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1. Introduction 

This note is a complement of an earlier paper by the author [8] on the local 
analytic continuation of holomorphic solutions of partial differential equations with 
holomorphic coefficients in C". It is written in the light of  some new results on the 
uniqueness in the local Cauchy problem, Persson [10]. See also Persson [11] for 
the connected question of P-convexity. The use of uniqueness cones in [10] made 
it possible to prove that some conditions are not only necessary but also sufficient 
for local uniqueness in the Cauchy problem. Since the cones of  analytic continua- 
tion of  [8] are counterparts of  the uniqueness cones of  [7] one may try the same 
way solving questions of  analytic continuation. 

The operators of [10] are defined in R 3 and have constant coefficients. One 
proves that a certain geometric condition on the initial surface is necessary and 
sufficient. The point around which the Cauchy problem is posed is supposed to 
be simply characteristic with respect to the given differential operator P. The initial 
surface is supposed to be in C 2. The simplest nontrivial case of local analytic con- 
tinuation is the problem in C 2 when the coefficients of  the operator are constants. 
Theorem 1.1 below treats this case. It turns out that one can give a simple necessary 
and sufficient geometric condition securing that a holomorphic solution can always 
be continued over the boundary at a given point. The boundary is supposed to be 
in C I and there is no restriction on the multiplicity if  the point is characteristic. 

Theorem 1.2 below is a restatement of  [8, Theorem 4.1] concerning the existence 
of  singular solutions. Theorem 1.3 is a reformulation of Theorem 1.2 giving a suffi- 
cient condition for the existence of  solutions which cannot be continued analytically 
to the other side of the boundary. Theorem 1.1 shows that in C ~ this condition is 
also necessary when the coefficients are constant. Theorem 1.4 extends Theorem 1.1 
to the variable coefficients case as long as the boundary point is of  the same kind as 
those in the constant coefficients case. 
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The theorems are now stated and partly proved before their connection with 
earlier results are discussed. As to the notation one lets z=(z l  . . . .  , zn)=x+iyEC",  
x, yER". Let Dj=O/Ozj=(O/Oxi--iO/Oyj)/2. The usual multi-index notation will be 
used. Let f2cC"  be an open set and let H(f2) be the set ofholomorphic functions in f2. 

Definition 1.1. Let f 2 c C  ~ be open and let P(z ,D )  be a linear partial 
differential operator of  order m > 0  with holomorphic coefficients in f2. It is 
assumed that P(z, D)~O for all z in O. Let F c C  n be a closed set. Let z~ f2. 
Assume that for each open set f2'c~2 with z~ ' the following is true. There 
exists an open set f2"cf2 ' ,  z~ " such that if fEH(O') ,  uEH( f2" \F )  fulfills 
P(z, D ) u = f  in f2%,F then there is a vEH(f2") such that u=v  in f 2 " \ F  and 
P(z, D ) v = f i n  f2". Then z ~ is called a point of  local analytic continuation for P. 

Remark. By the use of the Cauchy--Kovalevskij  theorem around z ~ one can 
always reduce the problem of  analytic continuation to that with f = 0  if the order 
of  P at z ~ is m. 

Theorem 1.1. Let f 2 c C  2 be an open set and let F c C  2 be closed. Let P(D) 
b e  a linear partial differential operator with constant coefficients. Let  z~ 
Let  f2" be an open neighbourhood of  z ~ Let q) be a real valued function in C1(f2 ") 
such that after a rotation of  coordinates grad q)(z~ 0) and such that f 2 " \ F =  
{z; q~(z)<0}. Let I'm be the principal part of  P. Then z ~ is not a point of  loeal analytic 
continuation i f  an only i f  Pro((1, 0 ) )=0  and there is an open set f2"cf2", z~ " 
such that 

(1.1) go(z1 ~ z2) -> 0, (z~, z2)Ef2". 

The proof  will follow from Theorem 1.3 on one hand and from the use of cones 
of analytic continuation on the other hand. This last part of the proof  will be given 
in Section 3. 

The following theorem is proved in [8], 

Theorem l.2. (Persson [8, Theorem4.1].)  Let m > 0  and l ,  O<=l<m be 
integers and let /~=(l, m - l ,  O, ..., 0)ER n. The linear partial differential operator 
P(z, D) of  order m is given by 

(1.2) P(z, D) = D p - ~ m  a, D ~ -  ~la[ < m a~D ~. 

~l~l 

The coefficients a~ are holomorphic around the origin in C'. Let g(zl) be holomorphic 
in {zx; 0<]z~]<c} for some c>0 .  Then there exist a c ' > 0  and a function u holo- 
morphic in {z; 0 <  [z[<c', zx~ [0, + ~)} and satisfying 

(1.3) P(z ,D)u  = O, and u(z) = g(za), z2 = 0. 
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One could also use Persson [9, Theorem 1] in the proof  of Theorem 1.1 since 
the coefficients of  P are constants. For  an earlier weaker version in the constant 
coefficient case see Kiselman [4, Lemme 5.6]. A version of  Theorem 1.2 in the 
simply characteristic case has been proved by Kawai [3] and Tsuno [12, Theorem 2]. 
As to the connection between this type of  theorems and hyperbolicity see [9] and 
Komatsu [5, Theorem 2 and Theorem 3]. 

In [8] the explicit reformulation of  Theorem 1.2 as a theorem on analytic con- 
tinuation is missing. It could be given as follows. 

Theorem 1.3. Let  ~2, P(z,  D), z ~ and F be as in Definition 1.1. Let  Y2" be a 

neighbourhood o f  z ~ and let 9ECa(Y2 ') be real valued. It  is assumed that 

(1.4) {z; 9(z)  < 0, zE~2'} = (2"~F. 

It is assumed that after a translation and rotation o f  coordinates z~ and 
gradz 9(z~ 0, ..., 0) and also that after multiplication by (ap) -1 P has the form 

(1.2). Then z ~ is not a point o f  local analytic continuation i f  for  some neighbourhood 

~2" o f  z ~ 

(1.5) 9(0, z') ~ 0, (0, z')E(2", z" = (z2 . . . .  , z,)EC "-a. 

Proof  It is clear from (1.4), (1.5) and grad= 9(0)=(1 ,  0 . . . .  ,0)  that 

(1.6) 9(X1, Z t) ~ 0, (Xl, Z ' ) ~ " ,  X 1 ~:~ 0. 

for fU={z ;  [z[<c} with c ' > 0  small, and that ( x l , z ' ) E F  when 9(x~,z')>=O. 
Let g(zO = z ;  1 in Theorem 1.2. Then u of  (1.3) is in H ( g 2 " \ F )  and cannot be 
continued analytically to a neighbourhood of z ~ The theorem is proved. 

First part o f  the proof  o f  Theorem 1.1. Let P,,((1, 0 ) )=0  and let (1.I) be true. 
Then in the chosen coordinates P must have the form (1.2) for some integer l, 
O<=l<m, after a multiplication by a constant c # 0 .  Theorem 1.3 now tells that 
z ~ is not a point of  local analytic continuation. The last part of the proof  will be 
given in Section 3. 

The proof  of Theorem 1.1 will also give the following theorem. 

Theorem 1.4. Let  the hypothesis be as in Theorem 1.3 with the restriction that 

n=2 .  Then (1.5) is also a necessary condition for  z ~ not to be a point o f  local analytic 
continuation. 

For the conclusion of  the proof  see Section 3. 
The cones of  analytic continuation used in Section 3 differs somewhat in their 

definition from those used in [8]. It is therefore convenient to give a selfcontained 
treatment here. This is done in Section 2. This section starts with a proof  of  the 
linear Cauchy--Kovalevskij theorem in a precise form. The proof  is an adaption 
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of  the proof  of the same theorem in a special case due to Yamanaka in Yamanaka, 
Persson [19, Theorem 2.1]. Theorem 2.1 is a sharper version of Bony--Schapira 
[2], Corollaire] also due to C. Wagschal who used majorant series for its proof. 

Theorem 2.2 is a reformulation of Theorem 2.1. It is a sharper formulation 
of the fundamental observation made by Zerner [20] on the analytic continuation 
across a noncharacteristic border in C 1. This observation is used in [1], [2], and 
[8] and is founded on a remark by J. Schauder on the proof  of  the Cauchy--Kova-  
levskij theorem. ,See [2]. 

After the redefinition of  cones of analytic continuation in Section 2 Theorem 2.3 
and Theorem 2.4 follow giving sufficient conditions for a point to be a point of local 
analytic continuation. Theorem 2.4 is a correction of [8, Theorem 2.2]. See Section 2. 
Theorem 2.4 is a generalization of  Bony--Schapira [2, Theorem 4.1]. One notices 
that Theorem 2.4 can be applied in some cases when the cone condition of Bony--  
Schapira is not fulfilled. 

The papers by Tsuno [12]--[18] contains a long range of results on analytic 
continuation. I f  these results can be specialized down to the situation treated in [8] 
or here then they are strictly weaker. But it should also be noticed that [12] is a 
forerunner of [8]. As to the results on analytic continuation in Pallu de la Barri6re [6] 
it seems likely that at least the examples given on analytic continuation across the 
sphere and across a real hyperplane also could be proved by use of cones of analytic 
continuation. The example where there is no analytic continuation across a simply 
characteristic point on the sphere follows from Theorem 1.3. Otherwise the  highly 
technical formulation of  the theorems in [6] makes it difficult to compare them with 
the results in Tsuno[ 12]--[18], Persson [8] or in this note. It should be stressed 
that there are no results giving a sufficient and necessary condition for a charac- 
teristic point to be a point of local analytic continuation in [6] or [12]--[18]. How- 
ever in Section 4 there is a theorem Theorem 4.1 giving a sufficient condition for a 
simply characteristic point to be a point of  local analytic continuation. In the C 2 
case this condition is also necessary as Theorem 1.4 shows. Theorem 4.1 is a slight 
sharpening of Persson [8, Theorem 3.1]. For  an earlier weaker version see Tsuno 
[12, Theorem 1]. The possibility of  extending the existence results of  [2] or [6] has 
not been investigated here. 

It is likely that one will have difficulties also for very slight extensions of the 
results of  the present note as long as one wants a necessary and sufficient condition. 
This seems to be the case for second order operators in C 3 at simply characteristic 
points when the border is in C ~. For  comparison see [10] and [11]. 
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2. The Cauchy--Kovalevskij theorem and cones of analytic continuation 

Here one lets Iz'l= =max2<=s<__, [zs[, z'CC "-1. 

Theorem 2.1. (Yamanaka--Persson [19, Theorem 2.1].) Let M > 0 ,  and T > 0  
be constants and let eEC". Let f l=(m, 0, . . . ,0)ER" with m>O an integer. Let 
z" =@2, ..., z,)~ C"-1 and z=(za,  z')EC". Let a~, I~1 <=m be holomorphie andbounded 
in the set 

s = {z;  I z ' - c %  < M, IZl-Cd < T}. 
Let 
(2.1) A,=susp!a, (z)[ ,  and L=met~_j~_,,max ( , ~ , , _ j ~ ' ! A , )  

Let f be holomorphic and bounded in S. Then there exists a unique holomorphie solu- 
tion u of  

(2.2) D'~u+Zt~f<=,,D~lD'~'a,u = f u = O(zT) 

in SL={Z; [ z ' - c ' l = < M - L l Z l - q l ,  z~S} .  

Remark. In [19, Theorem2.1] one has some non-zero initial data and f = 0 .  
Here the more general framing of Theorem 2.1 is prefered. The case with holo- 
morphic non-zero initial data in Iz'.c'l~<M can always be reduced to the Theo- 
rem 2.1 case with a new f in H(S) .  The new f may not be bounded but the proof  
will show that this condition on f in the hypothesis of  Theorem 2.1 is superfluous 
since f is bounded on compact subsets of S. In fact when the proof  is completed 
one sees that it suffices to assume that a, EH(SL), [a I <-_m, fEH(SL)  with a~ bounded 
as before. One also notices that (2.2) is equivalent to D~.~-{'~lal~m b~Oau:f, 
u=O(z'~) for some holomorphic functions b~ with b,=a~, Icr =m, and vice versa. 
One notices that SL only depends on the coefficients of  the principal part of  P. 

Proof  It is no restriction to assume that c=0 .  This is done from now on 
Let g be a holomorphic function around z=O. Let 

Z 1 

Di-lg(z) = s g(s, z')ds 

where the integration is taken radially from 0 to z~ in C. Let v=D'~u. Then (2.2) 
is equivalent to 

(2.3) v = -- ~ , a D F m + = D  '~' a~v+f. 

Let Vo=f and let 

(2.4) vi+ 1 = - -  ~=el~Dfm+=ID'~"a=vy, j = O, 1 . . . . .  

The goal is to prove that v=~'7= 0 vj is a holomorphic solution of (2.3) in SL. 
The following lemma will be used. 
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Lemma 2.1. Let A and B be open subsets of  C "-t  such that A = B  and such 
that the distance between" A and CB in the I [~ norm is not less than a number r>O. 
Let g be bounded in H(B)  and let 

[g[D = sup rg(z)[, D c B. 
jED 

Then for  any multi-index o: the inequality 

(2.5) [D~g[a <_- c~! r -I~1 ]g[~ 

holds. 

The proof is immediate from the Cauchy formula. One lets 

(2.6) Iwl, = sup {[w(z')l; Iz% < M - r } ,  0 <= r <- M, 

for w holomorphic and bounded in ]z'I<M. At first assume that L > 0 .  Let 

K-= l+ma.x(meL-1)Y~M<m ~'!A~. 
J ax=m-- j 

It is noticed that 

(2.7) KY>=K, and h-I~'l<:h=J+~+l, h > 0 ,  [ z ( [< : j -1 ,  j = 2 , 3 , . . . .  

Let w(z') be holomorphic and bounded in [z']<M. Then Lemma 2.1, (2.1) 
and (2.3) give 

ID ( a a W ) l r ~ l W l r - h ( ~ l a l = m  -~-~[~[<m )c(!h-l~'lA~ (2.8) Z]a]~_m "a' 
al=tn-- j r j ~l=m--j 

[ ~= [wlr_h(L/me)J (h-J +(h-J+x + i)K)]i~_2 <_ lwl,_h(L/me)J(h-l + K)J, 

O < - r - h - < r < = M ,  

Let N =  I f  Is. It follows from (2.4) and (2.8) that 

(2.9) [v~(zl, ")It = ~'l~f~--m D{'+~O'~'a~(zl ,  ") f (z l ,  ")lr 
~l=m--j 

=<N~=l(L/me)J(r-l+K)Y]z~tY/j  !, O<r<=M, lz~l<T. 

It is now asserted that 

(2.10) 
mp (l%[,<=WmV-a~=p(L/me)J(p/r+K)J]z~[J/j!, O < r ~ M ,  Izi] < T ,  p =  1,2 . . . . .  

Now (2.9) says that (2.10) is true for p = l .  Let (2.10) be true for p = k .  Then (2.4) 
and (2.10) give 

[Vk+l], <= Z~= ~ (L/me)J((k+. 1)/r+K) j D{J Vk(Z1, ")lkr/(k+l)l 

<= Nmk-1 z~'=x (L/me)J(( k + 1)/r + K) J ~,~m=k (L/me) t ((k + 1)/r + K)*lztlZ+J/(l +j)! 

= Nmk-~Z~.=~zk~=k(L/me)Z+i(k+l)/r+K)t+J[z~[~+t/(j+l)! 

<= N m k Z ~ k ~ ( L / m e ) J ( ( k + l ) / r + K ) i t z x l J / j  �9 tz~[ < T, 0 < r <= M. 

So (2.10) is true for all p. 
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One shall now use 

(2.11) ( l+Kr/p)  mn< e mxr, p = 1, 2, . . . ,  

and the fact that there exists a constant x independent of  p such that 

(2.12) pJ/j! <=xe J, j = p , p + l  . . . .  , p = l , 2 , . . . .  

One notices that 

(2.13) ,~.~p (L]zll/r) j <: mp(LlZll/r) p, [zl[ <= r/L, p = 1, 2 . . . . .  

It follows from (2.10)--(2.13) that 

(2.14) Iv,(zl, ")lr ~ N m " - l ~ 7 ~  p m-J(Llzll/r)~(1 +Kr/p)Je-JP~# ! 

<= N~eZ~r P(Llzal/r) p, Izll < r/L, p = 1, 2, . . . .  

It follows from (2.14) that v = ~ = ~  vp converges uniformly on compact subsets 
of  SL and thus is holomorphic. Now (2.4) and v0 = f  shows that v solves (213) and 
that u:D~mV solves (2.2) in SL. 

If  L = 0  then one replaces this L with another L > 0  in the computations 
above. Since this L is arbitrary the solution u exists in all S =  S 0. Of  course this 
depends on the uniqueness of the solution. But this follows from the uniqueness of  
the formal power series solution of (2.2). Theorem 2.1 is proved. 

Remark. In the following it is refered to (2.1) as if it gives L >0.  This is achieved 
if one lets L = 0  be replaced by L : I  keeping L unchanged in the other cases. 
This is done for technical reasons. 

Theorem. 2.2 Let z = x + i y ,  x, yER n. Let f2=C n be an open convex set. Let 
m > 0  be an integer and let /~=(m, 0 . . . . .  0)CR". Let a, EH(f2), I~l<_-m be bounded 
and let a a = l .  Define P(z ,D)=~I~I~ma,  D'. For r > 0  define 

S(r) = {z;  x~ = 0, ly~l < r, [z ' l~  < r}, 
and 

g(r)  = {z; [Yxl < r, Iz ' I~  < r-tlxal}. 

Here the constant L > 0  is defined by (2.1) with S=f2. Let V c f 2  be an open con- 
vex set and let uEH(V) and fEH(K(r)) .  I f  S ( r ) =  11, K(r )c f2 ,  and if  P(z, D ) u = f  
in V then there is a vE H(K(r))  satisfying P(z, D ) v = f  in K(r) and u = v  in Vc~ K(r). 

Proof. Let hy~ Then the initial data J o Dlu(y l ,  z'), O<=j<m, exist and are 
holomorphic in [z'l~<r. It follows from Theorem 2.1 that there exists a solution 
v of P(z, D ) v = f  with these initial data in 

{z,  I z ' - z ~  < r-Llzl-iy~ 

Especially v exists and is holomorphic in K(r). The theorem is proved. 
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Definition 2.1. Let ~ r~cn  be an open set. Let M be an open convex cone in 
C" with vertex at the origin. Let N E M  be such that 

M c  {z; Re (z, N > 0) }. 

Here (z, N ) = z l N l + . . . + z n N  ~. I t  is assumed that P(z, D) is a linear partial dif- 
ferential operator with coefficients holomorphic in (2. Its order is m > 0  and P,,(z, D) 
is its plincipal part. Let z~ and let GcC"  be a closed convex set such that z ~ 
is an inner point of  G. One defines 

(2.15) K ( N , M , z ~  {z: zEa, R e ( z - z ~  N>O)<=O, 6EM}. 

I f  K ( N , M , z  ~ is compact,  if there is an open set U c ~  such that 
K(N, M, z ~ G)c  U, and if Pro(z, 5)r  zEU, fiEM, then K(N, M, z ~ G) is called 
a cone of  analytic continuation at z ~ for the operator P. 

Remark. I f  one identifies z = x + iy E C" with (x~, Yl, xz, Y2 . . . .  , x,, y,) E R 2" one 
should identify N with the vector (Re N 1, - Im  N1 . . . .  , Re N,, -- Im N,) when one 
uses the usual scalar product  in R 2". 

The following theorem is a slight generalization of [8, Theorem 2.1]. 

Theorem 2.3. Let Q, U, P(z, D) and K(N, M, z ~ G) be as in Definition 2.1. 
Let V c  ~2 be an open set such that 

K(N, M, z ~ G)n OG c V. 

Let fEH(U)  and uEH(V) such that P(z, D ) u = f  in UnV.  Then there are an open 
set W c U  such that K ( N , M , z ~  and a vEH(W) such that P ( z , D ) v = f  
in W and v=u in a neighbourhood of  K(N, M, z ~ G) hOG. This neighbourhood and 
W are independent of  u a n d f  

Proof Let d(A, B) denote the d/stance between to sets A and B in C ~. Choose 
e > 0  so small that d(K(N, M, z ~ G)nOG, CV)>2e. Define 

= {z; zEac ,  d({z}, K(N, M, zO, C) aC)} _-< 

Let e '>O and define 
= {z; z-z~ 

Then one defines K(e, s') as the convex hull of  K(e) and S'(~') .  One notices that 
z ~ is an inner point of  the convex set G. Thus by first choosing ~ and then e' it is 
possible to achieve that K(e, ~ ' ) c  U, K(e )~  V and that  at each point zEOK(e, e ' )n 
COG there is a closed ball BcK(e ,  ~')u(Vc~UnCK(~ , ~')) of  radius ~' with zEOB 
and the normal N o of B at z being noncharacteristic. As to N O see the remark after 
Definition 2.1. Let e and ~' be chosen as above. Choose an open ball B1c  U n  G 
with centre at z. This is always possible since z has a positive distance to OG. Let 

fEH(U)  and let uEH(B~n(I~e, ~')) fulfilling P(z, D ) u = f  in B l n K ( e  , ~'). After 
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a rotation and translation of  the coordinate system one achieves that z = 0  and 
N~ 0 . . . .  ,0)EC". And perhaps after choosing the radius of B 1 still smaller and 
after multiplication of the differential equation by a gEH(B1), g(z)r  zEB1, one 
assumes that P ( z , D ) = ~ a ~ D  ~ with a, all bounded and in H(B 0 and with 
a(m,0 ..... 0)=1 in B1. Choose r, 0 < r < e ' .  Let K(r) and S(r) be as in Theorem 2.2. 
Let L be defined by (2.1) with S=BI .  It is now obvious that one may choose r 

so small that S ( r ) + ( - r / 2 L ,  0 . . . . .  0 ) c B l n B  and K(r)+(--r /2L,  0 . . . . .  O)cB1. 
A translation of  the result of Theorem 2.2 gives that u can be continued analytically 
to K ( r ) + ( - r / 2 L ,  0, ..., 0) which is a neighbourhood of z=0 .  

The argument above will now be used to conclude the proof. Let f and u be 
as in the hypothesis of the theorem. Choose a fixed zEK(N, M, z ~ G)nOG. Define 

Kt -~ K(e, e') + {(1 - t) ( z -  z~ 0 ~= t ~ 1. 

If  ~' is small then u and f are holomorphic in a neighbourhood of K0n G. Let t '  
be the least upper bound of thoose t for which there is a v holomorphic and equal 
to u in a neighbourhood of  /(t n OG and holomorphic in the inner points of  K tn  G 
fulfilling P(z, D ) v = f  there. I f  t ' =  1 then the proof  is concluded. One just chooses 
W as the union of the inner points of KI =K(E, e') and a neighbourhood of K~ n OG 
where u=v. If  t ' <  1 then the argument in the preceeding paragraph shows that t '  
is an inner point of the set for which it is the least upper bound. So t ' <  1 is impossible. 
The proof  is concluded. 

Theorem 2.4, Let I2 and P(z, D) be as in Theorem 2.3. Let F c C "  be a closed 
set and let z~ f2. Then z ~ is a point of  local analytic continuation i f  to each open 
set f2" c f2 ,  with z~ there is a cone of analytic continuation K(N,  M, z ~ G)~ f2" 

such that K(N, M, z ~ G) n OGc CF and such that for all small ~ and e" I~(e', ~') c~ CF 
is connected. Here K(e, e') is defined in the proof of  Theorem 2.3. 

Proof. Let fEH(f2") and uEH(Y2' \F)  such that P(z, D ) u = f  in Y2'\F. 
Theorem 2.3 or rather its proof  shows that for sufficiently small e and e' there exist 
a open neighbourhood W of  K(e, e') and a vEH(W)  fulfilling P(z, D ) v = f  in W 

and v=u in a neighbourhood V o W  of  K(e,e')nOG. Since /~ (e ,e ' )nCF is 
o 

connected one must have u=v there. Choose K(e, e ' ) u  V as f2" in Definition 1.1. 
Theorem 2.4 is proved. 

Remark. One notices that the topological error in [8, Theorem 2.2] does not 
intervene in the proof  of  [8, Theorem 3.1] since the connectedness condition of  
Theorem 2.4 is always satisfied in the application of [8, Theorem 2.2] in [8, Sec- 
tion 3]. 
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3. Proof of Theorem 1.1 and Theorem 1.4. The last part 

After a rotation and translation of the coordinates in Theorem 1.1 one may 
assume that z ~  and that grad~q~(0)=(1,0). I f  P~ ( (1 ,0 ) ) r  then one can 
always find and open convex cone M of noncharacteristic directions in C 2 containing 
N=(1 ,  0) and such that K(N, M, 0, G) is a cone of analytic continuation if G is 

a closed convex set with 0CG. Let G={z ;  x l ~ - e } .  Then it is obvious that 
K ( N , M , O , G ) n O G c B \ F  if g?" is a fixed neighbourhood of z = 0  and B c [ 2 '  
is an open small ball around 0 and if e > 0  is chosen small after B being chosen. 
Theorem 2.4 says that z = 0  is a point of  analytic continuation. This fact is found 
already in Zerner [20]. Its proof  is given here just to follow the line given in the 
introduction. 

Let Pro((1, 0)) =0  and let (1.1) of Theorem 1.1 be false. Then there is a sequence 
of complex numbers (sj);=l such that sj-*0, j ~  ~,  and such that 

(3.1) ~,((o, s j))  < o, j = l ,  2 . . . . .  

For convenience one assumes that for each j  one makes a rotation in the z2 variable 
such that in the new variables all sj are real and positive. Still after a multiplication 
of  P by a constant c with [c l=l  P may be assumed to have the form in (1.2) where 
the absolute values of  the coefficients are independent of j in the new coordinate 
systems. This is important in the following. 

Let 

(3.2) M =  {t~; ~ = 4 + i t / ,  4, tlER 2, 4 1 :  1, 0 < - 4 2 < b ,  I t / j [ < b , j =  1,2, t > 0 }  

for some constant b>0 .  It follows from (1.2) that Pm(~)~0, ~EM, when b is small 
since then 

[~T -~ ~l >~ l~ i= , .  l a ~ l ,  ~EM. 
~-<1 

One notices that this is true also in the Theorem 1.4 case when the coefficients are 
variable but bounded in a neighbourhood of  z ~ Let N = ( 1 , - b / 2 ) C C  2. Let G 
be a closed convex set containing 0 as an inner point. Then for each small open ball 
B around 0 and with any G such that K(N, M, 0, G)=B K(N, M, 0, G) is a cone 
of  analytic continuation for P at z=0 .  

For  each j define 
aj  -- {z; xl >=-~ j ,  x2 <= sj}. 

Here e j>0.  One notices that 

(3.3) K(N,M,O, G.i ) c {z: xl >=-e.i, x~ ~ s i, xl <=-b[yjl, j = 1,2, xl <= bx2}. 
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It now tollows from the fact that OF is in C 1, from (3.1) and (3.3) that to each 
open ball B around 0 one can choose j and then ej.>0 such that K(N,  M, O, Gj)c~ 
O G j c B \ F ,  K(N,  M, O, G j ) cB .  It follows from Theorem 2.4 that 0 is a point of 
local analytic continuation. The same argument applies in the Theorem 1.4 case. 
The proofs of Theorem 1.1 and Theorem 1.4 are complete. 

4. Analytic continuation across a simply characteristic point 

In this section the following slight sharpening of Persson [8, Theorem 3.1] 
will be proved. 

Theorem 4.1. Let f2, P(z, D), z ~ and F be as in Definition 1.1. Assume tha t 
for  some open set V c  f2, z~ V, there is a real valued cpC C2(V) with grad~ cp(z~ 
such that 

(4.1) V c ~ F =  {z; (p(z) =>0, zEV}, 

also fue l l ing  

(4.2) P,,(z ~ gradz ~p(z~ = 0, and grad~ Pm(Z ~ grad~ ~p(z~ # 0. 

Let C ) t ~ ( z ( t ) , ( ( t ) ) E C  2" solve 

(4.3) d(z( t) ,  ( ( t )) /dt  = (grad~Pm(z(t), ~(t)), -grad~Pm(z(t) ,  ((t))), 

(z(0), ~(0)) = (z ~ gradz ~p(z~ 

I f  for some sequence (tj)7=], tjCC, j = I ,  2 . . . .  one has t j ~ O , j ~  and 

(4.4) 9(z( t i )  ) < O, j = 1, 2, . . . ,  

then z ~ is a point o f  local analytic continuation. 

Proof  As is pointed out in the proof of [8, Theorem 3.1] (4.2) and (4.3) are 
invariant under holomorphic changes of coordinates. Of course this is true for (4.4) 
too. As in [8] one might assume that z~  

(4.5) grad z ~0(0) = (1, 0 . . . . .  0) 

and 

(4.6) P,, (z, D) = DT-1D2 4- ~ 1 < m - 1  a,D ~ 
I~l=m 
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f rom the beginning. Then (4.3) gives z ( t )= (0 ,  t, 0, ..., 0). So (4.4) is 

(4.7) q~((O, t j ,  0 . . . .  , 0 ) )  < O, j =- 1, 2, . . . .  

As in Section 3 for each j one chooses new coordinates by rotating the z2 var iable  
and keeping the other variables fixed such that tj is real and positive. After multi- 
plication of P by a constant c, lel = 1 the new Pm has still the form (4.6) and all 
absolute values of  a,  are unchanged just as in Section 3. For  a reader who accepts 
the proof  of  [8, Theorem 3.1] the p roof  of  Theorem 4.1 is then complete. I-towever 
the p roof  in [8] at this point is not selfcontained and refers to a proof  in [7]. The 
idea is that one first shows that  it is possible to continue u analytically from the 
origin up to the line R3s~z ( s )  to a certain positive distance f rom z = 0  independent 
o f j .  For  this one uses cones of  analytic continuation just as uniqueness cones are 
used in the corresponding situation in [7]. Then (4.7) and the fact just proved makes 
it possible to insert a cone of  analytic continuation with vertex at z = 0  such that  
Theorem 2.4 can be applied showing that  z = 0  is a point  of local analytic contin- 

uation. 
As before one lets z---x+iy, x, yCR". One also lets ~=~+iq, ~ , ~ R " ,  z"= 

(z3, . . . , z , ) ( C  "-2 and ( " = ( ( a  . . . . .  ( , )EC "-2. One also writes z~=z l ( l+ . . .+z , (  
and z " ( " = z a ( 3 + . . .  + z , ( , .  

For  each j one constructs cones of  analytic continuation as follows. Let b >0 ,  

and c > 0  be constants. Let 

(4.8) 
and  

(4.9) 

Ma-----{t(; ~a = 1, (r/~+~/~+[("] z) < - b ~ 2 ,  0 < - r  < c, t >  0}, 

M2 = {t~; ~1 1, r,~2+,,2+lr,q2~ = v a  ,l~ i~ 1 / <  b2~ ,  0 <  ~ < c ,  t > 0 } ,  

and let N~=( I ,  -c/2,  0, ..., 0)EC" and N2=(1,  c/2, O, ..., 0)EC". I t  follows f rom 
(4.6) that for some small fixed b and e there is a neighbourhood U of z = 0  such that 

Pm(z,~)r zCU, ~CMk, k = l , 2 .  

Let G be a closed convex set such that  z ~ is an inner point of  G and such that 

K(Nk, Mk, z~ c U, k---- 1,2. 

That  shows that  for these z ~ and G K(N k, Mk, z ~ G) is a cone of analytic continua- 

tion for P at z ~ 
Let z be fixed and such that sup Re z ~ 0 ,  ~EM 1. That  means that 

(4.10) xl ~ -x2~2+y lq l+y~q2-Re  z~ ", ~EM1, ~t = 1. 
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Now (4.10) and (4.8) give 

(4.11) x~ < = - x 2 ~ - l ( Y x ,  Y~, z")lb[~[ ~12, 0 < -~2 < c, 

For x2N0 (4.11)gives 

(4.12) X 1 <= CX2 -- bcl/Zl(yl, y~, z")l. 

Let x~>0 and define g( t )=x~ t - I ( y t , y~ , z " ) ]b t  1/~, t>=O. Then inf g ( t ) =  
-4-ab~l(y l ,  y~, z"l~/xe=g(4-~b~l(y~, y~, z")]~/x~). That means that for I(Y~, Y~, z")l < 
2b- ~ c 112 X 2 

(4.13) X~ <-- --4-~b2l(y~, Y2, z")l~/x~ �9 

On the other hand for x2>0 and I (y l ,y~ ,z ' ) ]~2b- lc l /ex2  (4.12) is true. It 
follows that 

(4.14) K ( N I , M I , 0 ,  G)c{ z ;  zCG, xl<=cx,~-bd/~l(ya,y2, z")l, when x~=<O or 
when x2>O and [(Yl, Y2, z")[ >=2b-lO/2x2, and Xl<= -4-1b2[(y l ,  Y2, z")12/x2 
when x~>O and ](y~, y2, z") l<2b- lc l /2x  2. 

Let zO=(x ~ x ~ 0 . . . . .  0). By comparing M~ and Ms and the computations that 
gave (4.14) one sees that 

(4.15) O<_c(x2_x0)_bcl /2] (y l ,  Y2, z")[ when K(N2,M2,  z ~  z{G, x l - x l =  
x 2 - x ~  or when x 2 - x ~  and [(yl, y2, z")]>=-2b-ld/2(x2-x~ and 
x~<=4-~b2[(yl,Y2, z")]2/(xz - x~  when x~ -x~  and [(YI, Y2, Z")] -< 

- 2b-~ c 1'~ ( x ~ -  x • .  

One notices that the constants b and c are chosen independent of  the special coor- 
dinate system chosen for a fixedj.  

Since ~0EC 2 near z = 0  and since grad~q~(0)=(1,0 . . . .  ,0)  one may write 
~o (z) ~ 0  as 

(4.16) xl => g(y~, z') = A((y~, x" y'))+o(l(y~, x', y,)[2). 

Here gC C 2 and A is a homogeneous polynomial of order 2. Thus there exists a 
constant / (1>0  independent o f j  such that 

(4.17) q~(z) < 0 if Xl-~-Kl(y~+Iz ' [2) .  

Choose e > 0  independent of  j and define G= {z; x~>=-e, x2>=O}. Let z~  
( - s ,  t, 0, ..., 0), s>0 ,  t>0 .  It follows from (4.15)--(4.17) that 

OGc~K(N2, Ms, z ~ G) c {z; ~o(z) < 0}, 
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for  some small fixed t and e and all small s independent  o f j .  Theorem 2.3 and the 
fact tha t  K ( N z ,  M2,  z ~ G)c~ {z; (p(z)<0} is connected shows that  u can be con- 

tinued to a ne ighbourhood  o f  K(N2,  M2,  z ~ G) for  each small s. Tha t  means 

that  for  z~  t, 0, ..., 0) u can be cont inued analytically to all inner points  o f  
K(N2,  M2, z ~ G). A look at (4.15) says tha t  there is an 5 > 0  and a /s  inde- 

pendent  o f ]  such that  u can be cont inued analytically to 

(4.18) 2+ 2 < t/2, x l  > - e } .  {z; x~ < - K 2 ( y l  y~+Lz"?),  0 < x~ 

Let e j > 0  and define 
Gj = {z; xl  -> - ~ j ,  x2 <= tj}. 

It  follows f rom (4.17), (4.14), (4.7) and (4.18) that  u can be cont inued analytically 

to a ne ighbourhood  of  
OGj c~ K(N~,  M1, O, G j) 

i f j  is big and e j > 0  is chosen small. Theorem 2.4 shows that  z = 0  is a point  o f  

local analytic continuation.  The p r o o f  o f  Theorem 4.2 is complete. 

Added in proof. I t  should be noticed that  the cons t ruc t ions  in M. Kashiwara  
and  P. Sehapira, ProblSme de Cauchy  pour  les syst~mes microdiff6rentiels dans 
le domaine  complexe, Inventiones math.  46 (1978) 17-38, specialized to one differen- 

tial eqation and solutions with singularities in a hypersurface give precisely Theorem 1.2. 
In  Theorem 1.2 the x2 direction is " n o n  microcaract6ristique,, .  The p r o o f  in [8] 
shows that  in this case the use o f  microdifferential  operators  is no t  essential. 
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