
Cyclic elements under translation in weighted 
L 1 spaces on R + 

Yngve Domar  

O. Introduction 

We shall be concerned with a closure problem for functions on R +. In order 
to illuminate the situation we start by presenting the corresponding problem for 
z + v {0}. 

Let w=  (w,) o be a non-negative decreasing sequence, not identically vanishing, 
and satisfying n - l l o g w , - + - ~ ,  as n -+~  (here l o g 0 = - c o ) ,  f~ is the Banach 
space of complex-valued sequences e =  (e,) o with 

IIcll. = Z o  Ic . lw.  < ~ .  

For every mEZ + v {0}, the translation operator Tin, defined by 

/ 0 ,  0 <= n < m, 
(rm C)n I r 1"1 ~ 1D~ 

is a contraction in fw- Aw is the set of all cEf~ with c0r Bw is the set of all 
cEfw which are cyclic in the sense that the translates T~,c, m>=O, span a dense 
subspace, Obviously AwD=Bw. Is Aw=Bw? 

It is known that the answer to this question is yes if, for some constant C >  0, 
the sequence (Cw,) o is submultiplicative on the additive semigroup Z + w  {0}. This 
is a direct consequence of  the fact that ~ is then a commutative unital Banach 
algebra under convolution, such that all closed translation invariant subspaces are 
ideals, and f ~ \ A ~  is the only maximal ideal. In some other cases, too, it has been 
shown that Aw=Bw (Styf [10]). On the other hand, there are weight sequences w, 
some of them very close to being of  the above-mentioned submultiplicative type, 
and for which Awr (Nikolskii [7], Styf[10]). Roughly speaking, equality holds 
if the decrease at infinity for w is sufficiently regular, whereas an irregular behavior 
can cause inequality. 
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We shall now formulate the analogous problem for R +. w is then a non-nega- 
tive, bounded, decreasing function on R +, not identically vanishing, and satisfying 
x -1 log w(x)-~-~ ,  as x ~ .  L w is the Banach space of  Lebesgue measurable 
complex-valued functions f on R + with 

[Ifll~ - fo If(x)l w(x) dx < 

A function w of this kind is called a weight function. For every a E R + u  {0}, the 
translation operator T a, defined by 

{Ofi x O<x<=a' Taf(x) = -a), x > a, 

is a contraction in Lw. A~ consists of  every fEL~ with 0ESupp ( f ) .  Bw is the set 
of all fEL~ which are cyclic in the sense that the translations T , f ,  a->0, span a 
dense subspace. Obviously Aw~B~. Is Aw=B~? 

The above-mentioned counter-examples of Nikolskii and Styf can be carried 
over to counter-examples for R +, simply by changing sequences to step-functions. 
Details of  this are given in Dales and McClure [4], where also counter-examples of  
higher regularity are constructed. 

Thus A~,#B~, may occur. As for positive results it is tempting to conjecture, 
in analogy to the situation on Z + u {0}, that Aw=B w if, for some C>0 ,  Cw is 
submultiplicative on the additive semigroup R +. Then Lw is a commutative Banach 
algebra under convolution. But this time the algebra is radical, and elementary 
Banach algebra theory does not suffice to provide a confirmation of  the conjecture. 
As a matter of fact, for no strictly positive w of  this submultiplicative type do we 
know whether or not Aw=Bw. Perhaps we have inequality for every w, or at least 
for some w. If  w vanishes somewhere, then since w is decreasing it vanishes for all 
larger values of  the variable and Aw=Bw is an immediate consequence of Titch- 
marsh's convolution theorem (Titchmarsh [11], Boas [3]) and elementary functional 
analysis. 

Our results are thus very incomplete. We present different sets of conditions 
on the function fEAw which imply that fEBw. In Theorem 1, a corollary of results 
of Nyman [8], we demand that f is not too large at infinity. In Theorems 2 and 3, 
we make instead assumptions which prevent f from being too small at 0. In these 
last theorems, it is necessary to assume additional regularity and growth condi- 
tions on w. 

There is some overlap with the paper [1], which presents a similar approach, 
and which has been taken into consideration in the final draft of  our paper. Other 
papers, dealing with the conjecture Aw=B~, and giving interesting information 
on the problem, are Bade and Dales [2], and Rubel [9]. A summary of the present 
paper was given in [5]. 
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1. From now on we restrict ourselves to strictly positive weight functions w. 
L* is the dual of  Lw, identified with the Banach space of  complex-valued functions 
~o on - R  + with ~o/#EL=(-R+) ,  II,pll~*=ll,p/~ll~. Here ~v(x)=w(-x),  x E - R  +. 
Thus 

@' f> = f o  tp (-- x)f(x) dx = ~p *f(O), 

for every fEL w. Convolution of functions, defined on subsets of R, is defined 
(whenever definable) by first giving the functions the value 0 on the complement 
of their sets of  definition. (n) in the exponent denotes n-fold convolution. 

Theorem 1. Let fEAw and f o  If(x)[ e-bxdx<~ for some bER. Then fEBw. 

Proof. If  f~B~,  Hahn---Banach's theorem gives a non-zero element ~pEL*, 
such that 

q).f(x) = qo.T_xf(O) = @,T_~f}  = 0, x E - R  +. 

Putting f(x)e-b*=g(x), ~o(--x)eb~=O(x), we obtain 

f y  O(y+t)g(t)dt = O, tER +, 

where OEL~(R+), gELI(R+). A theory for convolution equations of  this type has 
been developed by Nyman [8], and we can obtain a contradiction directly from 
his results. By Titchmarsh's convolution theorem, fEAw implies that the support 
of ~ is non-compact. Hence, by Theorem 1 in [8], the spectrum A~ of  ~, is non- 
empty (spectrum is defined in w 8 of [8]). By Theorem 2 in [8], A0 coincides with 
the set of singularities of the analytic continuation to C of the Laplace transform 
of ~,. But in our case this continuation is entire. Hence A~, is empty, and we have 
a contradiction. 

Remarks. The paper [8] is not easily accessible. An alternative reference, con- 
taining the needed results, is Gurarii [6]. In [I] a simple proof  is given, which avoids 
Nyman's  theory. 

For the remaining theorems we need the following lemma. In [1] there is a 
similar result (Lemma 5), which is applicable to more general weight functions. 
We shall from now on assume that log w is concave. This implies that w is of sub- 
multiplicative type, thus Lw is a Banach algebra under convolution. 

Lemma. Let w be a weight function such that log w is concave on R +, and 
x - l l o g w ( x ) - ~ - ~ ,  as x~oo. Let fELw and let ~oEL* be in the annihilator of  
the subspaee of  L~, spanned by f and its translates. I f  fl~ Lw coincides with f on ]0, el, 
s>O, then 

w(n~) 
[ItP~/l(")]l* =< w(O" ]lcpJf*l[f-fl[]~,, nEZ +. 
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Proof. Since log w is concave, 

w (xl  + x2 + . . .  + x,)  w (x0  -1 w (x2) - 1 . . . . .  w ( x , ) - i  

decreases in each variable individually, if all x i>0,  Hence 

w(n~) 
(1) w(x l  + x2 +. . .  + x,)  <- w(~)" w(xOw(x~)  . ... . w(x,) ,  

if x i~e ,  i = 1 , 2  . . . . .  n. We put f a - f = f 2 .  Then f2EL w, and 

f l  (') - f 2  (") = f P ( A ,  f ) ,  

where P ( . ~ , f )  is a polynomial in f~ and f under the convolution operation. Hence 
f~')-f(~') is included in the ideal in Lw which is generated byf .  Elementary considera- 
tions show that every translate of f~(")-f2 (") then has to be contained in the closed 
subspace, generated by f and its translates�9 Hence 

go �9 ( f l  (") -f~("))  = O, 
on - R  +. This gives 

Ilgo *f~(")ll* = Ilgo *f~(")ll* 

= sup  w(x)-lfR Igo(--X--Xl--X2--...--x,)[ I A ( x 0 l  [f(x,)]dxldXe. 
x E R  + +~ 

�9 � 9  �9 d x  n 

<= II go ll; f R  +~ w (xl  + +. . .  + x,)  I f~ (Xl)[ IL  (x~)[ �9 ... �9 [L  (x,)l dxl  d x 2 . . . . ,  dx , .  

By (1), the right hand member is majorized by 

II go tl; w (n~) w (~)-"  II f~l[ ~,  
and the lemma is proved. 

2. In the sequel, we use the convention that, for a complex-valued function g, 
defined on a set E c R ,  the Fourier transform G is defined by 

ago = f g(x) e ~x dx, 

for all ~EC which give absolute convergence. This means in particular, that if 
go and f~ are as in the lemma, with Supp ( f 0  compact, then their Fourier trans- 
forms �9 and F1 are entire functions, and the Fourier transform of  g0*f~n) is ~F~. 

Theorem 2. Let  w be a weight function with log w concave, and such that 

(2) x -~ log w(x) ~ - ~ ,  

as x ~ .  For sufficiently large ~/>0 we define 

(3) M(r/) = w - l ( [ f o e ' X w ( x )  dx]-~ ), 
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where w -1 is the inverse of  w. We assume that f and f l  are as in the lemma, with 
Supp (fl) compact, and that there is a constant C > 0  such that 

(4) [Fl(it/)[ => exp { -  Cq/M(q)}, 

for sufficiently large positive t/. Then f E B  w. 

Proof. Simple estimates show that (2) implies 

(5) .- log [ f  ~ e.Xw(x)dx] 
as t /~  ~: It follows from (3) and (5) that 

t/-z log w( M (t/)) -- O, 

as t /~  ~o, and this and (2) imply that 

(6) M(t/)/t/ --,- O, 
as t/-~oo, t/ER +. 

Let go be an arbitrary element in L*, annihilating f and its translates. It suffices 
to prove that go vanishes almost everywhere. We are of course free to assume that 
IlgoH*=<l, and that Igo(x)l~l, x E - R  +. Then, for xER +, 

(7) Igo*f '"'(x)l <- f o  Igo(x-y)l l f~(")(y) ldy<=(fo Ifl(y)ldy)". 

For xE--R +, the lemma gives 

(8) Igo.fl~")(x)l <= w(--x)w(ne)D",  

for some constant D, independent of n and x. (7) and (8) give the following estimate 
of the Fourier transform of go , f l  ("), for ~ =/i/, t/positive and large, 

(9) i (it/) Fx (it/).l <_ f o =  w ( - x ) w ( n e )  D" e-nx dx 

w{n~) on.~_l(~ lfl(y)[dy)n +{f/lel(y)ldy)"fo e-"~dx- w(M(t/)~ 

where the last inequality follows from (3). 
For every sufficiently large t/ER + we choose n=n(t/) as the smallest positive 

integer, such that ne~M(t/) .  Then, for large t/, 

(10) M(t/) <-- ne <= 2M(t/). 

Then there is a constant E > 0 ,  such that the right hand member of (9) is _-<E", 
if t/is large. Thus (9) and (4) give, for large t/, 

(11) I~(it/)l E"lFx(it/)[-" E" f Cnt/ ] <__ <__ e x p / - ~ - ~ / .  
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(6) and (10) show that (11) implies that 

(12) L~(i~/)I ~ e co", 

for some constant Co, if r/ER + is large enough. 
Now (5) shows that ~ is of order 2, type 0, and obviously ~ is bounded in 

the lower half-plane. Therefore (12) can be used in a standard application of the 
Phragm6n--Lindel6f principle to the upper quadrants to show that �9 is of exponen- 
tial type. It is well known (see for instance Boas [3]), that this implies that Supp (~0) 
is compact. Returning to the relation ~ o , f = 0  in - R  +, Titchmarsh's theorem 
shows that we have two alternatives, r almost everywhere or f ~Aw.  In the 
second case, there exists a positive constant D such that 

(13) IFI(i~/)[ <-- e -D", 

for large positive t/. But M 0 1 ) ~ ,  as t/ooo, and hence (4) and (13) are contra- 
dictory. Thus the first case holds, and the theorem is proved. 

Example. Theorem2 is valid if log w ( x ) = - x  p, where p > 2 .  Then M 0 / ) ~  
Ct/~, where e =  1 / ( p -  1), and C is a .constant, and therefore (4) has the form 

p--2 

}Fl(iq)l =~" exp {- -DqT-~,  

for some constant D. A condition of this type holds for instance if 

f ( x )  > exp {-Ex-(P-~)}, 

near 0, for some constant E. 

3. The following theorem is applicable to a larger class of weight functions 
than Theorem 2, On the other hand the conditions on f are rather restrictive. 

Theorem 3. Let w be a weight function with log w concave, and such that 

(14) (x log x) -1 log w(x) ~ - ~,  

as x ~ o .  We assume that fEA,~ and that f l  coincides with f near O. Furthermore 
we assume that flEL2(R +) and thai Supp ( f 0 / s  compact. I f  the values on R of  the 
Fourier transform F1 off1 are included in a closed sector o f  C with vertex at 0 and 
opening angle <2re, then fEB~.  

Proof. We assume that q~EL* satisfies r x E - R  +, and shall show 
that q~ is equivalent to 0. 

Fix an arbitrary xE - R  + u {0} and put 

a .  = ~o . f (" ) (x ) ,  n~Z +. 
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By the lemma, there exists a constant C, independent of n, such that 

lad <-- C"w(ns), nEZ +. 
(14) shows that 

(n log n) -1 log [a.[ ~ - co, 

as n . . . .  Hence there exists, for every dEZ+, a constant K(d) such that 

I~1" 
Z ~  [a.[ Iffl n <= ga ~ (dn)! ' 

for every ffEC. But the right hand member is dominated by Ka exp (fla/a). Hence 

G(~) : ~ ,~ an~ n-l, 

~EC, defines an entire function of order 0. We shall show that G(~)-~0, as ~ - ~  
along some ray from ~=0. By Phragm6n--Lindel6f's principle this implies that 
G--0. In particular aa=0. Hence qg . f l= 0  on - R + .  Since fEAw, we have 
flEAw, and it follows from Theorem 1 that q9 is equivalent to 0. 

Without loss of generality we can assume that F1 does not take any values 
w which are ~ 0  and satisfy [Argw[<5, for some 5>0. We shall then show 
that G(~)~0, as f f - ~  along the positive axis, and this proves the theorem. 

By our assumptions, both f l  and ~p are included in L~(R § n L2(R+), and we 
obtain from absolute convergence, if [~1 is small enough, 

c (O  = Z ~  ~"-1~ o*A(")(x) 

= (2rc) -a ~ ' ~  ~n-~fi ~ ~(t)rl(t)"e -it~ dt 

F l(t) ~(t) e u~ dt. (2re) 
~a  1-r 

By the assumption on ArgF~(t),  ( l -~F~(t ) ) -*  is uniformly bounded if 
]Arg~[<5/2, and since FI~EU(R) ,  the right hand member is analytic in this 
region, and thus, by analytic continuation, equals G(ff). If  ~ is real and -+0% 
(1 -~F~ (t))-l-+0 except at the denumerably many zeros of the analytic function F~. 
Hence, by Lebesgue's dominated convergence theorem, G(~)-+0. 

Remark. Theorem 3 is applicable if f is of bounded variation near 0, with 
f ( + 0 ) = 0 .  For it is easy to find a function ~0 on R, with support in [0, 1], coinciding 
with 1 in some interval [0, fi], absolutely continuous except for the jump at 0, and 
such that its Fourier transform does not take values in some closed sector of C 
with vertex at 0. Defining q~ by ~o~(x)= ~o (x/5), we find that f ,  =f~0~ satisfies the 
conditions of Theorem 3, if 5>0 is small enough. A different method to prove 
Theorem 3 in this case has been given in [1] (the proof of the corollary of Theo- 
rem 4). 
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