On extreme operators on finite-dimensional Banach spaces whose unit balls are polytopes

Åsvald Lima ${ }^{1}$)

1. Introduction

The space of all bounded linear operators from a Banach space Y to a Banach space Z is denoted $L(Y, Z) . X_{r}$ denotes the ball $\{x:\|x\| \leqq r\}$ in the space X, and its dual space is written X^{*}. The set of extreme points of a convex set C is written $\partial_{e} C$, and the convex hull of a set S, conv (S). Thus $\partial_{e} L(Y, Z)_{1}$ denotes the set of extreme operators in the unit ball of $L(Y, Z)$.
l_{1}^{m} denotes R^{m} with the norm $\left\|\left(x_{1}, \ldots, x_{m}\right)\right\|=\sum_{i=1}^{m}\left|x_{i}\right|$ and l_{∞}^{m} is the dual of l_{1}^{m}. The l_{1}-sum of two spaces X and Y is written $X \oplus_{1} Y$ and their l_{∞}-sum $X \oplus_{\infty} Y$.

We shall assume that all spaces are real and finite-dimensional.
In [8] J. Lindenstrauss and M. A. Perles studied the set of extreme operators $\partial_{e} L(X, X)_{\mathbf{1}}$. Their two main theorems are.

Theorem 1.1. If X is a finite-dimensional Banach space, then the following statements are equivalent:
(1) $T \in \partial_{e} L(X, X)_{1}, x \in \partial_{e} X_{1} \Rightarrow T x \in \partial_{e} X_{1}$.
(2) $T_{1}, T_{2} \in \partial_{e} L(X, X)_{1} \Rightarrow T_{1} \circ T_{2} \in \partial_{e} L(X, X)_{1}$.
(3) $\left\{T_{i}\right\}_{i=1}^{m} \subseteq \partial_{e} L(X, X)_{1} \Rightarrow\left\|T_{1} \circ \ldots \circ T_{m}\right\|=1$ for all m.

Theorem 1.2. Assume $\operatorname{dim} X \leqq 4$. If X has properties (1) to (3) of Theorem 1.1 then
either
(i) X is an inner product space
or
(ii) X_{1} is a polytope such that $X_{1}=\operatorname{conv}(K \cup-K)$ for every maximal proper face K of X_{1}.

[^0]In [4] D. Larman showed that Theorem 1.2 is true when $\operatorname{dim} X \leqq 6$. Lindenstrauss and Perles [8] conjectured that Theorem 1.2 is true for all real finite-dimensional spaces.

Every inner product space has properties (1) to (3) of Theorem 1.1 and Lindenstrauss and Perles showed that this is also the case if X satisfies (ii) of Theorem 1.2 and $\operatorname{dim} X \leqq 4$. However, they showed that $X=\left\{\left(x_{1}, \ldots, x_{6}\right) \in l_{\infty}^{6}: \sum x_{i}=0\right\}$ satisfies (ii) of Theorem 1.2 but not (1) of Theorem 1.1.

We call X a CL-space if $X_{1}=\operatorname{conv}(K \cup-K)$ for every maximal proper face K of X_{1}. The object of this paper is to prove the following theorem.

Theorem 1.3. Assume that X is a real finite-dimensional CL-space. Then X has properties (1) to (3) of Theorem 1.1 if and only if either X is an l_{1}-sum of an l_{1}^{m}-space and finitely many copies of l_{∞}^{3} or X is an l_{∞}-sum of an l_{∞}^{m}-space and finitely many copies of l_{1}^{3}.
X is said to have the 3.2 intersection property (3.2.I.P.) if whenever $x_{1}, x_{2}, x_{3} \in X$ are such that $\left\|x_{i}-x_{j}\right\| \leqq 2$ for all i and j, then there exists $x \in X$ such that $\left\|x-x_{i}\right\| \leqq 1$ for all i. If X has the 3.2.I.P., then X is a CL-space [5]. The CL-spaces appearing in Theorem 1.3 are simple examples of spaces with the 3.2.I.P.

Since the structure of finite-dimensional spaces with the 3.2.I.P. is well known [3], the proof of Theorem 1.3 in case X has the 3.2.I.P. is simple. This is done in Sections 2,3 and 4 . The more difficult part of the proof is to show that no CL-space without the 3.2.I.P. has properties (1) to (3) of Theorem 1.1. This is done in Sections 5 and 6 . A main result here is Theorem 5.4 which characterizes CL-spaces without the 3.2.I.P.

2. Sufficient conditions

In this section we shall prove the "if" part of Theorem 1.3. It is an easy corollary of the following theorem.

Theorem 2.1. Assume that X has the 3.2.I.P. and that $\operatorname{dim} X<\infty$. Let $Y=$ $l_{1}^{m} \oplus_{1} l_{\infty}^{3} \oplus_{1} \ldots \oplus_{1} l_{\infty}^{3} \quad\left(k\right.$ copies of $\left.l_{\infty}^{3}\right)$. Then $L(Y, X)$ satisfies: If $x \in \partial_{e} Y_{1}$ and $T \in \partial_{e} L(Y, X)_{1}$, then $T x \in \partial_{e} X_{1}$.

Corollary 2.2. If X equals $l_{1}^{m} \oplus_{1} l_{\infty}^{3} \oplus_{1} \ldots \oplus_{1} l_{\infty}^{3} \quad$ or $\quad l_{\infty}^{m} \oplus_{\infty} l_{1}^{3} \oplus_{\infty} \ldots \oplus_{\infty} l_{1}^{3}$, then $L(X, X)$ satisfies (1) to (3) of Theorem 1.1.

Since $L(Y, X)=X \oplus_{\infty} \ldots \oplus_{\infty} X \oplus_{\infty} L\left(l_{\infty}^{3}, X\right) \oplus_{\infty} \ldots \oplus_{\infty} L\left(l_{\infty}^{3}, X\right)$, the theorem follows from Propositions 2.4 and 2.5 below.

We shall need the following characterization of CL-spaces.

Theorem 2.3. If $\operatorname{dim} X<\infty$, then the following statements are equivalent:
(1) X is a CL-space.
(2) X^{*} is a CL-space.
(3) $e \in \partial_{e} X_{1}, f \in \partial_{e} X_{1}^{*} \Rightarrow f(e)= \pm 1$.
(4) If $e \in \partial_{e} X_{1}$ and $x \in X$ are such that $\|x\|=1$ and $e \notin$ face (x), then $\|x-e\|=2$.

The proof can be found in [6] and [7]. Since the proof of (3) \Rightarrow (4) is not explicitly given in [6], and this implication is important in Section 5, we shall give the proof here.

Assume $e \in \partial_{e} X_{1},\|x\|=1$ and $e \notin$ face (x). Let $F=\left\{f \in X_{1}^{*}: f(e)=1\right\}$. By (2) we get, $X_{1}^{*}=\operatorname{conv}(F \cup-F)$. Let $a=\inf \{f(x): f \in F\}$ and $b=\sup \{f(x): f \in F\}$, and define $y=2^{-1}(a+b) e$. We have $1=\|x\|=\|y\|+\|x-y\|$. Since $e \notin$ face (x), we get $a+b \leqq 0$, such that $\|x\|=\sup \{-f(x): f \in F\}$. But then $2=\|x\|+\|e\|=$ $\sup \{(e-x)(f): f \in F\}=\|e-x\|$.

Proposition 2.4. If X and Y are finite dimensional, then the following statements are equivalent:
(1) $L(X, Y)$ is a CL-space.
(2) X and Y are CL-spaces and $e \in \partial_{e} X_{1}, T \in \partial_{e} L(X, Y)_{1} \Rightarrow T e \in \partial_{e} Y_{1}$.
(3) Y is a CL-space and $e \in \partial_{e} X_{1}, T \in \partial_{e} L(X, Y)_{1} \Rightarrow T e \in \partial_{e} Y_{1}$.

Proof. (2) \Rightarrow (3) is trivial.
(3) $\Rightarrow(1)$. Let F be a maximal proper face of the unit ball of $L(X, Y)$. Then, by Theorem 5.1 in [6], there exist $e \in \partial_{e} X_{1}$ and a maximal proper face G of Y_{1} such that

$$
F=\{T:\|T\| \leqq 1 \text { and } T e \in G\}
$$

Since $Y_{1}=\operatorname{conv}(G \cup-G)$, we get from (3) that $T e \in G \cup-G$ for every $T \in \partial_{e} L(X, Y)_{1}$. Thus $L(X, Y)_{1}=\operatorname{conv}(F \cup-F)$.
(1) $\Rightarrow(2)$. Let $e \in \partial_{e} X_{1}$ and let G be a maximal proper face of Y_{1}. Define F by

$$
F=\{T:\|T\| \leqq 1 \text { and } T e \in G\} .
$$

F is a proper face of the unit ball of $L(X, Y)$. Hence $F \subseteq K$ for some maximal proper face K of $L(X, Y)_{1}$. By Theorem 5.1 in [6], we have

$$
K=\{T:\|T\| \leqq 1 \text { and } T x \in H\}
$$

for some $x \in \partial_{e} X_{1}$ and some maximal proper face H of Y_{1}.
We want to show that, by changing sign of x and H if necessary, $e=x$ and $G=H$. Let $f \in X_{1}^{*}$ such that $f(e)=1$. Choose $y \in G$ and define T by $T z=f(z) y$. Then $T \in F \subseteq K$. Hence $T x=f(x) y \in H$. Thus $|f(x)|=1$ and $y \in H \cup-H$. We may assume $G=H$ and $f \in X_{1}^{*}$ and $f(e)=1 \Rightarrow f(x)=1$. Now choose $y \in \partial_{e} H$ and let $h \in \partial_{e} Y_{1}^{*}$ such that $h=1$ on H. Let $e_{n}=e-n^{-1} x$ and let $z_{n}=\left\|e_{n}\right\|^{-1} e_{n}$. By

Lemma 3.1 in [8], there exist $U_{n} \in \partial_{e} L(X, Y)_{1}$, such that $U_{n} z_{n}=y$. Let $g_{n}=h \cdot U_{n} \in X_{1}^{*}$. By (1), $U_{n} \in K \cup-K$ for all n. Hence $g_{n}(x)= \pm 1$ for all n. Since X_{1}^{*} is compact, we may assume that $g_{n} \rightarrow g$ in norm. We also have $z_{n} \rightarrow e$. From $g_{n}\left(z_{n}\right)=1$, we get $g(e)=1$. Hence $g(x)=1$. But then $g_{n}(x)=1$ for large n. This implies that

$$
\begin{aligned}
g_{n}(e) & \leqq\|e\| \\
& \leqq\left\|n^{-1} x\right\|+\left\|e-n^{-1} x\right\| \\
& =g_{n}\left(n^{-1} x\right)+g_{n}\left(e-n^{-1} x\right) \\
& =g_{n}(e)
\end{aligned}
$$

for large n. Thus $\|e\|=\left\|n^{-1} x\right\|+\left\|e-n^{-1} x\right\|$ for large n, such that $x=e \in \partial_{e} X_{1}$. Hence $F=K$ and $\partial_{e} L(X, Y)_{1} \subseteq F \cup-F$.

Let $T \in \partial_{e} L(X, Y)_{1}$. Then $T e \in G \cup-G$ for every maximal proper face G of $Y_{\mathbf{1}}$. Hence $T e \in \partial_{e} Y_{1}$.

Next let G be a maximal proper face of Y_{1}, let $e \in \partial_{e} X_{1}$ and let $y \in \partial_{e} Y_{1}$. By Lemma 3.1 in [8], there exists $T \in \partial_{e} L(X, Y)_{1}$ such that $T e=y$. But by the argument above, $T e=y \in G \cup-G$. Hence $\partial_{e} Y_{1} \subseteq G \cup-G$, and Y is a CL-space.

That also X is a CL-space follows from $L(X, Y)=L\left(Y^{*}, X^{*}\right)$, Theorem 2.3 and the argument above.

In [3] it was proved that if X has the 3.2.I.P. and $2 \leqq \operatorname{dim} X<\infty$, then X contains proper subspaces Y and Z such that $X=Y \oplus_{1} Z$ or $X=Y \oplus_{\infty} Z$ and Y and Z also have the 3.2.I.P. Note that by Proposition 2.4, if $L\left(l_{\infty}^{3}, X\right)$ is a CL-space, then X is a CL-space.

Proposition 2.5. Assume X has the 3.2.I.P. and $\operatorname{dim} X<\infty$. Then $L\left(l_{\infty}^{3}, X\right)$ is a CL-space .

Proof. The statement is trivially true if $\operatorname{dim} X$ is 1 or 2 . Assume that we have proved that the statement is true when $\operatorname{dim} X \leqq n$.

Suppose $\operatorname{dim} X=n+1$. By Theorem 7.3 in [3], there exist proper subspaces Y and Z of X with the 3.2.I.P. and such that $X=Y \oplus_{1} Z$ or $X=Y \oplus_{\infty} Z$. Then the proposition is true for Y and Z.

Case 1. $X=Y \oplus_{\infty} Z$. Then $L\left(l_{\infty}^{3}, X\right)=L\left(l_{\infty}^{3}, Y\right) \oplus_{\infty} L\left(l_{\infty}^{3}, Z\right)$. Hence $L\left(l_{\infty}^{3}, X\right)$ is a CL-space.

Case 2. $X=Y \oplus_{1} Z$. We want to show that (3) in Proposition 2.4 is satisfied. Let $T \in \partial_{e} L\left(l_{\infty}^{3}, X\right)_{1}$ and let $x_{1}=(1,1,1), x_{2}=(1,-1,1), x_{3}=(1,-1,-1)$ and $x_{4}=(1,1,-1)$. Then $T x_{1}+T x_{3}=T x_{2}+T x_{4}$. We want to show that $T x_{i} \in \partial_{e} X_{1}$.

It is easy to see that we may assume $\left\|T x_{i}\right\|=1$ for $i=1,2,3$. Suppose $\left\|T x_{4}\right\|<1$. If $T x_{1} \nsubseteq \partial_{e} X_{1}$, then choose $y \in X, y \neq 0$, such that $\left\|T x_{1} \pm y\right\| \leqq 1$ and
$\left\|T x_{4}\right\|+\left\|y^{\prime}\right\| \leqq 1$. Define S by $S x_{1}=S x_{4}=y$ and $S x_{2}=S x_{3}=0$. Then $\|T \pm S\| \leqq 1$. Since T is extreme, we have got a contradiction. Hence $T x_{1}$, and similarly $T x_{3}$, are extreme points in X_{1}. But then

$$
\left\|T x_{1}+T x_{3}\right\|=\left\|T x_{2}+T x_{4}\right\|
$$

equals 0 or 2 . This is impossible since $\left\|T x_{4}\right\| \neq\left\|T x_{2}\right\|$. Hence we have $\left\|T x_{i}\right\|=1$ for all i.

Write

$$
H^{4}(X)=\left\{\left(u_{1}, \ldots, u_{4}\right): u_{i} \in X \text { and } \sum u_{i}=0\right\}
$$

equipped with the norm $\left\|\left(u_{1}, \ldots, u_{4}\right)\right\|=\sum\left\|u_{i}\right\|$. We have

$$
\left(T x_{1},-T x_{2}, T x_{3},-T x_{4}\right) \in H^{4}(X)_{4} .
$$

From Lemma 4.1 [5], we get that there exist $u_{1}, \ldots, u_{6}, v_{k j} \in X, \lambda_{i} \geqq 0$ and $\alpha_{j} \geqq 0$ such that $1=\sum \lambda_{i}+\sum \alpha_{j},\left(v_{1 j},-v_{2 j}, v_{3 j},-v_{4 j}\right) \in \partial_{e} H(X)_{4}$ and

$$
\left.\begin{array}{rlrr}
& \left(T x_{1},\right. & -T x_{2}, & T x_{3}, \\
= & \left.-T x_{4}\right) \\
=2 \lambda_{1}\left(u_{1},\right. & -u_{1}, & 0, & 0
\end{array}\right)
$$

with $1=\left\|u_{i}\right\|=\left\|v_{k j}\right\|$ for all i, k and j and $1=\left\|T x_{1}\right\|=2 \lambda_{1}+2 \lambda_{2}+2 \lambda_{3}+\sum \alpha_{j}$ and so on for the other columns. We easily get $\lambda_{1}=\lambda_{6}, \lambda_{2}=\lambda_{5}$ and $\lambda_{3}=\lambda_{4}$. Define S_{i} and T_{j} by $T_{j} x_{k}=v_{k j}$ for $k=1, \ldots, 4$ and

$$
\begin{array}{ll}
S_{1} x_{1}=u_{1}=S_{1} x_{2}, & S_{1} x_{3}=u_{6}=S_{1} x_{4} \\
S_{2} x_{1}=u_{2}=-S_{2} x_{3}, & S_{2} x_{4}=u_{5}=-S_{2} x_{2} \\
S_{3} x_{1}=u_{3}=S_{3} x_{4}, & S_{3} x_{2}=-u_{4}=S_{3} x_{3}
\end{array}
$$

and $S_{4}=S_{3}, S_{5}=S_{2}$ and $S_{6}=S_{1}$.
Then $\left\|S_{i}\right\|=1=\left\|T_{j}\right\|$ for all i and j and $T=\sum \lambda_{i} S_{i}+\sum \alpha_{j} T_{j}$. Since T is extreme, we get $T=S_{i}$ for some i or $T=T_{j}$ for some j. If $T=S_{i}$ for some i, then we easily get that $T x_{i} \in \partial_{e} X_{1}$ for all i. If $T=T_{j}$ for some j, then

$$
\left(T x_{1},-T x_{2}, T x_{3},-T x_{4}\right) \in \partial_{e} H^{4}(X)_{4} .
$$

Let P be the projection in X with $P(X)=Y$ and ker $P=Z$. Then we get

$$
\begin{aligned}
& \left(T x_{1}, \quad-T x_{2}, \quad T x_{3}, \quad-T x_{4}\right) \\
& =\left(P T x_{1}, \quad-P T x_{2}, \quad P T x_{3}, \quad-P T x_{4}\right) \\
& +\left((I-P) T x_{1},-(I-P) T x_{2},(I-P) T x_{3},-(I-P) T x_{4}\right)
\end{aligned}
$$

which gives us a convex combination in $H^{4}(X)_{4}$. Hence, we may assume $T x_{i}=P T x_{i}$ for all i. Thus T maps l_{∞}^{3} into Y. By the induction hypothesis and Proposition 2.4, we get $T x_{i} \in \partial_{e} Y_{1} \subseteq \partial_{e} X_{1}$ for all i. The proof is complete.

Remark. It follows from the proof of Proposition 2.5, that if X is finite dimensional with the 3.2.I.P. and if $\left(u_{1}, \ldots, u_{4}\right) \in \partial_{e} H^{4}(X)_{4}$ with all $u_{i} \neq 0$, then $u_{i} \in \partial_{e} X_{1}$ for all i.

3. The spaces $L\left(Y \oplus_{\infty} R, Z \oplus_{1} R\right)$.

In this section we begin the study of necessary conditions in Theorem 1.3. The results obtained here will be used in the following sections. The main result in this section is the following theorem.

Theorem 3.1. Assume X and Y are finite-dimensional CL-spaces. Suppose there exist projections P in X and Q in Y such that $P\left(\partial_{e} X_{1}\right) \subseteq \partial_{e} X_{1}$ and $P(X)=l_{1}^{3} \oplus_{\infty} R$ or l_{∞}^{4} and $Q\left(\partial_{e} Y_{1}\right) \subseteq \partial_{e} Y_{1}$ and $Q(Y)=l_{\infty}^{3} \oplus_{1} R$ or l_{1}^{4}. Then there exist $T \in \partial_{e} L(X, Y)_{1}$ and $x \in \partial_{e} X_{1}$ such that $T x \not \partial_{e} Y_{1}$.

Before we give the proof, we shall prove some special cases. These are contained in the lemmas 3.2, 3.3 and 3.4.

Lemma 3.2. Let $X=l_{\infty}^{4}$ and $Y=l_{1}^{4}$. Then there exist $T \in \partial_{e} L(X, Y)_{1}$ and $x \in \partial_{e} X_{1}$ such that $T x \notin \partial_{e} Y_{1}$.

Proof. It is easy to see that l_{1}^{k} is not a quotient space of any l_{∞}^{n}-space when $k \geqq 3$. Thus we get that if $T \in \partial_{e} L(X, Y)_{1}$ is such that $T x \in \partial_{e} Y_{1}$ for every $x \in \partial_{e} X_{1}$, then $\operatorname{dim} T(X)=1$ or 2 . Define $S \in L(X, Y)_{1}$ by the matrix

$$
S=6^{-1}\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -2 & 1 & 0 \\
1 & 1 & 1 & -1 \\
1 & 0 & -1 & 0
\end{array}\right)
$$

Then $\|S x\|=1$ for every $x \in \partial_{e} X_{1}$. Let $T \in \partial_{e}$ face (S) and assume $T x \in \partial_{e} Y_{1}$ for every $x \in \partial_{e} X_{1}$. Then $\operatorname{dim} T(X)=1$ or 2 . Let e_{1}, \ldots, e_{4} be the natural basis for $Y=l_{1}^{4}$. Since $3 S(1,-1,1,-1)=(0,2,1,0)$, we get $T(X) \Phi \operatorname{span}\left(e_{1}, e_{4}\right)$. Similarly, $3 S(1,1,1,-1)=(1,0,2,0)$ and $3 S(1,-1,1,1)=(1,2,0,0)$ gives that

On extreme operators on finite-dimensional Banach spaces whose unit balls are polytopes 103
$T(X) \Phi \operatorname{span}\left(e_{2}, e_{4}\right)$ or in span $\left(e_{3}, e_{4}\right)$. Thus we only have to consider the cases 1, 2 and 3 below.

Case 1. $T(X) \subseteq \operatorname{span}\left(e_{1}, e_{2}\right)$.
Since $3 S(1,-1,1,-1)=(0,2,1,0)$, we get $T(1,-1,1,-1)=e_{2}$. Similarly, we get $T(1,1,-1,-1)=-e_{2}$ and $T(1,1,1,-1)=e_{1}$. We also have $T(1,-1,-1,1)=$ e_{2}. Thus using that $(1,-1,-1,1)+(1,-1,1,-1)=(1,-1,-1,-1)+(1,-1,1,1)$ we get $-e_{1}=T(1,-1,-1,-1)=e_{2}$. This is a contradiction.

Case 2. $T(X) \subseteq \operatorname{span}\left(e_{1}, e_{3}\right)$
and
Case 3. $T(X) \subseteq \operatorname{span}\left(e_{2}, e_{3}\right)$ are treated similarly. Hence, we get that for every $T \in \partial_{e}$ face (S), there exists $x \in \partial_{e} X_{1}$ such that $T x \notin \partial_{e} Y_{1}$.

Remark. S. Kaijser has shown that the matrix

$$
A=8^{-1}\left(\begin{array}{rrrr}
1 & 2 & 0 & 1 \\
2 & -1 & 1 & 0 \\
0 & 1 & -1 & -2 \\
1 & 0 & -2 & 1
\end{array}\right)
$$

has the same property as the matrix S.
Lemma 3.3. Let $X=l_{1}^{3} \oplus_{\infty} R$ and let $Y=l_{1}^{4}$. Then there exist $T \in \partial_{e} L(X, Y)_{1}$ and $x \in \partial_{e} X_{1}$ such that $T x \notin \partial_{e} Y_{1}$.

Proof. Let $x_{1}=(1,0,0,1), x_{2}=(0,1,0,1), x_{3}=(0,0,1,1), y_{1}=(-1,0,0,1)$, $y_{2}=(0,-1,0,1)$ and $y_{3}=(0,0,-1,1)$. Then $x_{i}+y_{i}=(0,0,0,2)$ for all i. Define $T \in L(X, Y)_{1}$ by

$$
\begin{array}{ll}
2 T x_{1}=(1,1,0,0), & 2 T x_{2}=(0,1,0,1) . \\
2 T x_{3}=(1,0,0,1), & 2 T y_{1}=(0,0,1,1) .
\end{array}
$$

Then

$$
2 T y_{2}=(1,0,1,0), \quad 2 T y_{3}=(0,1,1,0)
$$

Let $S \in \partial_{e}$ face (T). Assume for contradiction that $x \in \partial_{e} X_{1} \Rightarrow S x \in \partial_{e} Y_{1}$. We have to consider four cases.

Case 1. $S x_{1}=e_{1}$ and $S y_{1}=e_{4}$.
Since $\operatorname{span}\left(x_{1}, y_{1}, x_{3}, y_{3}\right)=l_{\infty}^{3}$ and $Y=l_{1}^{4}$, we get $S x_{3}, S y_{3} \in \operatorname{span}\left(e_{1}, e_{4}\right)$. (See the beginning of the proof of Lemma 3.2.) This is impossible.

The cases 2) $\left.S x_{1}=e_{1}, S y_{1}=e_{3}, 3\right) S x_{1}=e_{2}, S y_{1}=e_{3}$ and 4) $S x_{1}=e_{2}, S y_{1}=e_{4}$ are treated similarly. Hence we have shown that for every $S \in \partial_{e}$ face (T), there exists $x \in \partial_{e} X_{1}$ such that $S x \notin \partial_{e} Y_{1}$.

Considering T^{*} we get:
Corollary 3.4. Let $X=l_{\infty}^{4}$ and let $Y=l_{\infty}^{3} \oplus_{1} R$. Then there exist $T \in \partial_{e} L(X, Y)_{1}$ and $x \in \partial_{e} X_{1}$ such that $T x \notin \partial_{e} Y_{1}$.

Lemma 3.5. Let $X=l_{1}^{3} \oplus_{\infty} R$ and let $Y=l_{\infty}^{3} \oplus_{1} R$. Then there exist $T \in \partial_{e} L(X, Y)_{1}$ and $x \in \partial_{e} X_{1}$ such that $T x \notin \partial_{e} Y_{1}$.

Proof. Let $x_{i}, y_{i} \in \partial_{e} X_{1}$ be as in Lemma 3.2. Let $e_{1}=(1,-1,-1,0), e_{2}=$ $(1,1,-1,0), e_{3}=(1,1,1,0), e_{4}=(1,-1,1,0)$ and $e_{5}=(0,0,0,1) . e_{i} \in \partial_{e} Y_{1}$ and $e_{1}+e_{3}=e_{2}+e_{4}$. Define $T \in L(X, Y)_{1}$ by $2 T x_{1}=e_{2}+e_{5}, 2 T x_{2}=e_{1}+e_{5}, T x_{3}=e_{5}$ and $2 T y_{1}=e_{4}+e_{5}$. Then $2 T y_{2}=e_{3}+e_{5}$ and $2 T y_{3}=e_{1}+e_{3}$.

Let $T_{i} \in \partial_{e} L(X, Y)_{1}$ and let $\lambda_{i}>0$ such that $\sum \lambda_{i}=1$ and $T=\sum \lambda_{i} T_{i}$ where i runs from 1 to some integer p.

Assume for contradiction that $S \in \partial_{e} L(X, Y)_{1}, x \in \partial_{e} X_{1} \Rightarrow S x \in \partial_{e} Y_{1}$. Then some T_{i}, say T_{1}, satisfy $T_{1} y_{1}=e_{5}$. We have $T_{1} x_{3}=e_{5}$. Using that $x_{1}+y_{1}=x_{3}+y_{3}$ and $T_{1} y_{3} \neq e_{5}$, we get $T_{1} x_{1}=e_{2}$. But then $T_{1} x_{2} \in\left\{e_{2}, e_{5}\right\} \cap\left\{e_{1}, e_{5}\right\}=\left\{e_{5}\right\}$. Similarly $T_{1} y_{2}=e_{5}$. But then, since $T_{1} x_{1}+T_{1} y_{1}=T_{1} y_{2}+T_{1} x_{2}$, we have obtained a contradiction.

Proof of Theorem 3.1. By lemmas 3.2, 3.3, 3.4 and 3.5, we know that there exists a $T \in \partial_{e} L(P(X), Q(Y))_{1}$ such that $T X \notin \partial_{e} Q(Y)_{1}$ for some $x \in \partial_{e} P(X)_{1}$. $\|T \cdot P\|=1$. Hence we can find $T_{i} \in \partial_{e} L(X, Y)_{1}$ and $\lambda_{i}>0$ such that $\sum \lambda_{i}=1$. and $T \cdot P=\sum \lambda_{i} T_{i}(i=1, \ldots, p)$. But then we get $T=\sum \lambda_{i} Q \cdot T_{i}$. Since T is extreme, this implies that $T:=Q \cdot T_{1}$. Hence $T_{1} x \not \ddagger \partial_{e} Y_{1}$ for some $x \in \partial_{e} P(X)_{1} \sqsubseteq \partial_{e} X_{1}$. The proof is complete

Corollary 3.6. Assume X and Y are finite-dimensional CL-spaces. If there exist isometries $T: l_{\infty}^{4} \rightarrow X$ and $S: l_{\infty}^{4} \rightarrow Y^{*}$ such that $x \in \partial_{e}\left(l_{\infty}^{4}\right)_{1} \Rightarrow T x \in \partial_{e} X_{1}$ and $S x \in \partial_{e} Y_{1}^{*}$, then there exist $U \in \partial_{e} L(X, Y)_{1}$ and $x \in \partial_{e} X_{1}$ such that $U x \notin \partial_{e} Y_{1}$.

Proof. $S^{*}: Y \rightarrow l_{1}^{4}$ is a quotient map such that $S^{*}\left(\partial_{e} Y_{1}\right)=\partial_{e}\left(l_{1}^{4}\right)_{1}$. Hence there is a projection Q in Y such that $Q(Y)=l_{1}^{4}$ and $Q\left(\partial_{e} Y_{1}\right) \subseteq \partial_{e} Y_{1}$.

Let P be a projection in X such that $\|P\|=1$ and $P(X)=T\left(l_{\infty}^{4}\right)$. Note that the properties of P that we used in the proof of Theorem 3.1 was $\|P\|=1$ and $\partial_{e} P(X)_{1} \sqsubseteq \partial_{e} X_{1}$. The proof is complete.

Remark. If we assume in Corollary 3.6 that X and Y have the 3.2.I.P., we get, using Proposition 2.5 and Lemma 6.4, that the corollary is true if we replace l_{∞}^{4} one or both places with $l_{1}^{3} \oplus_{\infty} R$.

Even though we don't need the next result, it is typical for the situation so we include a proof.

On extreme operators on finite-dimensional Banach spaces whose unit balls are polytopes 105

Theorem 3.7. Let Y and Z be finite-dimensional spaces with 3.2.I.P.
Then

$$
\begin{equation*}
T \in \partial_{e} L\left(Y \oplus_{\infty} R, Z \oplus_{1} R\right)_{1}, \quad x \in \partial_{e}\left(Y \oplus_{\infty} R\right)_{1} \Rightarrow T x \in \partial_{e}\left(Z \oplus_{1} R\right)_{1} \tag{1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\min (\operatorname{dim} Y, \operatorname{dim} Z) \leqq 2 \tag{2}
\end{equation*}
$$

Proof. (2) \rightarrow (1) easily follows from Theorem 2.1.
Assume next that $\operatorname{dim} Y \geqq 3$ and $\operatorname{dim} Z \geqq 3$. If Y is not an l_{1}^{m}-space, then there exists an isometry $T: l_{\infty}^{3} \rightarrow Y$ [5; Theorem 4.3]. Let $S \in \partial_{e}$ face (T). Then S is an isometry and by Proposition 2.5, $S\left(\partial_{e}\left(l_{\infty}^{3}\right)_{1}\right) \sqsubseteq \partial_{e} Y_{1}$. Hence there exists an isometry $U: l_{\infty}^{4} \rightarrow Y \oplus_{\infty} R$ such that $U\left(\partial_{e}\left(l_{\infty}^{4}\right)_{1}\right) \subseteq \partial_{e}\left(Y \oplus_{\infty} R\right)_{1}$.

Similarly, either Z is an l_{∞}^{n}-space or there exists an isometry $V: l_{\infty}^{4} \rightarrow Z^{*} \oplus_{\infty} R$ such that $V\left(\partial_{e}\left(l_{\infty}^{4}\right)_{1}\right) \subseteq \partial_{e}\left(Z^{*} \oplus_{\infty} R\right)_{1}$. Now (1) \Rightarrow (2) follows from Corollary 3.6 and Theorem 3.1.

4. Necessary conditions when X has the 3.2.I.P.

In this short section we shall prove Theorem 4.1.
Theorem 4.1. Assume X is finite-dimensional with the 3.2.I.P. If X satisfy (1) $T \in \partial_{e} L(X, X)_{1}, \quad x \in \partial_{e} X_{1} \Rightarrow T x \in \partial_{e} X_{1}$ then X is isometric to $l_{1}^{m} \oplus_{1} l_{\infty}^{3} \oplus_{1} \ldots \oplus_{1} l_{\infty}^{3}$ or $l_{\infty}^{m} \oplus_{\infty} l_{1}^{3} \oplus_{\infty} \ldots \oplus_{\infty} l_{1}^{3}\left(k\right.$ copies of l_{∞}^{3} or l_{1}^{3}) where $m, k \in\{0,1,2, \ldots\}$ and $\operatorname{dim} X=$ $m+3 k$.

Proof. By Corollary 3.6, we may assume that there does not exist an isometry $T: l_{\infty}^{4} \rightarrow X$ such that $T\left(\partial_{e}\left(l_{\infty}^{4}\right)_{1}\right) \subseteq \partial_{e} X_{1}$. We can assume $\operatorname{dim} X \geqq 3$. By Theorem 7.3 in [3] we can write

$$
X=l_{1}^{m} \oplus_{1}\left(Y_{1} \oplus_{\infty} Z_{1}\right) \oplus_{1} \ldots \oplus_{1}\left(Y_{p} \oplus_{\infty} Z_{p}\right)
$$

where $\operatorname{dim} Y_{i} \geqq \operatorname{dim} Z_{i} \geqq 1$ and $\operatorname{dim} Y_{i}+\operatorname{dim} Z_{i} \geqq 3$ for all i. (We can have $m=0$ or $p=0$.) If $p=0$, there is nothing to prove. So assume $p \geqslant 1$.

If one Y_{i} or Z_{i} is not an l_{1}^{n}-space, then as in the proof of Theorem 3.7, we find an isometry $T: l_{\infty}^{4} \rightarrow Y_{i} \oplus_{\infty} Z_{i}$ such that $T\left(\partial_{e}\left(l_{\infty}^{4}\right)_{1}\right) \subseteq \partial_{e}\left(Y_{i} \oplus_{\infty} Z_{i}\right)_{1}$. This contradicts our assumption above. Hence all Y_{i} and Z_{i} are l_{1}^{n}-spaces. Using that $l_{1}^{2}=l_{\infty}^{2}$, we similarly get that $Z_{i}=R$ for every i. Hence $Y_{i} \oplus_{\infty} Z_{i}=l_{1}^{k_{i}} \oplus_{\infty} R$ for some $k_{i} \geqq 2$ and all i.

Looking at the lemmas in Section 3 or at Theorem 3.7, it is clear that we cannot have $\operatorname{dim} Y_{i}>2$ for some i together with $p>1$ or $m \neq 0$. Thus we have either $p>1$ or $m \neq 0$ and then $X=l_{1}^{m} \oplus_{1} l_{\infty}^{3} \oplus_{1} \ldots \oplus_{1} l_{\infty}^{3}$ or $p=1$ and $m=0$ and $X=l_{1}^{k} \oplus_{\infty} R$ with $k \geqq 3$. In the last case, it follows from Theorem 3.1 that $k \leqq 3$. Thus $X=l_{1}^{3} \oplus_{\infty} R$.

The proof is complete.

5. CL-spaces without the 3.2.I.P.

We shall now characterize CL-spaces without the 3.2.I.P. These results will then be used in the next section where we show that no CL-space without the 3.2.I.P. satisfy (1) in Theorem 1.1.

CL-spaces were characterized in Theorem 2.3. The first result here is well known and its proof can be found in [6] [2].

Theorem 5.1. The following statements are equivalent:
(1) X has the 3.2.I.P.
(2) X^{*} has the 3.2.I.P.
(3) If F and G are disjoint faces of X_{1}, then there exists $f \in \partial_{e} X_{1}^{*}$ such that $f=1$ on F and $f=-1$ on G.

If we compare (3) of Theorem 5.1 with (4) of Theorem 2.3, we see that every CL-space without the 3.2.I.P. contains a pair of disjoint faces F and G of X_{1} such that no $f \in X_{1}^{*}$ is 1 on F and -1 on G and both F and G consists of more than one point.

Lemma 5.2. Let X be a finite-dimensional CL-space without the 3.2.I.P. Then there exist a face N of X_{1} and $x_{1}, x_{2} \in \partial_{e} X_{1}$ such that if $F=$ face $\left(\frac{x_{1}+x_{2}}{2}\right)$, then $N \cap F=\emptyset$, but no $f \in X_{1}^{*}$ satisfy $f=1$ on N and $f=-1$ on F.

Proof. By the discussion above and since $\operatorname{dim} X<\infty$, it follows that there exists a minimal face F of X_{1} such that there exists a face N of X_{1} with the properties: $N \cap F=\emptyset$ and no $f \in X_{1}^{*}$ is 1 on N and -1 on F.

Write $N=$ face (y) and let $x_{1} \in \partial_{e} F$. By Theorem 2.3, we get that $G=$ face $\left(\frac{y-x_{1}}{2}\right)$ is a proper face of X_{1}. Write $F=$ face (x) and choose $\alpha \in\langle 0,1]$ and $z \in F$ such that $x=\alpha x_{1}+(1-\alpha) z$. By choosing α as large as possible, we get $x_{1} \not \ddagger$ face (z). As noted above, F is not a point. Hence $\alpha<1$. Clearly face (z) is a proper subface of F.

If face $(z) \cap G=\emptyset$, then by the minimality of F, there exists $g \in \partial_{e} X_{1}^{*}$ such that $g=1$ on G and $g(z)=-1$. But then $g=1$ on N and $g=-1$ on F. This contradiction shows that face $(z) \cap G \neq \emptyset$. Choose $x_{2} \in \partial_{e} G \cap$ face (z), and define $H=$ face $\left(\frac{x_{1}+x_{2}}{2}\right) \subseteq F$. Then no $f \in X_{1}^{*}$ satisfy ${ }^{\prime} f=1 \quad$ on N and $f=-1$ on H. Hence by the minimality of F, we get $F=H$. The proof is complete.

Before we proceed to get better characterizations of CL-spaces without the 3.2.I.P. we need a lemma.

Lemma 5.3. Assume X is a finite-dimensional CL-space. Let $p \geqq 2$ and let $y_{1}, \ldots, y_{p} \in \partial_{e} X_{1}$ be such that $F=$ face $\left(p^{-1}\left(y_{1}+\ldots+y_{p}\right)\right)$ is a proper face of X_{1}. If $x_{1} \in \partial_{e} F$, then there exist $x_{2}, \ldots, x_{p} \in \partial_{e} F$ such that

$$
y_{1}+\ldots+y_{p}=x_{1}+\ldots+x_{p} .
$$

Proof. There exist $\alpha_{1} \in\langle 0,1]$ and $u_{1} \in F$ such that

$$
p^{-1}\left(y_{1}+\ldots+y_{p}\right)=\alpha_{1} x_{1}+\left(1-\alpha_{1}\right) u_{1} .
$$

By taking α_{1} as large as possible, we get $x_{1} \notin$ face (u_{1}). By Theorem 2.3 there exists $f_{1} \in \partial_{e} X_{1}^{*}$ such that $f_{1}\left(x_{1}\right)=1$ and $f_{1}\left(u_{1}\right)=-1$. By Theorem 2.3, we then get

$$
\begin{aligned}
2 \alpha_{1}-1 & =f_{1}\left(\alpha_{1} x_{1}+\left(1-\alpha_{1}\right) u_{1}\right) \\
& =p^{-1} f_{1}\left(y_{1}+\ldots+y_{p}\right) \\
& \in\left\{1, p^{-1}(p-2), p^{-1}(p-4), \ldots,-1\right\} .
\end{aligned}
$$

Hence $\alpha_{1} \in\left\{0, p^{-1}, 2 p^{-1}, \ldots, 1\right\}$. Thus we can write $\alpha_{1}=p^{-1} k_{1}$ where k_{1} is some integer $\geqq 1$. We now have

$$
p^{-1}\left(y_{1}+\ldots+y_{p}\right)=p^{-1} k_{1} x_{1}+\left(1-p^{-1} k_{1}\right) u_{1} .
$$

If $u_{1} \notin \partial_{e} F$, then we can choose $x_{2} \in \partial_{e}$ face $\left(u_{1}\right), \alpha_{2} \in\left\langle 0,1-p^{-1} k_{1}\right]$ and $u_{2} \in F$ such that

$$
p^{-1}\left(y_{1}+\ldots+y_{p}\right)=p^{-1} k_{1} x_{1}+\alpha_{2} x_{2}+\left(1-p^{-1} k_{1}-\alpha_{2}\right) u_{2} .
$$

Choosing α_{2} as large as possible, we get $x_{2} \ddagger$ face $\left(u_{2}\right)$. Again using Theorem 2.3 we find $f_{2} \in \partial_{e} X_{1}^{*}$ such that $f_{2}\left(x_{2}\right)=1$ and $f_{2}\left(u_{2}\right)=-1$. As in the case with α_{1}, we find $\alpha_{2}=p^{-1} k_{2}$ where k_{2} is some integer $\geqq 1$. Hence

$$
y_{1}+\ldots+y_{p}=k_{1} x_{1}+k_{2} x_{2}+\left(p-k_{1}-k_{2}\right) u_{2} .
$$

Proceeding in this manner, we find $x_{2}, \ldots, x_{q} \in \partial_{e} F$ and integers $k_{1}, \ldots, k_{q} \geqq 1$ such that $k_{1}+\ldots+k_{q}=p$ and

$$
y_{1}+\ldots+y_{p}=k_{1} x_{1}+k_{2} x_{2}+\ldots+k_{q} x_{q}
$$

The proof is complete.
The next result is a main theorem in this section. It characterizes CL-spaces without the 3.2.I.P. This theorem together with Theorem 3.1 will be used in the following to show that such spaces cannot satisfy (1) of Theorem 1.1.

Theorem 5.4. Assume X is a finite-dimensional CL-space without the 3.2.I.P. Then there exist an integer $p \geqq 2$, a maximal proper face K of X_{1} and extreme points $y_{1}, \ldots, y_{p}, x_{1}, x_{2}, z_{1}, \ldots, z_{p} \in \partial_{e} K$ such that

$$
y_{1}+\ldots+y_{p}+x_{1}=x_{2}+z_{1}+\ldots+z_{p}
$$

Moreover, if $N=$ face $\left(p^{-1}\left(y_{1}+\ldots+y_{p}\right)\right), \quad M=$ face $\left(p^{-1}\left(z_{1}+\ldots+z_{p}\right)\right)$ and $F=$ face $\left(2^{-1}\left(x_{2}-x_{1}\right)\right)$, then $M \cap N=\emptyset, N \cap F=\emptyset$ and $-F \cap M=\emptyset$.

Proof. By Lemma 5.2, there exist a minimal integer p such that: There exist $y_{1}, \ldots, y_{p}, x_{1}, x_{2} \in \partial_{e} X_{1}$ such that if $N=$ face $\left(p^{-1}\left(y_{1}+\ldots+y_{p}\right)\right)$ and

$$
F=\operatorname{face}\left(2^{-1}\left(x_{1}+x_{2}\right)\right)
$$

then $N \cap F=\emptyset$, but no $f \in X_{1}^{*}$ is 1 on F and -1 on F. Then as in the proof of Lemma 5.2, we see that if $G=$ face $\left((p+1)^{-1}\left(y_{1}+\ldots+y_{p}-x_{1}\right)\right)$, then G is a proper face of X_{1} and $x_{2} \in G$. Let K be a maximal proper face of X_{1} such that $G \subseteq K$.

By Lemma 5.3 there exist $z_{1}, \ldots, z_{p} \in \partial_{e} K$ such that

$$
y_{1}+\ldots+y_{p}-x_{1}=x_{2}+z_{1}+\ldots+z_{p}
$$

Let $M=$ face $\left(p^{-1}\left(z_{1}+\ldots+z_{p}\right)\right)$. If there exists $u \in \partial_{e} M \cap \partial_{e} N$, then by Lemma 5.3, we can find $a_{i} \in \partial_{e} N$ and $b_{i} \in \partial_{e} M$ such that

$$
y_{1}+\ldots+y_{p}=u+a_{1}+\ldots+a_{p-1}
$$

and

$$
z_{1}+\ldots+z_{p}=u+b_{1}+\ldots+b_{p-1}
$$

Hence

$$
a_{1}+\ldots+a_{p-1}-x_{1}=x_{2}+b_{1}+\ldots+b_{p-1}
$$

Clearly $F \cap$ face $\left((p-1)^{-1}\left(a_{1}+\ldots+a_{p-1}\right)\right)=\emptyset$, but no $f \in \partial_{e} X_{1}^{*}$ is 1 on one of these faces and -1 on the other. Thus we have got a contradiction to the minimality of p.

Hence $N \cap M=\emptyset$.
If two z_{i} are equal, say $z_{1}=z_{2}$, then by Theorem 2.3, there exists $f \in \partial_{e} X_{1}^{*}$ such that $f=1$ on N and $f\left(z_{1}\right)=-1$. But then

$$
p-1 \leqq f\left(y_{1}+\ldots+y_{p}-x_{1}\right)=f\left(x_{2}+z_{1}+\ldots+z_{p}\right) \leqq p-3
$$

This contradiction shows that all z_{i} are different.
If there exists $z \in \partial_{e} M \cap(-F)$, then by Lemma 5.3 we can write

$$
-x_{1}-x_{2}=z+u
$$

and

$$
z_{1}+\ldots+z_{p}=z+b_{1}+\ldots+b_{p-1}
$$

where $u, b_{1}, \ldots, b_{p-1} \in \partial_{e} K$. But then

$$
y_{1}+\ldots+y_{p}=b_{1}+\ldots+b_{p-1}-u
$$

such that $N \cap M \neq \emptyset$. This contradiction shows that $M \cap(-F)=\emptyset$. To conclude the proof, we only have to replace x_{1} by $-x_{1}$.

It is a consequence of Theorem 5.4 that a CL-space without the 3.2.I.P. has dimension $\geqq 5$. In fact, $\operatorname{dim} X \geqq 2 p+1$.

On extreme operators on finite-dimensional Banach spaces whose unit balls are polytopes 109

Proposition 2.5 says that if X has the 3.2.I.P., then $L\left(l_{\infty}^{3}, X\right)$ is a CL-space. If X does not have the 3.2.I.P., then we get the following corollary.

Corollary 5.5. If $L\left(l_{\infty}^{3}, X\right)$ is a CL-space, then the integer p in Theorem 5.4 is 2.
Proof. We use the notation of Theorem 5.4. We have

$$
\left(y_{1}+\ldots+y_{p}\right)+p x_{1}=\left(x_{2}+(p-1) x_{1}\right)+\left(z_{1}+\ldots+z_{p}\right) .
$$

Define $T: l_{\infty}^{3} \rightarrow X$ by $p T(1,1,1)=y_{1}+\ldots+y_{p}, T(1,-1,-1)=x_{1}, p T(1,-1,1)=$ $x_{2}+(p-1) x_{1}$ and $p T(1,1,-1)=z_{1}+\ldots+z_{p}$. Then $\|T\|=1$. Choose $S \in \partial_{e}$ face (T). Then $y=S(1,1,1) \in \partial_{e} N, \quad z=S(1,1,-1) \in \partial_{e} M, \quad x_{1}=S(1,-1,-1) \quad$ and $x_{3}=$ $S(1,-1,1) \in \partial_{e}$ face $\left(\frac{x_{1}+x_{2}}{2}\right)$ and $x_{1}+y=x_{3}+z$. By Lemma 5.3, there exist extreme points x_{4}, a_{i} and b_{i} such that

$$
\begin{aligned}
& y_{1}+\ldots+y_{p}=y+a_{1}+\ldots+a_{p-1} \\
& z_{1}+\ldots+z_{p}=z+b_{1}+\ldots+b_{p-1}
\end{aligned}
$$

and

$$
x_{1}+x_{2}=x_{3}+x_{4} .
$$

Hence

$$
a_{1}+\ldots+a_{p-1}+x_{3}=x_{2}+b_{1}+\ldots+b_{p-1}
$$

Repeating this procedure, we find $a \in \partial_{e} N, b \in \partial_{e} M$ and $x_{5} \in \partial_{e}$ face $\left(\frac{x_{2}+x_{3}}{2}\right)$ such that

$$
a+x_{3}=x_{5}+b
$$

But then

$$
(y+a)+x_{1}=x_{5}+(z+b)
$$

and face $\left(\frac{y+a}{2}\right) \subseteq N$ and face $\left(\frac{z+b}{2}\right) \subseteq M$. However, these smaller faces satisfy the requirement of Lemma 5.2. Looking at the definition of p, we now see that $p=2$.

There are some CL-spaces such that $L\left(l_{\infty}^{3}, X\right)$ is not a CL-space. An example of this is the quotient-space $X=l_{1}^{6} / U$ where $U=\operatorname{span}\{(1,1,1,1,1,1)\}$. In this space, we have that if $x, y \in \partial_{e} X_{1}$ with $x+y \neq 0$, then conv (x, y) is a face of X_{1}. It is easy to see that for every CL-space with this property, we have that $L\left(l_{\infty}^{3}, X\right)$ is not a CL-space. (In fact, if y, z and x_{3} are as in the proof of Corollary 5.5, then $x_{1}+y=x_{3}+z$ implies that $y=z \in M \cap N$ or $z=x_{1} \in M \cap(-F)$. Both are false.)

If X is a CL-space and X is not an l_{1}^{n}-space, then it follows from Propositions I.6.11 and II.3.16 in [1] that we can define an integer $p(X)$ as follows: $p=p(X)$ is the smallest integer such that there exist $x_{1}, \ldots, x_{p} \in \partial_{e} X_{1}$ with the following properties:
(1) $F=$ face $\left(p^{-1}\left(x_{1}+\ldots+x_{p}\right)\right)$ is a proper face of X_{1}
(2) $F \neq \operatorname{conv}\left(x_{1}, \ldots, x_{p}\right)$.

Proposition 5.6. Let X be a finite-dimensional CL-space and assume X is not an l_{1}^{n}-space. Then $p=p(X) \geqq 2$ and there exist $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{p} \in \partial_{e} X_{1} \quad$ (all different) such that

$$
x_{1}+\ldots+x_{p}=y_{1}+\ldots+y_{p}
$$

and $F=$ face $\left(p^{-1}\left(x_{1}+\ldots+x_{p}\right)\right)$ is a proper face of X_{1}. Moreover, if $z_{1}, \ldots, z_{p-1} \in \partial_{e} X_{1}$ are such that $z_{i}+z_{j} \neq 0$ for all i and j, then $\operatorname{conv}\left(z_{1}, \ldots, z_{p-1}\right)$ is a proper face of X_{1}.

The example $X=l_{1}^{6} / U$ above satisfy $p(X)=3$. Clearly $L\left(l_{\infty}^{3}, X\right)$ is a CL-space \Rightarrow $p(X)=2$.

Proof. The statement about z_{1}, \ldots, z_{p-1} easily follows from the definition of $p(X)$ and Theorem 2.3. The existence of $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{p}$ follows from the definition of $p(X)$ and Lemma 5.3. The proof is complete.

6. Necessary conditions when X is a CL-space

In this section we shall prove that if a CL-space X satisfy (1) of Theorem 1.1, then X has the 3.2.I.P. and we can apply Theorem 4.1. We shall assume that X is not an l_{1}^{n}-space such that the number $p(X)$ is defined. (See the text following the proof of Corollary 5.5.) First we show that if X satisfy (1) of Theorem 1.1 then $p(X)=p\left(X^{*}\right)=2$. From this we deduce that $L\left(l_{\infty}^{3}, X\right)$ and $L\left(l_{\infty}^{3}, X^{*}\right)$ are CL-spaces. Using this information we show that if X does not have the 3.2.I.P., then we have a situation like the one decribed in Theorem 3.1.

Theorem 6.1. Assume X is a finite-dimensional CL-space with $p(X) \geqq 3$. Then there exist $T \in \partial_{e} L(X, X)_{1}$ and $x \in \partial_{e} X_{1}$ such that $T x \notin \partial_{e} X_{1}$.

Proof. Suppose first that $p(X)$ is an even number, say $p(X)=2 k$ where $k \geqq 2$. Let F and $x_{1}, \ldots, x_{2 k}, y_{1}, \ldots, y_{2 k} \in \partial_{e} F$ be as in Proposition 5.6. By Proposition 5.6, $\operatorname{conv}\left(x_{1}, \ldots, x_{k},-y_{k+1}, \ldots,-y_{2 k-1}\right)$ is a proper face of X_{1} not containing $y_{2 k}$. Then there exists, by Theorem 2.3, a $f_{2} \in \partial_{e} X_{1}^{*}$ such that $f_{2}\left(x_{i}\right)=1$ and $f_{2}\left(y_{k+i}\right)=$ -1 for $i=1, \ldots, k$. But then by the equality in Proposition 5.6, $f_{2}=1$ on x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k} and $f_{2}=-1$ on $x_{k+1}, \ldots, x_{2 k}, y_{k+1}, \ldots, y_{2 k}$.

Similarly there exists $f_{3} \in \partial_{e} X_{1}^{*}$ such that $f_{3}=1$ on $x_{1}, \ldots, x_{k}, y_{2}, \ldots, y_{k+1}$ and $f_{3}=-1$ on $x_{k+1}, \ldots, x_{2 k}, y_{1}, y_{k+2}, \ldots, y_{2 k}$.

Since F is a proper face of X_{1}^{*}, there exists $f_{1} \in \partial_{e} X_{1}^{*}$ such that $f_{1}=1$ on F.
Define a map $T: X \rightarrow l_{\infty}^{3}$ by $T(x)=\left(f_{1}(x), f_{2}(x), f_{3}(x)\right)$. Define $a_{1}, a_{2}, b_{1}, b_{2} \in F$ by $k a_{1}=x_{1}+\ldots+x_{k}, k a_{2}=x_{k+1}+\ldots+x_{2 k}, k b_{1}=y_{1}+\ldots+y_{k}$ and $k b_{2}=y_{k+1}+\ldots+y_{2 k}$. Define a map $S: l_{\infty}^{3} \rightarrow X$ by $S(1,1,1)=a_{1}, S(1,-1,-1)=a_{2}, S(1,1,-1)=b_{1}$ and $S(1,-1,1)=b_{2}$. Then $\|S \cdot T\|=1$ and $S \cdot T\left(y_{1}\right)=b_{1}, S \cdot T\left(y_{k+1}\right)=b_{2}, S \cdot T\left(x_{i}\right)=$
$S \cdot T\left(y_{j}\right)=a_{1}$ for $i=1, \ldots, k$ and $j=2, \ldots, k$ and $S \cdot T\left(x_{i}\right)=S \cdot T\left(y_{j}\right)=a_{2}$ for $i=k+1, \ldots, 2 k$ and $j=k+2, \ldots, 2 k$.

Let $U \in \partial_{e}$ face $(S \cdot T)$ and assume for contradiction that $x \in \partial_{e} X_{1} \Rightarrow U x \in \partial_{e} X_{1}$. Then we get $U y_{1} \in\left\{y_{1}, \ldots, y_{k}\right\}, U y_{k+1} \in\left\{y_{k+1}, \ldots, y_{2 k}\right\}$ and $U x \in\left\{x_{1}, \ldots, x_{2 k}\right\}$ when $x \in\left\{x_{1}, \ldots, x_{2 k}, y_{2}, \ldots, y_{k}, y_{k+2}, \ldots, y_{2 k}\right\}$. Moreover

$$
U x_{1}+\ldots+U x_{2 k}=U y_{1}+\ldots+U y_{2 k} .
$$

Either $U y_{2}=U x_{i}$ for some i or else card $\left\{U x_{1}, \ldots, U x_{2 k}\right\}<p(X)$. Thus $U y_{1}$ is in a face generated by less than $p(X)$ extreme points. This contradicts the definition of $p(X)$. Hence $U x \notin \partial_{e} X_{1}$ for at least one $x \in \partial_{e} F$.

Suppose next that $p(X)$ is an odd number, say $p=p(X)=2 k-1$ where $k \geqq 2$. In this case we have to make a small change in the proof above. We start with $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{p}$ and F as in Proposition 5.6. Then we write $x_{k+1}=x_{2 k}=y_{2 k}$. The proof is complete.

Corollary 6.2. Assume X is a finite-dimensional CL-space. If X satisfies (1) $T \in \partial_{e} L(X, X)_{1}, x \in \partial_{e} X_{1} \Rightarrow T x \in \partial_{e} X_{1}$, then both $L\left(l_{\infty}^{3}, X\right)$ and $L\left(l_{\infty}^{3}, X^{*}\right)$ are CL-spaces. Moreover, if X is not an l_{1}^{n} - or an l_{∞}^{n}-space, then $p(X)=p\left(X^{*}\right)=2$.

Proof. If X is an l_{1}^{n} - or an l_{∞}^{n}-space, then there is nothing to prove. Hence, we can assume $p(X)$ and $p\left(X^{*}\right)$ are defined. By Theorem 6.1 we get $p(X)=p\left(X^{*}\right)=2$ since X satisfies (1) if and only if X^{*} satisfies (1).

Assume $p(X)=2$, and let $x_{1}, x_{2}, y_{1}, y_{2}$ and F be as in Proposition 5.6. Let $Y=\operatorname{span}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$. Then $Y=l_{\infty}^{3}$. Hence there exists a projection P in X such that $P(X) \doteq Y$ and $\|P\|=1$. Now we proceed as in the proof of Theorem 3.1 to show that if $T \in \partial_{e} L\left(l_{\infty}^{3}, X\right)_{1}$ and $x \in \partial_{e}\left(l_{\infty}^{3}\right)_{1}$, then $T x \in \partial_{e} X_{1}$. Similarly, we show that $L\left(l_{\infty}^{3}, X^{*}\right)$ is a CL-space.

The next proposition is a step in order to establish a situation in which we can apply Theorem 3.1.

Proposition 6.3. Assume that X is a finite-dimensional CL-space without the 3.2.I.P. and that $L\left(l_{\infty}^{3}, X\right)$ is a CL-space. Then there exists an isometry $T: l_{1}^{3} \oplus_{\infty} R \rightarrow X$ such that $T x \in \partial_{e} X_{1}$ for all $x \in \partial_{e}\left(l_{1}^{3} \oplus_{\infty} R\right)_{1}$.

Proof. By Corollary 5.5, the integer p in Theorem 5.4 is 2 . Let $y_{1}, y_{2}, x_{1}, x_{2}$, z_{1}, z_{2}, M, N and F be as in Theorem 5.4. Then we have

$$
\left(y_{1}+y_{2}\right)+2 x_{1}=\left(x_{1}+x_{2}\right)+\left(z_{1}+z_{2}\right) .
$$

Using the argument we used in the proof of Corollary 5.5 , we find $y \in \partial_{e} N, z \in \partial_{e} M$ and $x_{3} \in \partial_{e}$ face $\left(\frac{x_{1}+x_{2}}{2}\right)$ such that

$$
y+x_{1}=x_{3}+z
$$

By Lemma 5.3, we may assume $y=y_{1}$ and $z=z_{1}$. Thus

$$
\begin{aligned}
& y_{1}+x_{1}=x_{3}+z_{1} \\
& y_{2}+x_{3}=x_{2}+z_{2}
\end{aligned}
$$

and

$$
x_{1}+x_{2}=x_{3}+x_{4}
$$

for some $x_{4} \in \partial_{e} X_{1}$. Since $N \cap M=\emptyset$, we get $x_{3} \neq x_{1}$ and $x_{3} \neq x_{2}$. Moreover $M \cap N=\emptyset$ implies that $x_{3} \nsubseteq M \cup N$.

Define $T: l_{1}^{3} \oplus_{\infty} R \rightarrow X$ by $T(1,0,0,1)=x_{2}, T(0,1,0,1)=x_{3}, T(0,0,1,1)=y_{1}$ and $T(0,1,0,-1)=x_{1}$. Then $T(1,0,0,-1)=x_{4}$ and $T(0,0,1,-1)=z_{1}$.

That T is an isometry follows from the observations 1)-5) below.

1) There exists $f_{1} \in \partial_{e} X_{1}^{*}$ such that $f_{1}=1$ on $x_{1}, \ldots, x_{4}, y_{1}, z_{1}$.
2) Since $z_{1} \ddagger N$, there exists $f_{2} \in \partial_{e} X_{1}^{*}$ such that $f_{2}=1$ on $y_{1}, y_{2}, x_{2}, x_{3}, z_{2}$ and $f_{2}=-1$ on z_{1}, x_{1}, x_{4}.
3) Since $x_{2} \notin N$, there exists $f_{3} \in \partial_{e} X_{1}^{*}$ such that $f_{3}=1$ on $y_{1}, y_{2}, z_{1}, z_{2}$ and $f_{3}=-1$ on $x_{1}, x_{2}, x_{3}, x_{4}$.
4) Since $z_{2} \ddagger N$, there exists $f_{4} \in \partial_{e} X_{1}^{*}$ such that $f_{4}=1$ on $y_{1}, y_{2}, z_{1}, x_{2}, x_{4}$ and $f_{4}=-1$ on z_{2}, x_{1}, x_{3}.
5) Since $N \cap F=\emptyset$, we get $x_{2} \notin$ face $\left(\frac{y_{1}+x_{1}}{2}\right)$. Hence there exists $f_{5} \in \partial_{e} X_{1}$ such that $f_{5}=1$ on $y_{1}, x_{1}, x_{3}, z_{1}, z_{2}$ and $f_{5}=-1$ on x_{2}, x_{4}, y_{2}.

The proof is complete.
Lemma 6.4. Assume X is a finite-dimensional CL-space and that $L\left(l_{\infty}^{3}, X^{*}\right)$ is a CL-space. If there exists an isometry $T: l_{1}^{3} \oplus_{\infty} R \rightarrow X$ such that $T x \in \partial_{e} X_{1}$ for every $x \in \partial_{e}\left(l_{1}^{3} \oplus_{\infty} R\right)_{1}$, then there exists a projection P in X such that $P\left(\partial_{e} X_{1}\right) \subseteq \partial_{e} X_{1}$ and $P(X)=l_{1}^{3} \oplus_{\infty} R$ or l_{∞}^{4}.

Before we give the proof, let us look upon a consequence of this result.
Theorem 6.5. Assume X is a finite-dimensional CL-space which satisfies (1) $T \in \partial_{e} L(X, X)_{1}, x \in \partial_{e} X_{1} \Rightarrow T x \in \partial_{e} X_{1}$. Then X has the 3.2.I.P.

Proof. This follows from Theorem 3.1, Corollary 6.2, Proposition 6.3 and Lemma 6.4.

It only remains to prove Lemma 6.4. Clearly $T^{*}: X^{*} \rightarrow l_{\infty}^{3} \bigoplus_{1} R$ is a quotient map such that $T^{*}\left(\partial_{e} X_{1}^{*}\right)=\partial_{e}\left(l_{\infty}^{3} \oplus_{1} R\right)_{1}$.

From now on, we shall assume $L\left(l_{\infty}^{3}, X\right)$ is a CL-space and that $Q: X \rightarrow l_{\infty}^{3} \oplus_{1} R$ is a quotient map such that $Q\left(\partial_{e} X_{1}\right)=\partial_{e}\left(l_{\infty}^{3} \oplus_{1} R\right)_{1}$.

Clearly it suffices to show that either there is a projection P in X such that $P\left(\partial_{e} X_{1}\right) \subseteq \partial_{e} X_{1}$ and $P(X)=l_{\infty}^{3} \oplus_{1} R$ or there exists an isometry $T: l_{\infty}^{4} \rightarrow X^{*}$ such that $T\left(\partial_{e}\left(l_{\infty}^{4}\right)_{1}\right) \subsetneq \partial_{e} X_{1}^{*}$.

On extreme operators on finite-dimensional Banach spaces whose unit balls are polytopes 113

Let $\quad x_{1}=(1,1,1,0), \quad x_{2}=(1,-1,1,0), \quad x_{3}=(1,-1,-1,0), \quad x_{4}=(1,1,-1,0)$ and $x_{5}=(0,0,0,1)$, and let $N=\operatorname{conv}\left(x_{1}, \ldots, x_{5}\right)$. Let $K=Q^{-1}(N) \cap X_{1}$. Then N and K are maximal proper faces of $\left(l_{\infty}^{3} \oplus_{1} R\right)_{1}$ and X_{1} respectively. For $i=1, \ldots, 5$, let $F_{i}=\left\{x \in K: Q(x)=x_{i}\right\}$. Then $\left\{F_{i}\right\}_{i=1}^{5}$ are disjoint faces of K and $K=$ $\operatorname{conv}\left(F_{1} \cup \ldots \cup F_{5}\right)$.

Case 1. Suppose there exist $a_{i} \in \partial_{e} F_{i}$ such that

$$
a_{1}+a_{3}=a_{2}+a_{4} .
$$

Define $T: l_{\infty}^{3} \oplus_{1} R \rightarrow X$ by $T x_{i}=a_{i}$, and define P by $P=T \cdot Q . P$ is a projection in X and $P(X)=l_{\infty}^{3} \oplus_{1} R$ and $P\left(\partial_{e} X_{1}\right) \subseteq \partial_{e} X_{1}$.

Case 2. Here we assume:
(\#) If $a_{i} \in \partial_{e} F_{i}$, then $a_{1}+a_{3} \neq a_{2}+a_{4}$.
Assuming (\#), we are going to show that there exists an isometry $T: l_{\infty}^{4} \rightarrow X^{*}$ such that $T\left(\partial_{e}\left(l_{\infty}^{4}\right)_{1}\right) \subseteq \partial_{e} X_{1}$. The proof of this is divided into eight sublemmas.

Choose $y_{i} \in F_{i}$ such that $F_{i}=$ face $\left(y_{i}\right)$.
Lemma 6.6. conv $\left(F_{2} \cup F_{4}\right)$ is a face of K.
Proof. Note that conv $\left(F_{1} \cup \ldots \cup F_{4}\right)$ is a face of F. If $\operatorname{conv}\left(F_{2} \cup F_{4}\right)$ is not a face of K, then face $\left(\frac{y_{2}+y_{4}}{2}\right) \cap\left(F_{1} \cup F_{3}\right) \neq \emptyset$. Hence there exist $\alpha_{i} \geqq 0, \sum \alpha_{i}=2$ and $z_{i} \in F_{i}$ such that

$$
y_{2}+y_{4}=\alpha_{1} z_{1}+\ldots+\alpha_{4} z_{4}
$$

and we can assume $\alpha_{1}>0$. Let $f \in \partial_{e} X_{1}^{*}$ such that $f=1$ on $F_{1} \cup F_{2}$ and $f=-1$ on $F_{3} \cup F_{4}$. (Let $f=(0,0,1,1) \cdot Q$.) Then we get

$$
0=\alpha_{1}+\alpha_{2}-\alpha_{3}-\alpha_{4} .
$$

Similarly we get

$$
0=\alpha_{1}-\alpha_{2}-\alpha_{3}+\alpha_{4} .
$$

Hence $\alpha_{1}=\alpha_{3}, \alpha_{2}=\alpha_{4}$ and $\alpha_{1}+\alpha_{2}=1$. Define a map $T: l_{\infty}^{3} \rightarrow X$ by $T(1,1,1)=y_{2}$, $T(1,-1,-1)=y_{4}, T(1,-1,1)=\alpha_{1} z_{1}+\alpha_{2} z_{2}$ and $T(1,1,-1)=\alpha_{3} z_{3}+\alpha_{4} z_{4}$. Since $L\left(l_{\infty}^{3}, X\right)$ is a CL-space, we can write $T=\sum \lambda_{i} T_{i}$ where $\lambda_{i}>0, \sum \lambda_{i}=1$ and $T_{i}\left(\partial_{e}\left(l_{\infty}^{3}\right)_{1}\right) \subseteq \partial_{e} X_{1}$. (i is in a finite index set.) Since $\alpha_{1}>0$ and F_{1} is a face of $\operatorname{conv}\left(F_{1} \cup F_{2}\right)$, there is some T_{i}, say T_{1}, such that $T_{1}(1,-1,1)=a_{1} \in \partial_{e} F_{1}$. Moreover, $T_{1}(1,1,1)=a_{2} \in \partial_{e} F_{2}$ and $T_{1}(1,-1,-1)=a_{4} \in \partial_{e} F_{4}$. Hence $T(1,1,-1)=$ $a_{3} \in \partial_{e} F_{3}$ since $a_{2}+a_{4}=a_{1}+a_{3}$. This contradicts (\#).

The proof is complete.
The next three lemmas are proved in exactly the same way as Lemma 6.6 was proved so we omit their proofs.

Lemma 6.7. conv $\left(F_{1} \cup F_{3} \cup F_{4}\right)$ is a face of K.
Lemma 6.8. conv $\left(F_{1} \cup F_{3} \cup F_{5}\right)$ is a face of K.
Lemma 6.9. conv ($\left.F_{2} \cup F_{3} \cup F_{4} \cup F_{5}\right)$ is a face of K.
We shall say that two subsets A and B of X_{1} can be ± 1-separated if there exists $f \in \partial_{e} X_{1}^{*}$ such that $f=1$ on A and $f=-1$ on B.

Lemma 6.10. The faces F_{1} and $\operatorname{conv}\left(F_{2} \cup F_{3} \cup F_{4}\right)$ can be ± 1-separated.
Proof. Let $G=\operatorname{conv}\left(F_{2} \cup F_{3} \cup F_{4}\right) . G$ is a face of K by Lemma 6.7 and $F_{1} \cap G=\emptyset$. If $a \in \partial_{e} F_{1}$, then G and $\{a\}$ can be ± 1-separated by Theorem 2.3. If G and F_{1} cannot be ± 1-separated, then let face $(a) \subseteq F_{1}$ be a minimal face of F_{1} such that G and face (a) cannot be ± 1-separated. Write $a=\alpha a_{1}+(1-\alpha) b$ where $a_{1} \in \partial_{e} F_{1}$, $b \in F_{1}$ and $\alpha \in\langle 0,1\rangle$. Choosing α as large as possible we can assume $a_{1} \notin$ face (b). Clearly we can assume $2 \alpha=1$. By the minimality of face (a), it follows that G and face (b) can be ± 1-separated. From Theorem 2.3 it follows that

$$
a_{1} \in \operatorname{face}\left(4^{-1}\left(y_{2}+y_{3}+y_{4}-b\right)\right)
$$

Thus we can write

$$
y_{2}+y_{3}+y_{4}-b=\alpha a_{1}+(4-\alpha) u
$$

where $\|u\|=1$ and $\alpha \in\langle 0,3]$. We can write $(4-\alpha) u=(3-\alpha) v-w$ where $v, w \in K$. Hence

$$
y_{2}+y_{3}+y_{4}+w=\alpha a_{1}+b+(3-\alpha) v .
$$

Let $f \in \partial_{e} X_{1}^{*}$ such that $f=1$ on G and $f(b)=-1$. Then $f\left(a_{1}\right)=1$ such that

$$
\begin{aligned}
4 & =f\left(y_{2}+y_{3}+y_{4}-b\right) \\
& =\alpha+(3-\alpha) f(v)-f(w) \\
& \leqq \alpha+(3-\alpha)+1 \\
& =4 .
\end{aligned}
$$

Hence $f(w)=-1$. Thus $w \in \operatorname{conv}\left(F_{1} \cup F_{5}\right)$. Write $(3-\alpha) v=\alpha_{1} z_{1}+\ldots+\alpha_{5} z_{5}$ where $\alpha_{i} \geqq 0$ and $z_{i} \in F_{i}$. Then $\alpha_{1}+\ldots+\alpha_{5}=3-\alpha$ and

$$
y_{2}+y_{3}+y_{4}+w=\alpha a_{1}+b+\alpha_{1} z_{1}+\ldots+a_{5} z_{5}
$$

We use the map Q and get

$$
x_{2}+x_{3}+x_{4}+Q(w)=\left(1+\alpha+\alpha_{1}\right) x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{5} x_{5} .
$$

From this it follows that $\alpha_{2}=\alpha_{4}$ and $\alpha_{2}+\alpha_{3}=2$. Since $Q(w) \in \operatorname{conv}\left(x_{1}, x_{5}\right)$, we get $1 \geqq \alpha+\alpha_{1}+\alpha_{2}$. Hence $\alpha_{2}<1$ and $\alpha_{3}>1$. Define $u_{i} \in K$ by $2 u_{1}=y_{3}+w, 2 u_{2}=$ $y_{2}+y_{4}, 2 u_{3}=\alpha_{2} z_{2}+\alpha_{3} z_{3}$ and $2 u_{4}=\alpha a_{1}+b+\alpha_{1} z_{1}+\alpha_{4} z_{4}+\alpha_{5} z_{5}$. Then

$$
u_{1}+u_{2}=u_{3}+u_{4}
$$

On extreme operators on finite-dimensional Banach spaces whose unit balls are polytopes 115

Now we use that $L\left(l_{\infty}^{3}, X\right)$ is a CL-space in exactly the same way as we used it in the proof of Lemma 6.6 and find $v_{i} \in \partial_{e}$ face $\left(u_{i}\right)$ such that

$$
v_{1}+v_{2}=v_{3}+v_{4} .
$$

Since $\alpha_{3}>1$ and $1+\alpha+\alpha_{1}>1$, we see that we may suppose $v_{3} \in \partial_{e}$ face $\left(z_{3}\right) \subseteq \partial_{e} F_{3}$ and $v_{4} \in \partial_{e} F_{1}$. But by Lemma 6.6, this implies that

$$
v_{2} \in \operatorname{conv}\left(F_{1} \cup F_{3}\right) \cap \operatorname{conv}\left(F_{2} \cup F_{4}\right)=\emptyset
$$

This contradiction completes the proof.
We omit the proofs of Lemmas 6.11 and 6.12 since they are similar to the proof of Lemma 6.10.

Lemma 6.11. F_{1} and conv $\left(F_{2} \cup F_{3} \cup F_{4} \cup F_{5}\right)$ can be ± 1-separated.
Lemma 6.12. conv $\left(F_{2} \cup F_{4}\right)$ and $\operatorname{conv}\left(F_{1} \cup F_{3} \cup F_{5}\right)$ can be ± 1-separated.
It remains only one lemma.
Lemma 6.13. There exists an isometry $T: l_{\infty}^{4} \rightarrow X^{*}$ such that $T\left(\partial_{e}\left(l_{\infty}^{4}\right)_{1}\right) \subseteq \partial_{e} X_{1}^{*}$.
Proof. By Lemma 6.12 there exists $g_{2} \in \partial_{e} X_{1}^{*}$ such that $g_{2}=1$ on $F_{1} \cup F_{3} \cup F_{5}$ and $g_{2}=-1$ on $F_{2} \cup F_{4}$. Using Q, we see that there exist $g_{4}, g_{5}, g_{7} \in \partial_{e} X_{1}^{*}$ such that $g_{4}=1$ on $K, g_{5}=1$ on $F_{1} \cup F_{2} \cup F_{5}, g_{5}=-1$ on $F_{3} \cup F_{4}, g_{7}=1$ on $F_{1} \cup F_{4} \cup F_{5}$ and $g_{7}=-1$ on $F_{2} \cup F_{3}$. Define $T: l_{\infty}^{4} \rightarrow X$ by $T(1,1,1,1)=g_{4}, T(1,-1,1,-1)=$ $g_{2}, T(1,1,-1,-1)=g_{5}$ and $T(1,-1,-1,1)=g_{7}$. It is straightforward to see that T has the right properties. The proof is complete, and this also completes the proof of Lemma 6.4.

Let us add a last result.
Theorem 6.14. Assume X and Y are finite-dimensional spaces with the 3.2.I.P. The following statements are equivalent:

$$
\begin{equation*}
L(X, Y) \text { is a CL-space. } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
X=l_{1}^{m} \oplus_{1} l_{\infty}^{3} \oplus_{1} \ldots \oplus_{1} l_{\infty}^{3} \quad \text { or } \quad Y=l_{\infty}^{n} \oplus_{\infty} l_{1}^{3} \oplus_{\infty} \ldots \oplus_{\infty} l_{1}^{3} . \tag{2}
\end{equation*}
$$

Proof. (2) $\Rightarrow(1)$ is contained in Theorem 2.1. Assume (2) is not true. Then just as in the proof of Theorem 4.1, we can write $X=U \oplus_{1}\left(V \oplus_{\infty} Z\right)$ where $\operatorname{dim}\left(V \oplus_{\infty} Z\right) \geqq 4$ and $Y^{*}=L \oplus_{\mathbf{1}}\left(M \oplus_{\infty} N\right)$ where $\operatorname{dim}\left(M \oplus_{\infty} N\right) \geqq 4$. Then looking at the arguments used in the proofs of Theorems 3.7 and 4.1 , we see that we can apply Proposition 2.5, Lemma 6.4 and Theorem 3.1. The proof is complete.

Remark. In [6] we proved that $L(X, Y)$ has the 3.2.I.P. if and only if $X=l_{1}^{m}$ or $Y=l_{\infty}^{n}$ where X and Y are as in Theorem 6.14.

References

1. Alfsen, E., Compact convex sets and boundary integrals, Ergebnisse Math. Grenzgebiete, Bd. 57, Springer-Verlag, Berlin and New York, 1971.
2. Hanner, O., Intersection of translates of convex bodies, Math. Scand., 4 (1956), 65--87.
3. Hansen, A. and Lima, Å., The structure of finite-dimensional Banach spaces with the 3.2. intersection property. To appear in Acta. Math.
4. Larman, D., On a conjecture of Lindenstrauss and Perles in at most 6 dimensions, Glasgow Math. J. 19 (1978), 87-97.
5. Lima, Å., Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1-62.
6. Lima, Å., Intersection properties of balls in spaces of compact operators, Ann. Inst. Fourier, 28, 3 (1978), 35-65.
7. Lindenstrauss, J. Extensions of compact operators, Memoirs Amer. Math. Soc. 48 (1964).
8. Lindenstrauss, J. and Perles, M. A., On extreme operators in finite-dimensional spaces, Duke Math. Jour. 36 (1969), 301-314.

Received October 15, 1979
Åsvald Lima
Agricultural University of Norway 1432 Aas-NLH.

[^0]: ${ }^{1}$) The results in this paper were obtained when the author stayed at the Mittag-Leffler Institute, Stockholm. The research was supported by the Norwegian Research Council for Science and the Humanities and by the Mittag-Leffler Institute.

