Cyclic elements under translation in weighted L^1 spaces on \mathbf{R}^+

Yngve Domar

0. Introduction

We shall be concerned with a closure problem for functions on \mathbb{R}^+ . In order to illuminate the situation we start by presenting the corresponding problem for $\mathbb{Z}^+ \cup \{0\}$.

Let $w = (w_n)_0^{\infty}$ be a non-negative decreasing sequence, not identically vanishing, and satisfying $n^{-1} \log w_n \to -\infty$, as $n \to \infty$ (here $\log 0 = -\infty$). ℓ_w is the Banach space of complex-valued sequences $c = (c_n)_0^{\infty}$ with

$$\|c\|_{w} = \sum_{0}^{\infty} |c_{n}| w_{n} < \infty$$

For every $m \in \mathbb{Z}^+ \cup \{0\}$, the translation operator T_m , defined by

$$(T_m c)_n = \begin{cases} 0, & 0 \leq n < m, \\ c_{n-m}, & n \geq m, \end{cases}$$

is a contraction in ℓ_w . A_w is the set of all $c \in \ell_w$ with $c_0 \neq 0$. B_w is the set of all $c \in \ell_w$ which are *cyclic* in the sense that the translates $T_m c$, $m \ge 0$, span a dense subspace. Obviously $A_w \supseteq B_w$. Is $A_w = B_w$?

It is known that the answer to this question is yes if, for some constant C>0, the sequence $(Cw_n)_0^{\infty}$ is submultiplicative on the additive semigroup $\mathbb{Z}^+ \cup \{0\}$. This is a direct consequence of the fact that ℓ_w is then a commutative unital Banach algebra under convolution, such that all closed translation invariant subspaces are ideals, and $\ell_w \setminus A_w$ is the only maximal ideal. In some other cases, too, it has been shown that $A_w = B_w$ (Styf [10]). On the other hand, there are weight sequences w, some of them very close to being of the above-mentioned submultiplicative type, and for which $A_w \neq B_w$ (Nikolskii [7], Styf [10]). Roughly speaking, equality holds if the decrease at infinity for w is sufficiently regular, whereas an irregular behavior can cause inequality. Yngve Domar

We shall now formulate the analogous problem for \mathbf{R}^+ . *w* is then a non-negative, bounded, decreasing function on \mathbf{R}^+ , not identically vanishing, and satisfying $x^{-1}\log w(x) \rightarrow -\infty$, as $x \rightarrow \infty$. L_w is the Banach space of Lebesgue measurable complex-valued functions f on \mathbf{R}^+ with

$$||f||_{w} = \int_0^\infty |f(x)|w(x)\,dx < \infty.$$

A function w of this kind is called a weight function. For every $a \in \mathbb{R}^+ \cup \{0\}$, the translation operator T_a , defined by

$$T_a f(x) = \begin{cases} 0, & 0 < x \le a \\ f(x-a), & x > a, \end{cases}$$

is a contraction in L_w . A_w consists of every $f \in L_w$ with $0 \in \text{Supp}(f)$. B_w is the set of all $f \in L_w$ which are *cyclic* in the sense that the translations $T_a f$, $a \ge 0$, span a dense subspace. Obviously $A_w \supseteq B_w$. Is $A_w = B_w$?

The above-mentioned counter-examples of Nikolskii and Styf can be carried over to counter-examples for \mathbf{R}^+ , simply by changing sequences to step-functions. Details of this are given in Dales and McClure [4], where also counter-examples of higher regularity are constructed.

Thus $A_w \neq B_w$ may occur. As for positive results it is tempting to conjecture, in analogy to the situation on $\mathbb{Z}^+ \cup \{0\}$, that $A_w = B_w$ if, for some C > 0, Cw is submultiplicative on the additive semigroup \mathbb{R}^+ . Then L_w is a commutative Banach algebra under convolution. But this time the algebra is radical, and elementary Banach algebra theory does not suffice to provide a confirmation of the conjecture. As a matter of fact, for no strictly positive w of this submultiplicative type do we know whether or not $A_w = B_w$. Perhaps we have inequality for every w, or at least for some w. If w vanishes somewhere, then since w is decreasing it vanishes for all larger values of the variable and $A_w = B_w$ is an immediate consequence of Titchmarsh's convolution theorem (Titchmarsh [11], Boas [3]) and elementary functional analysis.

Our results are thus very incomplete. We present different sets of conditions on the function $f \in A_w$ which imply that $f \in B_w$. In Theorem 1, a corollary of results of Nyman [8], we demand that f is not too large at infinity. In Theorems 2 and 3, we make instead assumptions which prevent f from being too small at 0. In these last theorems, it is necessary to assume additional regularity and growth conditions on w.

There is some overlap with the paper [1], which presents a similar approach, and which has been taken into consideration in the final draft of our paper. Other papers, dealing with the conjecture $A_w = B_w$, and giving interesting information on the problem, are Bade and Dales [2], and Rubel [9]. A summary of the present paper was given in [5].

1. From now on we restrict ourselves to strictly positive weight functions w. L_w^* is the dual of L_w , identified with the Banach space of complex-valued functions φ on $-\mathbf{R}^+$ with $\varphi/\check{w}\in L^\infty(-\mathbf{R}^+)$, $\|\varphi\|_w^*=\|\varphi/\check{w}\|_\infty$. Here $\check{w}(x)=w(-x)$, $x\in-\mathbf{R}^+$. Thus

$$\langle \varphi, f \rangle = \int_0^\infty \varphi(-x) f(x) \, dx = \varphi * f(0),$$

for every $f \in L_w$. Convolution of functions, defined on subsets of **R**, is defined (whenever definable) by first giving the functions the value 0 on the complement of their sets of definition. (n) in the exponent denotes n-fold convolution.

Theorem 1. Let $f \in A_w$ and $\int_0^\infty |f(x)| e^{-bx} dx < \infty$, for some $b \in \mathbb{R}$. Then $f \in B_w$.

Proof. If $f \notin B_w$, Hahn—Banach's theorem gives a non-zero element $\varphi \in L_w^*$, such that

$$\varphi * f(x) = \varphi * T_{-x} f(0) = \langle \varphi, T_{-x} f \rangle = 0, \quad x \in -\mathbf{R}^+.$$

Putting $f(x)e^{-bx} = g(x)$, $\varphi(-x)e^{bx} = \psi(x)$, we obtain

$$\int_0^\infty \psi(y+t)g(t)\,dt=0,\quad t\in\mathbf{R}^+,$$

where $\psi \in L^{\infty}(\mathbf{R}^+)$, $g \in L^1(\mathbf{R}^+)$. A theory for convolution equations of this type has been developed by Nyman [8], and we can obtain a contradiction directly from his results. By Titchmarsh's convolution theorem, $f \in A_w$ implies that the support of ψ is non-compact. Hence, by Theorem 1 in [8], the spectrum A_{ψ} of ψ is nonempty (spectrum is defined in § 8 of [8]). By Theorem 2 in [8], A_{ψ} coincides with the set of singularities of the analytic continuation to **C** of the Laplace transform of ψ . But in our case this continuation is entire. Hence A_{ψ} is empty, and we have a contradiction.

Remarks. The paper [8] is not easily accessible. An alternative reference, containing the needed results, is Gurarii [6]. In [1] a simple proof is given, which avoids Nyman's theory.

For the remaining theorems we need the following lemma. In [1] there is a similar result (Lemma 5), which is applicable to more general weight functions. We shall from now on assume that $\log w$ is concave. This implies that w is of submultiplicative type, thus L_w is a Banach algebra under convolution.

Lemma. Let w be a weight function such that $\log w$ is concave on \mathbb{R}^+ , and $x^{-1}\log w(x) \rightarrow -\infty$, as $x \rightarrow \infty$. Let $f \in L_w$ and let $\varphi \in L_w^*$ be in the annihilator of the subspace of L_w spanned by f and its translates. If $f_1 \in L_w$ coincides with f on $]0, \varepsilon]$, $\varepsilon > 0$, then

$$\|\varphi * f_1^{(n)}\|_w^* \leq \frac{w(n\varepsilon)}{w(\varepsilon)^n} \|\varphi\|_w^* \|f - f_1\|_w^n, \quad n \in \mathbb{Z}^+.$$

Proof. Since log w is concave,

$$w(x_1+x_2+...+x_n)w(x_1)^{-1}w(x_2)^{-1}\cdot...\cdot w(x_n)^{-1}$$

decreases in each variable individually, if all $x_i > 0$. Hence

(1)
$$w(x_1+x_2+\ldots+x_n) \leq \frac{w(n\varepsilon)}{w(\varepsilon)^n} w(x_1)w(x_2)\cdot\ldots\cdot w(x_n),$$

if $x_i \ge \varepsilon$, i=1, 2, ..., n. We put $f_1 - f = f_2$. Then $f_2 \in L_w$, and $f_1^{(n)} - f_2^{(n)} = fP(f_1, f),$

where $P(f_1, f)$ is a polynomial in f_1 and f under the convolution operation. Hence $f_1^{(n)}-f_2^{(n)}$ is included in the ideal in L_w which is generated by f. Elementary considerations show that every translate of $f_1^{(n)}-f_2^{(n)}$ then has to be contained in the closed subspace, generated by f and its translates. Hence

$$\varphi * (f_1^{(n)} - f_2^{(n)}) = 0,$$
$$\|\varphi * f_2^{(n)}\|_{*}^* = \|\varphi * f_2^{(n)}\|_{*}^*$$

on $-\mathbf{R}^+$. This gives

$$= \sup_{x \in \mathbb{R}^{+}} w(x)^{-1} \int_{\mathbb{R}^{+n}} |\varphi(-x - x_1 - x_2 - \dots - x_n)| |f_2(x_1)| |f_2(x_2)| \cdot \dots \cdot |f(x_n)| dx_1 dx_2 \cdot \dots \cdot dx_n$$

$$\leq \|\varphi\|_w^* \int_{\mathbb{R}^{+n}} w(x_1 + x_2 + \dots + x_n) |f_2(x_1)| |f_2(x_2)| \cdot \dots \cdot |f_2(x_n)| dx_1 dx_2 \cdot \dots \cdot dx_n.$$

By (1), the right hand member is majorized by

$$\|\varphi\|_w^* w(n\varepsilon) w(\varepsilon)^{-n} \|f_2\|_w^n,$$

and the lemma is proved.

2. In the sequel, we use the convention that, for a complex-valued function g, defined on a set $E \subset \mathbb{R}$, the Fourier transform G is defined by

$$G(\zeta) = \int_E g(x) e^{i\zeta x} dx,$$

for all $\zeta \in \mathbb{C}$ which give absolute convergence. This means in particular, that if φ and f_1 are as in the lemma, with Supp (f_1) compact, then their Fourier transforms Φ and F_1 are entire functions, and the Fourier transform of $\varphi * f_1^{(n)}$ is ΦF_1^n .

Theorem 2. Let w be a weight function with log w concave, and such that

(2)
$$x^{-2}\log w(x) \to -\infty,$$

as $x \rightarrow \infty$. For sufficiently large $\eta > 0$ we define

(3)
$$M(\eta) = w^{-1} \left(\left[\int_0^\infty e^{\eta x} w(x) \, dx \right]^{-1} \right),$$

140

where w^{-1} is the inverse of w. We assume that f and f_1 are as in the lemma, with Supp (f_1) compact, and that there is a constant C>0 such that

(4)
$$|F_1(i\eta)| \ge \exp\{-C\eta/M(\eta)\},\$$

for sufficiently large positive η . Then $f \in B_w$.

Proof. Simple estimates show that (2) implies

(5)
$$\eta^{-2}\log\left[\int_0^\infty e^{\eta x}w(x)\,dx\right]\to 0,$$

as $\eta \rightarrow \infty$. It follows from (3) and (5) that

 $\eta^{-2}\log w(M(\eta)) \to 0,$

as $\eta \rightarrow \infty$, and this and (2) imply that

(6)
$$M(\eta)/\eta \to 0,$$

as $\eta \rightarrow \infty$, $\eta \in \mathbb{R}^+$.

Let φ be an arbitrary element in L_w^* , annihilating f and its translates. It suffices to prove that φ vanishes almost everywhere. We are of course free to assume that $\|\varphi\|_w^* \leq 1$, and that $|\varphi(x)| \leq 1$, $x \in -\mathbb{R}^+$. Then, for $x \in \mathbb{R}^+$,

(7)
$$|\varphi * f_1^{(n)}(x)| \leq \int_0^\infty |\varphi(x-y)| |f_1^{(n)}(y)| \, dy \leq \left(\int_0^\infty |f_1(y)| \, dy\right)^n.$$

For $x \in -\mathbf{R}^+$, the lemma gives

(8)
$$|\varphi * f_1^{(n)}(x)| \leq w(-x)w(n\varepsilon)D^n,$$

for some constant D, independent of n and x. (7) and (8) give the following estimate of the Fourier transform of $\varphi * f_1^{(n)}$, for $\zeta = i\eta$, η positive and large,

(9)
$$|\Phi(i\eta) F_{1}(i\eta)^{n}| \leq \int_{-\infty}^{0} w(-x) w(n\varepsilon) D^{n} e^{-\eta x} dx + \left(\int_{0}^{\infty} |f_{1}(y)| dy\right)^{n} \int_{0}^{\infty} e^{-\eta x} dx = \frac{w(n\varepsilon)}{w(M(\eta))} D^{n} + \frac{1}{\eta} \left(\int_{0}^{\infty} |f_{1}(y)| dy\right)^{n},$$

where the last inequality follows from (3).

For every sufficiently large $\eta \in \mathbf{R}^+$ we choose $n=n(\eta)$ as the smallest positive integer, such that $n \in M(\eta)$. Then, for large η ,

(10)
$$M(\eta) \leq n\varepsilon \leq 2M(\eta).$$

Then there is a constant E>0, such that the right hand member of (9) is $\leq E^n$, if η is large. Thus (9) and (4) give, for large η ,

(11)
$$|\Phi(i\eta)| \leq E^n |F_1(i\eta)|^{-n} \leq E^n \exp\left\{\frac{Cn\eta}{M(\eta)}\right\}.$$

(6) and (10) show that (11) implies that

$$|\Phi(i\eta)| \leq e^{C_0 \eta},$$

for some constant C_0 , if $\eta \in \mathbf{R}^+$ is large enough.

Now (5) shows that Φ is of order 2, type 0, and obviously Φ is bounded in the lower half-plane. Therefore (12) can be used in a standard application of the Phragmén—Lindelöf principle to the upper quadrants to show that Φ is of exponential type. It is well known (see for instance Boas [3]), that this implies that Supp (φ) is compact. Returning to the relation $\varphi * f = 0$ in $-\mathbf{R}^+$, Titchmarsh's theorem shows that we have two alternatives, $\varphi = 0$ almost everywhere or $f \notin A_w$. In the second case, there exists a positive constant D such that

$$|F_1(i\eta)| \leq e^{-D\eta}$$

for large positive η . But $M(\eta) \rightarrow \infty$, as $\eta \rightarrow \infty$, and hence (4) and (13) are contradictory. Thus the first case holds, and the theorem is proved.

Example. Theorem 2 is valid if $\log w(x) = -x^p$, where p > 2. Then $M(\eta) \sim C\eta^{\alpha}$, where $\alpha = 1/(p-1)$, and C is a constant, and therefore (4) has the form

$$|F_1(i\eta)| \ge \exp\left\{-D\eta^{\frac{p-2}{p-1}}\right\},$$

for some constant D. A condition of this type holds for instance if

$$f(x) > \exp\{-Ex^{-(p-2)}\},\$$

near 0, for some constant E.

3. The following theorem is applicable to a larger class of weight functions than Theorem 2. On the other hand the conditions on f are rather restrictive.

Theorem 3. Let w be a weight function with log w concave, and such that

(14)
$$(x \log x)^{-1} \log w(x) \to -\infty,$$

as $x \to \infty$. We assume that $f \in A_w$ and that f_1 coincides with f near 0. Furthermore we assume that $f_1 \in L^2(\mathbb{R}^+)$ and that Supp (f_1) is compact. If the values on \mathbb{R} of the Fourier transform F_1 of f_1 are included in a closed sector of \mathbb{C} with vertex at 0 and opening angle $< 2\pi$, then $f \in B_w$.

Proof. We assume that $\varphi \in L^*_{w}$ satisfies $\varphi * f = 0$, $x \in -\mathbb{R}^+$, and shall show that φ is equivalent to 0.

Fix an arbitrary $x \in -\mathbf{R}^+ \cup \{0\}$ and put

$$a_n = \varphi * f_1^{(n)}(x), \quad n \in \mathbb{Z}^+.$$

142

By the lemma, there exists a constant C, independent of n, such that

$$|a_n| \leq C^n w(n\varepsilon), \quad n \in \mathbb{Z}^+.$$

(14) shows that

$$(n\log n)^{-1}\log|a_n|\to-\infty,$$

as $n \to \infty$. Hence there exists, for every $d \in \mathbb{Z}_+$, a constant K(d) such that

$$\sum_{1}^{\infty} |a_n| |\zeta|^n \leq K_d \sum_{1}^{\infty} \frac{|\zeta|^n}{(dn)!}$$

for every $\zeta \in \mathbb{C}$. But the right hand member is dominated by $K_d \exp(|\zeta|^{1/d})$. Hence

$$G(\zeta) = \sum_{1}^{\infty} a_n \zeta^{n-1},$$

 $\zeta \in \mathbb{C}$, defines an entire function of order 0. We shall show that $G(\zeta) \to 0$, as $\zeta \to \infty$ along some ray from $\zeta = 0$. By Phragmén—Lindelöf's principle this implies that $G \equiv 0$. In particular $a_1 = 0$. Hence $\varphi * f_1 = 0$ on $-\mathbb{R}_+$. Since $f \in A_w$, we have $f_1 \in A_w$, and it follows from Theorem 1 that φ is equivalent to 0.

Without loss of generality we can assume that F_1 does not take any values w which are $\neq 0$ and satisfy $|\operatorname{Arg} w| < \varepsilon$, for some $\varepsilon > 0$. We shall then show that $G(\zeta) \rightarrow 0$, as $\zeta \rightarrow \infty$ along the positive axis, and this proves the theorem.

By our assumptions, both f_1 and φ are included in $L^1(\mathbb{R}^+) \cap L^2(\mathbb{R}^+)$, and we obtain from absolute convergence, if $|\zeta|$ is small enough,

$$G(\zeta) = \sum_{1}^{\infty} \zeta^{n-1} \varphi * f_{1}^{(n)}(x)$$

= $(2\pi)^{-1} \sum_{1}^{\infty} \zeta^{n-1} \int_{\mathbf{R}} \Phi(t) F_{1}(t)^{n} e^{-itx} dt$
= $(2\pi)^{-1} \int_{\mathbf{R}} \frac{F_{1}(t)}{1 - \zeta F_{1}(t)} \Phi(t) e^{itx} dt.$

By the assumption on Arg $F_1(t)$, $(1-\zeta F_1(t))^{-1}$ is uniformly bounded if $|\operatorname{Arg} \zeta| < \varepsilon/2$, and since $F_1 \Phi \in L^1(\mathbb{R})$, the right hand member is analytic in this region, and thus, by analytic continuation, equals $G(\zeta)$. If ζ is real and $\to \infty$, $(1-\zeta F_1(t))^{-1} \to 0$ except at the denumerably many zeros of the analytic function F_1 . Hence, by Lebesgue's dominated convergence theorem, $G(\zeta) \to 0$.

Remark. Theorem 3 is applicable if f is of bounded variation near 0, with f(+0)=0. For it is easy to find a function φ on **R**, with support in [0, 1], coinciding with 1 in some interval $[0, \delta]$, absolutely continuous except for the jump at 0, and such that its Fourier transform does not take values in some closed sector of **C** with vertex at 0. Defining φ_{ε} by $\varphi_{\varepsilon}(x)=\varphi(x/\varepsilon)$, we find that $f_1=f\varphi_{\varepsilon}$ satisfies the conditions of Theorem 3, if $\varepsilon>0$ is small enough. A different method to prove Theorem 3 in this case has been given in [1] (the proof of the corollary of Theorem 4).

144 Yngve Domar: Cyclic elements under translation in weighted L^1 spaces on \mathbf{R}^+

References

- 1. ALLAN, G. R., Ideals of rapidly growing functions. Manuscript. (Leeds University, 1977)
- 2. BADE, W. G. and H. G. DALES, Norms and ideals in radical convolution algebras. J. Functional analysis (To appear)
- 3. BOAS, R. P., Entire functions. New York, 1954.
- 4. DALES H. G. and J. P. McClure, Nonstandard ideals in radical convolution algebras on a half-line. Manuscript. (Leeds University)
- 5. DOMAR, Y., A closure problem for functions on **R**₊, Zap. Naučn. Sem. LOMI **81** (1978), 160– 162.
- 6. GUARII, V. P., Spectral synthesis of bounded functions on the half-axis. Funkcional Anal. i Priložen 3 (1969), 34-48.
- 7. NIKOLSKII, N. K., Invariant subspaces of weighted shift operators. *Mat. Sbornik* 74 (116), 1967, 171--190.
- 8. NYMAN, B., On the one-dimensional translation group and semi-group in certain function spaces. Thesis Uppsala 1950.
- RUBEL, L. A., Convolution cut-down in some radical convolution algebras. Pacific J. Math. 82 (1979), 523-525.
- 10. STYF, B., Closed translation invariant subspaces in a Banach space of sequences, summable with wrights. Uppsala University, Department of Mathematics, Report 1977:3.
- 11. TITCHMARSH, K. C., An introduction to the theory of Fourier integrals. Oxford, 1937.

Received February 15, 1980

Yngve Domar Department of Mathematics University of Uppsala Thunbergsvägen 3 752 38 Uppsala Sweden