe-m = C[1-C(m—0)] <= (0=06 =0,
and (2.5) yield the desired result. |

Example 2.2. Counsider the discretization of —Au=f in QcR? and =0
on dQ by the usual five-point formula at interior points. Near the boundary inter-
polation is used (cf. Collatz (3, p. 344f]). Q,c Q, is the set of all ‘interior’ grid points,
ie., xthe;eQ holdsfor xQ;,j=1,2. We recall that e,€Z* is the j'® unit vector.
I, =0Q,\Q; consists of the grid points near the boundary. For all x€I', there are
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a direction te; and a number %€[0, 1) such that xFhe;€Q,, xtxhe;€0Q, and
xthe;¢ Q. At those points the five-point formula is replaced with interpolation:

u(x) = % -u(xF hep)/(14+x).

By these equations all grid points of I',, can be eliminated from the system of dif-
ference equations. It results a scheme I, that differs from the five-point formula
at x€I},, where I'yC Q) consists of the points xFhe; involved by interpolation.
Defining the spaces #; by means of Q; instead of @, we shall prove in Section 3.6:

Note 2.2. Let Q2 be a bounded Lipschitz region. The scheme of Example 2.2
satisfies (2.5%) for 0=0=0, (O, sufficiently small).

Example 2.3 (Shortley—Weller scheme). Discretize the Poisson equation of
Example 2.2 by the five-point formula at interior grid points x€€Q; and by the
Shortley—Weller scheme at points x€I', near the boundary (cf. [14], [12, p. 203]).
It is based on the discretization of —(9/dx,)?u(x) (x€I'y) by

h—z{%zx2 u(x)— u(x—x, he;) — u(x+x2hej)},
1

%, (21 + %) % (31 + %)

where x;€(0, 1] and either x+(—1)'%;he;€0Q or »;=1.

Note 2.3. Let Q be a bounded Lipschitz region. The scheme of Example 2.3
satisfies (2.5%) for 0=0 =6, (O, sufficiently small). The proof is also given in Sec-
tion 3.6.

3. Proofs

3.1. Preparing Lemmata

Theorem 2.2 is proved in the Sections 3.2 to 3.4. The crux of the proof is the
construction of an operator Ry: #'H%—#" such that support(Ryu) €, holds
whenever support(x)c Q,. It can be shown that the form (L, Ryau, v) is #5-
coercive (cf. Theorem 3.1). Then Theorem 2.2 is an immediate result. The properties
of Ry are proved in Section 3.3. R, is constructed by means of operators R¥
introducted in Section 3.2.

This section contains five lemmata recalling standard techniques for treating
variable coefficients.

In the sequel we shall use the symbol #,(4) (ucH#*, t=0) as an abbreviation
of the following inequality: For all e>0 there exists C(g)<-oc such that the term
#,(#) can be estimated by

I, W)I* = elulf + C(@)uls.
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For t=0 the estimate degenerates into |n,(w)|=Clul,. It is well-known that
3.1 ulg = m (), |ul,lul,=n0i() if 0=s<ut.
The following lemmata are needed.
Lemma 3.1. |gul,=C|gllcx,y 1), holds for  teR, ucH’, gcC*(RY with

C=C(t) and »>[t|¢Z or x=t|€Z. |glcwg, is the maximal value of |05g(x)].
(la|=x, x€G,) and the corresponding Hdélder constants.

Proof. The estimate is vaiid for t=0 with C=1. Assume that the estimate
holds for 0=t—1€Z and note

di(gu) = gai‘iu+2m_s_‘a|—1 8s Hu (gﬁEC”-MHW(Rd))

Hence, 105 (g)le=Cgl¢cxc,ylul; holds for |a|=¢, and (2.4*a) proves the inequality.
If 0<z¢Z the result follows from (2.4*b) by the same argument. For negative
t use

I(gu, v)| = (u, g)| = |ul,gv]-, = Cliglcx@n lulilvl - n

Lemma 3.2. Let g, €C*(RY) (k€Z) be a family of functions with the following
properties:

1) For all x*¢R? and K=0 there is N(K)<<o such that at most N(K) func-
tions g, do not vanish on the sphere Sp(x*)={x: |x—x*|=K}.

2) The diameters of the supports of g, are uniformly bounded by @< co.

3) Hgkllc,,(ch)éC for all keZ.
Then

Dvez lgul; = Cluf?

holds for ucH', O0=t<xn (or 0=t=xcZ).

Proof. There is a finite number of subsets [,cZ (/=1,..., L) such that
U1L=1 I,=Z and that the supports of g, (k€l) have a distance greater than
2-max (th,e) [e=0 from (24*b)]. Then (2.4*a,b) shows ., |gul®=
|(Ser, 8)u|;?. Hence L<eo and Lemma 3.1 yield the desired inequality. M

Let e,cC=®RY (k€Z) be a partition of unity:
2ce(x)=1 forall xeRY
ledlcie,y = C(H) forall k€Z andall r=0.
Let U, be the support of ¢, and fix x,cU,. 1t is required that
g :=sup{lx—xi: xe€U, k€Z} <o
and that all spheres S (x*)={x: [x—x*|=K} (K=>0, x*¢R% have non-empty
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intersections with only N=N(K)<< supports U,. The magnitude ¢ will be chosen
sufficiently small. We recall the following property of the partition {e,}.

1
Lemma 3.3. E]u\fézkeziekulfécwlf (C=Ct, {e)) for all ucsH', t=0.

Proof. The second inequality follows by Lemma 3.2 stated above. The first
inequality holds with C=1 for r=0. Assume its validity for 0=r—1€Z. Let
la|=t. Note that

e Ohu—oheu = 21ﬁ|§r—1 g Ofu  for some g, € C=(RY);
hence,

e Opuls = C[lekul?‘l_zmlét—l |grs OF ul5)-
Summation over k€Z results in
Ouly = 3 le djuly = C'[ 3, leguli+ 374 lul?]
by virtue of Lemma 3.2. Using (2.4*a) we obtain

lulf = C"[Z, lexulf+ 325 lul].
(3.1) shows
Do lulz = [/QCult+C” [ul3.
Together with
luly = 2y leuls = 3, leul?

the first inequality of Lemma 3.3 follows for 0=t¢Z. For non-integers =0 use
the norm |- [* and [[Jo]|1*— 3, lllexulll:*=n2() [cf. (2.4*b); O<z=<I]. m

Lemma 3.4. Let ccC*(R%, and e,, x;, ¢ as defined above. Then
loG)— 3, eb(x)o(x)

holds for 0=t<x or 0=t=x€Z, where ¢(g)\0 as ¢-0.

crey = €(0)

The proof is obvious. The proof of Lemma 3.3 shows the following result, too.

Lemma 3.5. |e;05u—0fe,ul, =Clul,, ,_, for t=1, ucH*, C=C(t, a).

3.2. Operators R,

Now we start constructing operators R,, and R%,. By means of the function
x the value (R¥u), depends on only a finite number of components u, .. Let g>0
be the number appearing in the definition of ‘property C’ and choose a real func-
tion x(¢) such that

3.2) x(EC=MR), x(O=1 for t=¢g/2, @O =0 for t=e¢.
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Let s€Z? and 9€[0, 1) and define the operators Ry, and R%, by
R = h=8 D b 9 #
( Ssu)v - n=0 e /J (— 1) uv+us,

- 3
(Rgsu)v = h—3 Zu=o e—lth [#) (_ I)FX(.“h ”s”)uv+sua
where

(g] =1 (2) D) ==30 -9 ... (u—1-/ut.

The following note describes the Fourier transform of Ryu and proves some useful
estimates.

Note 3.1 (Properties of Ry, R%). Let r€R. (3.3a—d) are valid with C=
C(t, s, 2:

(3.30) (R (©) = (1~ ) H* (),

(3:3b) |(Rys— RE)ul, = Clul, (uecot),

(3.3¢0) |RE,ul, = Clul,4s (weH#*+9),
(3.3d) le, R u— RE(epu)l, = Clgeul, (ue#*, keZ),

where g,€C~(R%) must satisfy g,(x)=1 if the distance of x from U,=support (e;)
is less than ¢, [cf. (3.2)]. '

Proof. 1) (3.3a) follows from ., (3](—2)“:(1—2)3 and
N .
(Tiw)(©) = e~ "= a(d).
2) Discrete Fourier transformation of (Ry— R%)u yields
| =5 0 aams) (3) - e neace).
By [1—x(uhl sl)|=1x(0)—x(uhls])|=phC,

()=

and (1—e ™~ '=(1+A)/h the sum in brackets is bounded by

Ch 2;;1 [2: }] (— l)ﬂ—le—uh — Che—h(l _e—h)s—l = C’hS.

Hence, (3.3b) follows from the definition of |-|,.
3) By (3.3b) it suffices to prove |Ryul,=Clul|,,, instead of (3.3c). This esti-
mate is a conclusion of (3.3a) and

[L+ 34, h™2sin? (£;/2)]~*2[(1 —e = %)/h]* = C.
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4) Note that the left-hand side of (3.3d) depends only on u, with distance
(vh, U)=¢,. Therefore, u may be replaced by g,u. Thus, it is sufficient to show
(3.3d) with Clul, on the right-hand side. e, R%,u— R} (e,u) has the representation
ey Y, u, where

At =1,

3
(o, = h0, e ey (VR e, (oh-psh)ly s, = () Dbl
Lemma 3.1 implies |Y,u|,=Ch'"*uc,e " [u],. As in the proof of (3.3b),

o w (91
S Y = o2 3, (71 oo, = c

yields the desired estimate. n

3.2. Operator Ry

(R%,u), depends only on u,, , with 0=p=e/(||s|4). In (3.5) we shall define
R, as a combination of those R, so that all appearing grid points (v+-pus)h are
contained in a certain cone C. Therefore, the coefficients o, of R, must vanish if
(v+us)h¢C. Let SCZ® be a finite subset with 1=|s[|=C, for s¢S. In the
sequel we need functions o,(x) for all s¢.S with following properties:

(3.4a) a,£C™(RY), ,(x)=0, D cs0,(x)=1 for all xcR?,
for all x€G, there is a subset Sy;=S,(x)C S such that

(3.4b) o,(x)=Cg?=0 for s¢S, and such that £=0 is the only common zero of
sin (&s/2) (s€Sy) in Q=[—m,nl*CR".

A third condition on the support of o,(x) is formulated in the following note.

Note 3.2. i) Let C(x, n, ¢,¢,) be the cone mentioned in the definition of
‘property C”. Choose a,(x)€C™(R?) (s€S) according to (3.4a) so that

o,(x) =0 if sh§ C(heyn(x), n(x), =, &),
o,(x) = Cx? if sheC(heyn(x), n(x), =, &/2).
If 1/C, and % are small enough, (3.4b) is valid.
it} (3.4b) implies
(3.4v) e 0s(x)sin®(Is€]/2) = 8[Z’j=1 sin?(¢;/2)]%2
with e=¢(Cp)=0 for all é€Q, 9€[0, 1).

Proof. i) Choose Cy so that d+1 indices {sq,5;, ..., s,y ZIN{0} with
s;=s0+e; (1=j=d; e;: j™ unit vector) belong to Sy:=.5n C(hegn(x), n(x), =, &/2).
Assume £€Q a zero of sin (€s;/2) (0=j=d). Then &sy=Es; (mod 2m) holds.
Hence, {;=Ce;=C(s;—59)=0 (mod 2x) and £€Q prove £=0.
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ii) Since £=0 is the only zero of the left-hand side of (3.4b"), Lh.s.=¢" [¢[*=r.h.s
follows.
By means of o,(x) we define the operators

(35) RS = ngso-s(')Rgs’ Rs(xk) = Zseso-s(xk)Rgs

for k€Z, 0=9<1, where x,€U, is defined above. The symbol o,(-) means
(o.()u)(x)=06,(x)u(x). Rs(x,) is the operator R, ‘frozen’ at x,. Note that Ry(x,)
is a convolution operator, whereas R, is not. The properties of convolution operators
can be analysed by means of Fourier transformations.

Note 3.3 (Properties of Ry, Ry(x;)). Let 3€[0,1) and c,4,5 as in Theorem 2.2
(0= —39/2) and assume ‘property C’. If o, is chosen according to Note 3.2 the
properties (3.6a—e) hold:

(3.6a) support (u) C €, implies support (Rgu) C £,

(3.6b)  |Ryul, = Clulys, [Rs()ul, = Cluliys e ™, [t =m),
(3.6¢) Re (Ryu, u) = gluldp,—Cluly (e=0) forall u€#*?
(3.6d) (T3 03cupys (-, 0)T7 O Ryu, u)

—ZkGZ (T}ZI 8zcaﬁy&(xk’ 0)T7 3£Rs(xk)eku, ek”)]
= 3(@)|“|r2n+3/2+'7;2n+9/2(”) (M =|fl =m, e(@)\0 as ¢ —’0),

(3.6¢) Re (L Ry (x)u, u) = elull op—Clul} (e >0, u€At™),
where
G-7 Ly = Zaj=1p1=m S8 Ti OiCuprs(xic, OV T 0f.

(3.6a), (3.6¢), and (3.6¢) are the characteristic properties of Ry. By virtue of
(3.6d) estimates involving R, can be replaced with those involving Ry (x,).

Proof. 1) Let x=vh{¢ Q,. Because of (3.2) and the choice of g, (cf. Note 3.2)
(Rgu), depends only on u,,, with ph€C(heyn(x), n(x), ¢, ). By definition of
‘property C’ this cone belongs to R*™\ Q. Therefore, x€Q, implies u,, =0 and
(Ryu),=0.

2) (3.6b) follows by applying Lemma 3.1 and (3.3c).

3) Lemmata 3.1 and 3.4, and (3.6b) yield

|(Rsut, ) — 3, (k Ry (xi)u, )| = e(0)|ul3)e-
Choose g, appearing in (3.3d) so that Lemma 3.2 applies:
| 2 (e Ry (x)u— Ry (xi) e u, egu)|
=2 {(ekRs(xk.)_Rs(xk)ek)u‘olekulo
= C[ 2 guuls] L3 lewuld]? = C’ |ul§ = 15,2 (w).
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Assume that
(3.6¢") Re(Ry(x)v, v) = &' [vf3,—C o)} (¢" > 0)

holds with & and C’ independent of k¢Z. Substituting v=e,u and summing
over k€Z one obtains

Re 5, (Ra(v) ey, eu) = ¢ lufye—C'Jul} (" = 0)
by means of Lemma 3.3. Choose ¢ so that &(g)<eg”. Then the three foregoing
inequalities result in (3.6¢) with 0<g<g”—eg(g).

It remains to show (3.6¢”). Thanks to (3.3b) it suffices to prove (3.6¢”) with
Ry:= 2 5 0,(x;) Ry instead of Ry(x,). Note that larg (1 —2z)|<mn/2 (|z]<1) implies

Re[(1—e~*=%)/h]® = cos (3n/2)|(1 —e *—&)/h|*

= g[l+h%sin® (|E5)/2] with &=&(9) =0.

Hence, (3.4b") proves
Re R (&) = &'[1+h~ 2?:1 sin?(£;/2)]*,
where R (&)=, .5 0,(x)[(1—e""¥/R)*. (3.6¢") follows from
(Rev, 0) = [WQu)Y [ R(O1B()dE
[cf. (3.32)].
4) Lemmata 3.4 and 3.1, and (3.6b) (r=—9/2) show
(77 i capys (- OVTE OERyu, u)— 3, (&4, Capys (X5, OVT7 f Ryu, e, (T} )" e,u)
= £(0) [ulpts/2-

Applying Lemma 3.5 to g, Ryu and g,u with g, as in (3.3d), we obtain that each
term of the last sum differs from

(Caﬂyé(xk’ 0)T3, 05 ex Ryu, (T} 03)" ¢, ”)
by
Clies Ryttly—apal8itthn—14 872+ 18k Rottlme1-9/2) 8k el + 5/2)-

Using IekRaulm~3/2§C'gkulm+9/2 [cf. (3.4b)] and lgkRsu]m—l—:;/zéCfgkulm—us/z
with g, similarly defined as g,, this bound becomes

71;2n+.9/2(gk”)+’731+.9/2(g~k”)

[cf. (3.1)). Summation over k and application of Lemma 3.2 yield
ps Kekcamé(xk, 0)T} 92 Ryu, e, (T 92)* u)
—(Capys(xi> OVT3 Of e Ryus, (T} 09)* ept)| = 131572 (1.
Thus, (3.6d) is proved.
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5) Let R, as in 4).
](LkRS(xk)ua u) —(Ly R, u)| = Cluly, = o2 ()
can be concluded from (3.3b) and (3.1) if 3=>0. In the case of $=0 the difference
vanishes because of Ry(x)=R,=I Hence, it suffices to prove Re (L;R,u, u)=
8]”[31+s/z- This estimate follows for 0=3<1 as in the proof of (3.6¢"), if p(x, &)
is real. Otherwise, (2.3) implies ,arg (p(x, é)),§(1—3)n/2 (e=0) for all x, EcRY
Hence, |arg(p(x, &) Ry())|<n/2 holds for 0=9<20, with sufficiently small
0,€(0, 1/2]. =

3.3. Proof of Theorem 2.2

The proof of Theorem 2.2 is prepared by two lemmata. The first one allows
to estimate |4 71| by means of [(4—AI)"!}. The second one is the trivial remark
that (4—AN™! is bounded for coercive forms (Ay, v).

Lemma 3.6. Let A be an (unbounded) operator with dense domain in #; and
assume | A7 49, #3=C, (stability). Then
I(A+AD " psoumy = Co (5,7 =0) for some ACR
implies
’fA_I,I#;‘»xg = ;.
Proof. Set A;=A—Al A7'=A;7"—JA7 A7 shows [A7Ygrs.4y=C":=
Cy+|A|C,Cy by virtue of |-|y=][-|,. Hence, 4 1=A4;'—24;'47" proves

14 wgommy = Cot]A C,C7 = Cs. m

Lemma 3.7. Re (du, wy=¢ul?—A|ul} (¢=0, 1€R, 5>0) for all ucH; implies
”(A‘f'/u)_]”#‘;%;fzél/&

As announced in Section 3.1 we show #""®-coerciveness of L,R,e. In the

proof we apply the partition of unity and use the fact that I, R,p(x,) is coercive
[cf. (3.6¢)].

Theorem 3.1. Assume the conditions of Theorem 2.2 for ©=—9/2¢(—1/2,0]
except of the stability. Then there is e=0 with

Re (LyRyu, u) = eluld,yp—Cluly for all ucAy+52,

Proof. Set R:=Ry and R,:=R,(x,) (k€Z). In order to show that the prin-
ciple part
Lf = ZIul:]ﬂ]:m Zy,aezd T;faicaﬂya(- , 017 08
of L, satisfies
(3.8a) I(LyRu, u)—(LFfRu, )] = n%,92(u) for all uggrm+%?2
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three cases are to be discussed. If |¢|<m and |fl=m
)(Ti? 3?%5%( ] h)Tl? 3,’,3Ru, u)[
= {caﬁyﬁ(' , WT? 3;‘,’Rui-s/2i(T;)’ 3%)*“}3/2 = CiR")m—.wzi“)m+s/z—1 = Vlr2n+.9/2(u)

[cf. (3.6b), (3.1)] follows from Lemma 3.1 and c,,,C C*(R%. In the case of |aj=m
and |B|<m, the boundedness of c,,; yields

I(Tiyaicaﬁyé('a h)T}? al’l]Ru’ u)‘ = C‘Ru‘m—llulm = C’ulm—1+9)ulm = nr2n+.9/2(u)
[cf. B.DI. If |a|=|f|=m, the Hélder condition

[Copys (s B)—Cogys(x, O)] = CRO/2
implies
(T3 05 (Capys( s BY = Copys(+, DT Of Ru, u)| = Ch**|Rul,,|ul,,

= C'h*2ulpyslul, = C" s 3j2 il = Mg a/2(u)

by virtue of (3.6b), #°|-|,,,=C|-|,, and (3.1). Hence, (3.8a) is proved.
Define L, by (3.7). (3.6d) implies

(3.8b) [(Lf:Ru, u)‘Zkez (Ly Ry eyu, eku)‘ = 8(9)‘”|?n+9/2+'!?n+3;2(u)
for all uc#™ 9, where £(g)\\0 as ¢—0. (3.6¢) and Lemma 3.3 result in
(3.8c)  Re X (LiReeyu, eu) = 3, (e leull, 50— Clexulg] = &7 [ulf 52— Clulg

with ¢, &”=0.
Choose ¢ so small that e(g)=g:=¢"/3. The estimates (3.8a, b, ¢) yield -

Re (Ly Ru, u) = 2elul} g0+ nsgp() (e=>0) forall ucspm+®?

By definition of 5;(#) the right-hand side can be replaced with elul?,  5,—Clul;.

Restriction of this inequality to uc# ™+ #™*+%2 concludes the proof of Theo-

rem 3.1. o
By repeated applications of Lemma 3.6 we finally prove:

Note 3.4. Let L, be stable with respect to #,. Then Theorem 3.1 implies Theo-
rem 2.2.

Proof. 1) Case of @=0. Use R,=1I and apply the Lemmata 3.7, 3.6.
2) Case of ©@<0. Set 3=—-20¢(0, 1). (3.6a, c) and Lemma 3.7 yield

[(Ry+ AD) Y| jpr0/2, 932 = C (4 sufficiently large).
In particular, Ry+Al is stable with respect to 5.
Since |(Lyu, )| =C|ul}=n},, 42(w), Theorem 3.1 yields

Re (L, (Ry+ADu, u) = —;‘ [uiZ 1 oe— C lul}  (ueAy+33).
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Applying Lemma 3.6 to this estimate one obtains
Ly (Ro+AD)+ X TN M pgm-9/2, gpron = C (A = C).
Since L, (more precisely L, o) and Rg+2I are stable, Lemma 3.6 yields

NL Ry +AD) My =572, e +072 = C.
By virtue of
”Lh_1|l.9f,;m_3/2—>#6"_‘9/2

= [[Ry+ | o5, -2 ([[Ly (Ry+AD] Y gprm-s5r2, gm+or2 = C

[cf. (3.6a, b)] the estimate (2.5) of Theorem 2.2 follows.

3) Case of ©=0. Since " is the dual space of #; the estimate (2.5) is equiv-
alent to the estimate
(39 1) gm-owy-e=C

involving the adjoint operator. L is again of the form (2.2) with c,,; replaced by

(- l)lalﬂﬂl G

* —
Capys = €g,a,p-3,a~y"

Applying the foregoing part 2) to L} we obtain (3.9). ]

3.5. Proof of Lemmata 2.1, 2.2

Proof of Lemma 2.2. i) Choose g, ¢&;, &, suitably. ii) By the arguments of the
proof of [17, Lemma 3.4] the estimate follows for the case of s=0, t=2m. The
result is trivial for s=t=0. Noting y=y* and applying interpolation (cf. [9,
Lemma 5]) we obtain the general estimate. n

Proof of Lemma 2.1. 1) It suffices to prove the inequalities for s¢[0, m], since
they imply the same estimates for —s.

2) Set o==5/(2m). At first we prove the first inequality, |uj,,=C|L] jul,,.
Denote the extension by zero outside of ©, by w: H#)~H°. w*: #°~H#, is the
restriction to ,. Since [v|;=|Ljv|, [v€ #*, cf. (2.4)] the assertion holds if and only
if |LjwL; ¢ll=C, where 0=0=1/2 and | -||=| +|l#2-»°. This inequality becomes
lol=1 for 6=0 and

IZY oLy = 1L} 0" oLy = |11 = 1

for 6=1/2 because of L, =w*L,w. By interpolation the estimate is valid for all
6€[0, 1/2] with C=1 (cf. [11, p. 19)).

3) In part 4) we shall show the existence of I': #*—~i#; (0=s=m) with
L5 oLy °l=C (6=s/2m) and I'o=identity on H#;. Thus, |Lj (I'v], ,=C|L;vl,
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holds for all ve€s#°. Substituting v=wu we obtain
[L7,ottlo,0 = L7, 0Twutlg, ¢ = C|Ljwul, = Cloul, = Cluly,.
Thus, the second inequality is proved, too.

4) Define I'=w*ryp as follows. By means of finite clements of sufficiently
high order define the prolongation p: #°*—~H*(R%) (0=s=m). The restriction
r: H*(RH)—~#" is the projection defined by | pru—ull gogay =l pw—ti]l goge, (for all
we A, uc H*(RY).

Note that rp=1I. p can be chosen so that p: #°—~H*(R?) and r: H*(R*)->#*
(0=s=m) are uniformly bounded (i.e. independently of Acly). If uc#; the sup-
port of pu is contained in

Q@ = {xcR?: distance (x, ;) = C'h} for some C’ = C’(m) = ydj2.
By ‘property C of @, there is a grid Q, with
Q,cG,nQ Q) < {x€G,: distance (x, Q) = C*h} (C*=C)
such that Q; has ‘property C’ with &=0. Then there is
Q" c {xcR?: distance (x,Q,) = C"h} with Q@ =Q"nG, and Q">

such that R\ Q" satisfies the requirements of the Calderdn extension theorem (cf. [1,
p. 91]) uniformly for all 4€1,. Thus, there is an extension operator E: H*(R*\ 2”) ~
H*R% with
Eu=uy in RN
| Eulgegay = Cllullprrangn for k=0,m, u EH*RNQ"), hel,.

Hence, y:=restriction of I—FE on Q” is a uniformly bounded mapping from
H*(RY onto HY(Q") (k=0,m) with yu=u for ucHy(Q"). If ucH;(Q"), the
support of rii (i=u in Q”, #=0 otherwise) is contained in

Q) < {x€G,: distance (x, Q) = C”h}
for some C”. Let ;5 (Q;) be defined as 5 but with Q instead of Q,. By Lemma 2.2

ol = Ch=*v], = CI“M’;(Q,’:')

77

holds for uc¢ #¥*(Q;) (k=0,m) and v:i=u—cw*u, ie. v,=u, at vheQ\Q, and
v,=0 otherwise. Therefore, w*: H#F(Q;)~#F (k=0,m) is uniformly bounded
for all hcl,. It follows that I': #*—#F (k=0,m) is uniformly bounded, i.e.
IL; ,TLy°|=C holds for 6=0 and o=1/2 with C#C(h). Interpolation yields
the same bound for all ¢€[0, 1/2]. The proof is concluded by the observation
that uc #F implies ypowu=pwuc H¥(Q") and therefore I'u=w*rpou=w*ou=u. N
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3.6. Proof of Note 2.2 and Note 2.3

Proof of Note 2.2. Let @,=Q, 0TI, and I';cQ, as in Example 2.2 and define
#; by means of Q. In order to apply Criterion 2.1 we denote the five-point formula
(restricted to Q}) by L, and define /,=I,—L,. By Note 2.1 and Lemma 2.2, {Q}}, .
has ‘property C’. Thus, L, satisfies the assumptions of Theorem 2.2.

Since @ is bounded, |-|; and |||+ |||;=(L,u, u)''? are equivalent norms on .
The support of /,u is contained in I';. Hence, Lemma 2.2 implies

1lh] w20 = C,

i.e. the estimate required in Criterion 2.1 holds with s=1.
Let x=vhely, y=x+the;,cI, and ytxhe;c0Q. Then the term —h~2u(y)
of (L,u)(x) is replaced in (L,u)(x) by —h~2xu(x)/(1+%). A more general represen-

tation is —hA~2 Xuper, wy,u,, where w, =w, (£e;). Thus, the estimates

G.10) 3, w@e) =Gy I, wuEe) =G, 2GG=<1 (j=1,2)

hold with C,;=C,=1/2.
Finally we prove that (3.10) implies |(Z,u, v)|=x||[u|,]|v]{], with x=V2C,C,<]1.
Split 4, into fyy+1, 1+ le+1, —», where

(Uh, £ Wy = 2 oner, Woulepu, if vhely, (1, 1;u), =0 otherwise,

and let [|-[l, (p=1, 2, =) be the matrix norm corresponding to the vector norm
ulp =3, [, lul,=sup, u,|. Since (;u),=0 or (v+e)hé Q) we have

L), 0, = —(L;u), h(04;0)y 40,
(311) (h]) ) (h]) (hj)‘t_, (]:1’2)
(lh, —j u), o, = (lh, - u)vh<ahjv)v
The inequalities (3.10) imply
B2 alle = B0, 25l 1D, 4] )2 = 1/61—6;
Therefore, summation of (3.11) yields
|(Tptts 0)) = VCCoh ™ 1Yy (10010l +1052010)
where y'u is the restriction of u to I'y: (y'u),=u, if vheI; and (y'u),=0 other-
wise. From |9;,v]5+ |0evla=llv]||? and |y’ul,=h|||u|]|; it follows that
[(su, 0) = V2C,Golllulll, llollly,  V2C,Co < 1.
Thus, all conditions of Criterion 2.1 are satisfied and Note 2.2 is proved. =

Proof of Note 2.3. Split the right-hand side of L,u=f into f’+7f where sup-
port(f)cQ, and y=restriction to I'y: (yu),=u, if vhel,, (yu),=0 otherwise.
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By #,* we denote the discrete Sobolev spaces corresponding to Q; (instead of Q,).
By the same arguments as in the proof of Note 2.2 we show

(3.12) |7 flis0=Clf locr0 for O€[0,0,), 0<O,==, support(f)c ;.

where |-|;, is the norm of J#* The only difference to the proof of Note 2.2 is
the fact that the equations (L,%), (vh€T,) involve not only components u, (phel’ )
but also u, (v=pu, ph€l’,). Therefore, we obtain a general representation

(I, 2 ;4)y = =072 3 er, woultepu, (vhely)

as mentioned in the foregoing proof. The coefficients w,, are non-negative. Let
x=vhel, and x-he€l,. The sums > w,,(e}) and 2>, w,,(e;) are maximal
in the case of the following shape of the boundary: x+ahe €I}, x+hey+ahey€T,
x+2he,+ohe,€0Q for all acZ. Then 3, w,,=2 w,=1/2 follows. Therefore,
(3.10) is fulfilled with C;=Cy=1/2.

Let " be the restriction to I';. Since [pL;'f’|y=C|y’L7'f’|;, Lemma 2.2
and (3.12) yield
G13) WL hee = ChmORT o = C R0y L f

= C'|lLi f'live = C” 1 f lo-10-
Define y”:=y+y and note that L,I;'y=yL,y”L;’y, where L, is the five-point
formula (restricted to Q,). The inequality 0=Z '=L;" holds for all entries of
the matrices and implies
"L '9flo = Iy” Ly *vglo, where g, =[f)].

Hence a repeated application of Lemma 2.2 shows
(3.13b) \LiYof ls = 1L L L of | = 1L v Ly L of s
CilyLyy" L 9f 1s-2,0 = CalLyy” Ly 1 1520
Coly” Li*9f1s = Cuh=*ly” L *of 1o = Cah™*1y” L *yglo
= Gy Li*vgle = ColLi 9815 = Crlvgls-s,0 = Csh**l1glo
= Ceh**yfl, = Col¥fls=2,0 = Ciolfls=2,05

where s=1+4@. Finally, we note that
(3-13¢) 0 = 1/ 50 (SER,. fEHAT).
By virtue of (3.12) and (3.13a, b, ¢) the desired estimate (2.5%) follows:
L flive = Lt f livo+ 1L 2 livo
= DL flvo+ 1L flivo+ 1L o hivo

= Cllf'le-v0tF | flo-1,0l = C’|flo-1,0- u

IIA

tIA



On the regularity of difference schemes 93

4. Applications

4.1. Optimal Error Estimates

The estimate [ju—uyl gy =CH ~*|ullyy oy (M=s=t=t_,) is well-known for
finite element approximations u, to the exact solution of Lu=f. Using |u] g0y =
C| flge-2mqy for t=m+O (cf. Theorem 2.1) we obtain the optimal estimate

lu—lag-o @) = CH* | flne-m oy

A similar estimate can be obtained for difference approximations, too.
Let P,: #"—~H; (£2) be a suitable prolongation satisfying

4.1) IPllsswmsy =C for 0=s=m+0, (0,£(0, ) fixed).

If we define the restriction R,: H ™(Q)—~#,"™ by R,=P; also (4.2) is fulfilled:
“.2) IRl g-sy»gs =C for 0=s=m+0,.

For a suitable choice of P, and R, the product P, R, approximates the identity:
4.3) =Py Ryllpg oy » mhy 0y = CH*™F for s, 1€[0, m+ 6]

The Galerkin approximation related to the subspace P,#;"C Hy(Q) leads us to
the scheme R,LP, (if R,=P;). Since L, must be consistent, the difference

(4.4a) 0, = R,LP,— L,
should satisfy
(4.4b) 10ull e o spgm-or = ChO*®, @, O'¢[0, O

Note 4.1. Assume (2.5) and L*': HF"™+9(Q)-~HFmt®(Q) for |@|=0, (cf.
Theorems 2.1, 2.2). Define the right-hand side of (1.2) by f,=R, f with ffrom (1.1).
Then (4.1), (4.2), (4.3), and (4.4a, b) imply

4.5) lu— Puuyl gy-orqy = ChOFE | fllgo-m (g
for ©,0’¢[0,®,] and fcH® ™(Q), where u and u, are the solutions of (1.1)
and (1.2), respectively: Lu=f, L u,=f,.

Proof. Abbreviate | '“H(’,(Q)—'Hf)(ﬂ), I ‘“Hf,(n)—».;ff,, f '”#f,—»H%(Q)a and | '||.;¢7,»#§,
by ||-|l;,;- The estimate (4.5) can be rewritten as
|L72*—P,L; Rys,, = Ch®+®, where s=0-m and t=m—0".

Noting [I—P,L;'R,L)P,=—P,L;'5, we obtain the result by means of the fol-
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lowing splitting:
IL72 =Py Ly * Ryl = I[I— P Ly "R, LIL 7Y
= [[/-P, L * R, LI[I/ =P, R L™= P, L; 6, R, L7,
= (L 0Pulle L = o, el Rilli— 2, - 2m L L 1~ 2}
X =Py Ryl om, e [IL 75, 54 2m
1 Palley eI L 2, e 1Ol 2, ¢ — 200 | Rill s 42, 5 2 N LM, 54 2m = CHEFE. M

4.2. Convergence Proof of Multi-Grid Methods

The multi-grid method is a widely applicable and very fast iterative process
for solving systems of linear (or nonlinear) equations arising from difference or
Galerkin approximations (cf. [7, 8, 9]). It consists of a smoothing step and a correc-
tion by means of approximations corresponding to coarser grids. Accordingly the
proof of convergence requires a ‘smoothing property’ and a ‘approximation prop-
erty’. The latter is similar to (4.5):

(4.6) 1ty — Do iy lm-0r = CRE T | filg_, @ =0, 0" =0,
where w,=L;f,, W=h, u,=L;fy, fy=rwsf Pw and r,, are prolongations
and restrictions acting on the discrete Sobolev spaces with grid widths 4 and 4.

It turns out that the convergence of the multi-grid method requires @ + @’=0. Thus,
the introduction of #; with s¢Z cannot be avoided.

4.3. Stability with respect to ¢,

As mentioned above #; is usually denoted by ¢,. 7., is the space endowed
with the supremum norm
lull,, = sup {lu,l: vheQ;}.
A scheme L, is called stable with respect to £ if L, rwe =C. £ stability
can be proved by virtue of the M-matrix property or related properties (cf. [2],
[12, p. 197]). Here we show:

Note 4.2. Assume m=d/2 and let QcR? be a bounded domain. Under the
requirements of Theorem 2.2 (for some @=0) stability with respect to ¢, implies
stability with respect to Z_ .

Proof. By assumption the number of grid points of Q, is proportional to A~
Hence

[flo-mo = 1flo =1z, = Cilfle.
is valid. Thus, /, stability implies
1L flnre = Clflo—mo = C7lIfll...
The proof is concluded by ||ul, = C(s)u|, (s>d/2) since we may choose u=L"f
and s=m+ O=d/2. | ]
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