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1. Introduction 

The H61der continuity for the solutions of quasilinear elliptic differential equa- 
tions of the second order has been proved e.g. by Serrin [14, Theorem 8, p. 269] 
and Ladyzhenskaya & Ural'tseva [5, Theorem 1.1, p. 251]. These advanced proofs 
give, however, no explicit information about the H61der exponent, but for certain 
equations (and systems of equations) the "hole-filling technique" of Widman [15] 
gives a more precise result in this direction, In the important "borderline case" 
simple direct proofs are known; c.f. Morrey [10, Theorem 4.3.1, p. 105]. 

The purpose of this paper is to give a quite elementary proof of the H61der 
continuity for the monotone (free) extremals of certain variational integrals in the 
"borderline case". By the way we shall obtain a relevant lower bound for the H61der 
exponent. For the proof of our main result, Theorem 2.9, the well known oscilla- 
tion lemma of Gehring [2, Lemma 1] and Mostow [11, Lemma 4.1] combined with 
a good estimate of Dirichlet's integral over a ball play a central r61e. 

2. Statement of the problem 

We consider variational integrals of the form 

(2.1) I(u) = f ~ F(x, Vu (x))dx 

where GcR" is a domain. The integrand F: G• co) is supposed to satisfy 
the following three conditions: 

(2.2) measurability. The mapping x~-~F(x, Vu(x)) is measurable for each fixed 
function u in Sobolev's space W,~(G). 
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(2.3) convexity. For  a.e. fixed xEG the mapping w~--~F(x, w) is convex. 

(2.4) growth condition. There exist such constants /~=>~>0 that the inequality 

Iwl ~ <- F(x, w) <- ~ Iwl"  

holds for a.e. xEG and for all wER". 
It is worth noting that nothing is assumed about the existence of  Euler's equation 
corresponding to (2.1). 

2.5 Remark. I ~ ) The assumption (2.2) of  measurability can be described more 
explicitly as a condition imposed on F; c.f. Reshetnyak [12]. 2 ~ Using an approxima- 
tion of  the integrand and applying the theory of Serrin or that of Ladyzhenskaya & 
Ural'tseva on Euler's equations for the approximative integrals, Granlund [3] has 
proved the H61der continuity of  the extremals, when the growth condition (2.4) 
is valid in the form ~[wl~<-F(x, w)_-</~[wl p for some fixed p, l<p~_n. 

2.6. Definition. We say that uE W 1 lot(G) n C(G) is a free extremal of (2.1) if n,  

(2.7) f D F(x, Vu(x))dx ~_ f o  F(x, Vv(x))dx (D c G) 

for every domain D with D ~ G and for every function v in the class 

(2.8) ~,(D) = {v { C(/~) (-5 Wnl(D)Iv-u EWnl,0(O)}. 

The space W~,,o(D) is the closure in W2(D) Of the space Co(D ) of infinitely many 
times differentiable functions with compact support in D. If  u is an extremal (in 
the ordinary sense), it is obviously also a free extremal. It is well known that every 
(free) extremal u of (2.1) is monotone (in the sense of Lebesgue), i.e. that 

sup u (x) = sup u (x), inf u (x) = inf u (x) 
xED xEOD xED xEOD 

for all domains D, /TOG. (For a simple proof  of this fact, see e.g. Granlund [4, 
Lemma 2.3].) The existence of  extremals is considered e.g. by Martio [7]. 

We are now in a position to state our main result. 

2.9. Theorem. I f  u is a free extremal of(2.1) and if  B~cB z are concentric balls 
with radii ~ and L respectively, BL c G, then 

f -I" (2.10) oscu <_- e oscu 
no ~L) nL 

where e is Neper's number and where 

1 
_ _  = ,,nZcol/n ,~x/n{.__ 1)(I-n)/n(fl/c~)l/n 

A~ being the constant in (3.10) and Wn_ 1 the area of the unit sphere in R". 
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Proof The proof is given in Chapter 4. 
Various conditions of local H61der continuity can easily be derived from Theo- 

rem 2.9. As a simple consequence of (2.10) we obtain Liouville's theorem: 

2.11. Theorem. (Liouville) I f  u: R"~R is a free extremal in R" of  (2.1) and if 

lim l u ( x ) l / I x l  ~ = O, 

being the exponent in (2.10), then u is constant. 

Proof If  BLcR", then limz~ = os%L u/L'=O by the assumption, since u is 
monotone. Thus the desired conclusion follows from (2.10). 

3. Preliminary estimates 

Dirichlet's integral of  a free extremal can be estimated in the following way. 

3.1. Lemma. I f  u is a free extremal of(2.1), then the inequality 

( R~ 1-" (3.2) f .  )Vu)"d,, ~ n"(~/~) osc. /,/(,On_ 1 (log--f-) 
~- B R 

# valid for all concentric balls B, cBR, B~cG. 

Proof Suppose that ~ECo(BR) is a test function, 0<_-_(~1, ( ]B,=I ,  O<r<R; 
B e c  G. The function 

/) = u - - ~ n u  

is in the class fu(BR) and has the generalized derivative 

V v  = (1 - ~") V u  - n ~ " -  1 u V~.  

The assumptions (2.3) and (2.4) give 

(3.3) F(x, Vv(x)) -<= (1-~"(x))F(x, Vu(x))+fln"lu(x)l"lV((x)l" 

for a.e. xEG. As u is minimizing the integral (2.1), we have by (2.7) and (3.3) 

f nR F(x, Vu(x)ldx <= f BR r(x, Vv(x)ldx 

~_ f .  (1-r Vu(x)ldx +#n" f . .  lul"lVr 
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and so 

(3.4) f .. F(x, Vu (x)) dx ~= Bn" f B" lul" IVr dm. 

If u is a free extremal, so is u- infB~u,  and since ]u,infB~ul"<=osc"n~u in BR, 
we get 

(3.5) f ,. F(x, Vu(x))dx <= fin" osc",, u f.~ IV~l"dm. 

Taking the infimum over all admissible ~ we obtain the capacity of the condenser 
(a . ,  B,): 

( R'~ 1-" 
(3.6) inf f , .  ]vc]. dm = OJn_ 1 [log T-) " 

The desired result now follows from (3.5), (3.6), and the first inequality in (2.4). 

3.7 Remark. Using Lindqvist [6, Appendix] in the estimation of (3.4) with u 
replaced by u - in fg ,  u, we get the sharper bound 

(3.8) f ,. IVul"dm <= n"([3/ct) t(oscu),/(,_l~ . (,On_ 1 . 

B t  

The following estimate, valid for monotone functions, is closely related to Morrey's 
lemma [10, Theorem 3.5.2] for H61der continuity. 

3.9. Lemma. (Gehring--Mostow) I f  the function uC C(G) n W~loc(G) is mono- 
tone, then 

(3.10) oscnulog r < . f . ,  ]Vul"dm 

for all concentric balls BQ<Br, Br<G. Here the constant A, depends only on the 
dimension n. 

Proof. The inequality follows from the oscillation lemma proved by Mostow 
[1l, Lemma 4.1] and Gehring [2, Lemma 1]. 

3.11 Remark. The optimal constants in (3.10) are A2=rc, 

. . . . .  

A. - 2 ( f ]  ~( l+a)t - -"j l , .  --, dO ~ 
f/In_ 2 
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4. Proof of the H/Rder continuity 

I f  u is a free extremal of  (2.1), then Lemma 3.1 and Lemma 3.9 give the estimate 

A, n" ~o, - - 1  (]~/00 
(4.1) OSC" U ~ OSC" U 

BO r [ R ~  "-a BR logT[ ogTJ 
for all concentric balls BecB~cBR, BRCG. Obviously (4.1) is op t imal  for 
r=(Ro~-Z)~l"; o<(Ro"-I)~In<R if  o<R. Thus we have obtained the following 
result. 

(4.4) 

where 

4.2. Proposition. I f  u is a free extremal of (2.1), then 

(4.3) osc u <= n2(A, o2,_lfl/~)l/"(n- 1) (1-")/" log osc u 
B e B R 

for aa concentric balls BoCBR, BRcG. 

Actually, Proposition 4.2 contains all information needed for the proof  of Theo- 
rem 2.9. 

Proof of Theorem 2.9. Let us iterate (4.3). Denote therefore R/O=2> 1 and 
consider all pairs of  subsequent radii in 0, &0, 22e,--.,  2re �9 The iteration gives 

f K )  v 
O S C U  ~ - -  O S C U  
B~ I, log 2)  B~v~ 

k = n~(A.~._,)'/"~l~)'/"(n- I)( I-")/". 

Let us write L=)~'O. With this notation (4.4) takes the form 

{ L I  [l~176176 
(4.5) osc u <= osc u. 

B e B L 

Choosing l o g 2 = e K  we get 

(4.6) osc u ~ osc u. 
B e B L 

The validity of (4.6) is limited by the restrictions 2--e  eK and t=2vO (v is a natural 
number). Removing these restrictions we finally get 

OSC U ~ e o s c  g 
B e B L 

provided B z c G .  This is the desired result. 

4.7 Remark. If  f = ( f l , f 2 ,  . . . , f , ) :  G--'R n is quasiregular, then each coordinate 
function f~,f~ . . . . .  f ,  is, according to Reshetnyak [13], a free extremal of a varia- 
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t ional  in tegra l  o f  the  type (2.1), the  in tegrand  sat isfying the condi t ions  (2.2), (2.3), 

and  (2.4). Explici t ly  a = I / K o ( f ) ,  f l = K t ( f )  in (2.4), K o ( f )  and  K i ( f )  being the 

outer  and  the inner  d i la ta t ions  o f  f respect ively (the d i la ta t ions  are considered in 

the  sense o f  Mar t io ,  R ickman ,  and  V~is/ilg [8]). The b e s t  poss ible  H61der exponent  

is K x ( f )  l/~ in this special case;  c.f. Mar t io ,  R ickman ,  and  V/iis~il~i [9, Theorem 3.2]. 

In  the  two-d imens iona l  case a s imple p r o o f  is given by  F inn  and  Serr in [1]. 
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