Extensions of a fixed point theorem of Meir and Keeler

Sehie Park* and Jong Sook Bae

1. Introduction

Meir and Keeler [9] established a fixed point theorem which is a remarkable generalization of the Banach contraction principle.

A selfmap g of a metric space (X, d) is called a weakly uniformly strict contraction or simply an (ε, δ) -contraction if for each $\varepsilon > 0$, there exists a $\delta > 0$ such that for all $x, y \in X$,

(1)
$$\varepsilon \leq d(x, y) < \varepsilon + \delta$$
 implies $d(gx, gy) < \varepsilon$.

Meir and Keeler proved that an (ε, δ) -contraction g of a complete metric space X has a unique fixed point η in X and $\{g^n x\}_{n=1}^{\infty}$ converges to η for all $x \in X$ [9]. The class of (ε, δ) -contractions clearly contains the classes of (Banach) contractions and nonlinear contractions investigated by Browder [3] and by Boyd and Wong [2].

A fixed point of a selfmap g of X can be considered as a common fixed point of g and 1_X , the identity map of X. In certain cases, we can replace 1_X by a continuous selfmap f of X and consider common fixed point of f and g. Jungck [8] adopted this idea and obtained a useful generalization of the Banach contraction principle to commuting selfmaps. More recently, Park [10] extended these facts and obtained a number of results on commuting selfmaps.

Let f be a continuous selfmap of a metric space (X, d) and C_f denote the class of selfmaps g of X such that fg=gf and $gX \subset fX$. A selfmap g of X is called an (ε, δ) -f-contraction if for any $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that for all $x, y \in X$,

(2)
$$\varepsilon \leq d(fx, fy) < \varepsilon + \delta$$
 implies $d(gx, gy) < \varepsilon$,

and (2') gx = gy whenever fx = fy.

* This paper was written while the first author was visiting the University of California, Berkeley in 1979—80.

In this paper we show that an (ε, δ) -*f*-contraction *g* in C_f has a unique common fixed point with *f* whenever *X* is complete, and that this extends fixed point theorems of Meir and Keeler [9], Edelstein [5], Browder [3], Boyd and Wong [2], Jungck [8], Park [10], Jeong [7], and Chung [4]. Some related results are also obtained.

2. Fixed point theorems

Let f and g be selfmaps of a metric space (X, d). Given a point x_0 in X, we consider a sequence $\{fx_n\}_{n=1}^{\infty}$ recursively given by the rule $fx_n = gx_{n-1}, n = 1, 2, ...$ Such a sequence is called an *f*-iteration of x_0 under g.

Note that for an (ε, δ) -f-contraction g, we have

(3)
$$d(gx, gy) < d(fx, fy) \text{ for } x, y \in X, fx \neq fy$$

Lemma 2.1. Let f be a selfmap of a metric space X and g be an (ε, δ) -f-contraction. If there exists an $x_0 \in X$ and an f-iteration $\{fx_n\}_{n=1}^{\infty}$ of x_0 under g, then $\{d(fx_n, fx_{n+1})|n=1, 2, ...\}$ is monotone decreasing to 0.

Proof. Suppose $\inf \{d(fx_n, fx_{n+1})\} = r$ for some r > 0. Then by (3), we have

$$d(fx_n, fx_{n+1}) = d(gx_{n-1}, gx_n) < d(fx_{n-1}, fx_n),$$

so $\{d(fx_n, fx_{n+1})\}_{n=1}^{\infty}$ is a decreasing sequence and, hence, $\lim_n d(fx_n, fx_{n+1}) = r$. By (2), there exists a $\delta > 0$ such that

$$r \leq d(fx, fy) < r + \delta$$
 implies $d(gx, gy) < r$.

Since $\lim_{n \to \infty} d(fx_n, fx_{n+1}) = r$, there exists a positive integer N such that for every $m \ge N$, we have

(4)
$$r \leq d(fx_m, fx_{m+1}) < r + \delta.$$

Then for every $m \ge N$, we have

$$d(fx_{m+1}, fx_{m+2}) = d(gx_m, gx_{m+1}) < r,$$

which contradicts (4). Therefore, we have $\lim_{n \to \infty} d(fx_n, fx_{n+1}) = 0$.

Lemma 2.2. Let g be an (ε, δ) -f-contraction commuting with f. If there exists a $\xi \in X$ such that $f\xi = g\xi$, then $f\xi$ is the unique common fixed point of f and g.

Proof. Let
$$f\xi = g\xi = \eta$$
, and suppose $f\eta \neq \eta$. Then by (3)

$$d(\eta, f\eta) = d(g\xi, fg\xi) = d(g\xi, gf\xi) < d(f\xi, ff\xi) = d(\eta, f\eta),$$

which is a contradiction. Hence we have $f\eta = \eta$ and $g\eta = gf\xi = fg\xi = f\eta = \eta$. Therefore, $f\xi$ is a common fixed point of f and g. Let η' be a common fixed point of f and g such that $\eta \neq \eta'$. Then by (3)

$$d(\eta, \eta') = d(g\eta, g\eta') < d(f\eta, f\eta') = d(\eta, \eta'),$$

which is a contradiction. Therefore η is unique.

Now we have our main result.

Theorem 2.3. Let f be a selfmap of a metric space X and g be an (ε, δ) -f-contraction commuting with f. If a point $x_0 \in X$ has an f-iteration $\{fx_n\}_{n=1}^{\infty}$ under g with a cluster point $\xi \in X$ at which f is continuous, then $\{fx_n\}$ converges to ξ , and $f\xi$ is the unique common fixed point of f and g.

Proof. By Lemma 2.2, it is sufficient to show that we can find a point ξ in X such that $f\xi = g\xi$. If $d(fx_n, fx_{n+1}) = 0$ for some n, then $fx_{n+1} = gx_n = fx_n$, and we are done. Suppose $d(fx_n, fx_{n+1}) \neq 0$ for every n. We now claim that $\{fx_n\}$ is a Cauchy sequence. Suppose not. Then there exists an $\varepsilon > 0$ and a subsequence $\{fx_n\}$ of $\{fx_n\}$ such that

(5)
$$d(fx_{n_i}, fx_{n_{i+1}}) > 2\varepsilon.$$

By (2), there exists $0 < \delta < \varepsilon$ such that

$$\varepsilon \leq d(fx, fy) < \varepsilon + \delta$$
 implies $d(gx, gy) < \varepsilon$.

Since $\lim_{n \to \infty} d(fx_n, fx_{n+1}) = 0$ by Lemma 2.1, there exists a positive integer N such that for every $m \ge N$, we have

(6)
$$d(fx_m, fx_{m+1}) < \delta/6.$$

Then by (5) and (6), for every $n_i > N$, we can find m such that $n_i < m < n_{i+1}$ and

(7)
$$\varepsilon + \frac{\delta}{3} \leq d(fx_{n_i}, fx_m) < \varepsilon + \delta.$$

Then

$$d(fx_{n_{i}}, fx_{m}) \leq d(fx_{n_{i}}, fx_{n_{i}+1}) + d(fx_{n_{i}+1}, fx_{m+1}) + d(fx_{m+1}, fx_{m})$$

$$< \frac{\delta}{6} + d(gx_{n_{i}}, gx_{m}) + \frac{\delta}{6}$$

$$< \varepsilon + \frac{\delta}{3},$$

which contradicts (7), and hence $\{fx_n\}$ is a Cauchy sequence. Since $\{fx_n\}$ clusters at $\xi \in X$, it converges to ξ . Since f is continuous at ξ , $\{ffx_n\} = \{fgx_{n-1}\} = \{gfx_{n-1}\}$ converges to $f\xi$.

Suppose $ffx_m = ffx_{m+1} = ffx_{m+2} = \dots$ for some *m*. Then $\{ffx_n\}$ converges to ffx_m and $ffx_m = ffx_{m+1} = fgx_m = gfx_m$. Hence fx_m is a coincidence point of *f* and *g*,

and $ffx_m = f\xi$. Thus we are done. Suppose that we can not find an *m* satisfying $ffx_m = ffx_{m+1} = \dots$. Then for any $\varepsilon > 0$, there exists an *N* such that for every $m \ge N$, $d(ffx_m, f\xi) < \varepsilon/2$, and we can find an $n \ge N$ such that $ffx_n \ne f\xi$. Then we have

$$d(f\xi, g\xi) \leq d(f\xi, fgx_n) + d(fgx_n, g\xi)$$
$$= d(f\xi, ffx_{n+1}) + d(gfx_n, g\xi)$$
$$< \varepsilon/2 + d(ffx_n, f\xi) < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

Therefore $f\xi = g\xi$, and this completes our proof.

Note that if $gX \subset fX$, then every $x_0 \in X$ has an *f*-iteration under *g*. Therefore, from Theorem 2.3, we have

Theorem 2.4. Let f be a continuous selfmap of a complete metric space X and g be an (ε, δ) -f-contraction in C_f . Then f and g have a unique common fixed point η in X, and, for any x_0 in X, every f-iteration of x_0 under g converges to some $\xi \in X$ satisfying $f\xi = \eta$.

Proof. An *f*-iteration $\{fx_n\}$ of x_0 under *g* is Cauchy as in the proof of Theorem 2.3. Since *X* is complete, $\{fx_n\}$ converges to some $\xi \in X$. Now Theorem 2.4 follows from Theorem 2.3.

Remark. In case $f=1_x$, Theorem 2.4 is reduced to the result of Meir and Keeler [9]. In case $g=f^2$, Theorem 2.4 is reduced to the main result of Chung [4].

Corollary 2.5. Let f be a continuous selfmap of a complete metric space X and g be in C_f . If g^N is an (ε, δ) -f-contraction for some positive integer N, then f and g have a unique common fixed point.

Proof. Clearly we have $g^N f = fg^N$ and $g^N X \subset fX$, and hence $g^N \in C_f$. Applying Theorem 2.3, we have a unique common fixed point η of f and g^N . Then we have $fg\eta = gf\eta = g\eta$ and $g^Ng\eta = gg^N\eta = g\eta$. Hence $g\eta$ is also a common fixed point of f and g^N . This implies $g\eta = \eta$ because of the uniqueness. Suppose η and η' are common fixed points of f and g. Then $g^N \eta = \eta = f\eta$ and $g^N \eta' = \eta' = f\eta'$. Since f and g^N have a unique common fixed point, we have $\eta = \eta'$.

Corollary 2.6. If f is a bijective continuous selfmap of a complete metric space X, and for any $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in X$,

$$\varepsilon \leq d(fx, fy) < \varepsilon + \delta$$
 implies $d(x, y) < \varepsilon$

then f has a unique fixed point.

Proof. In Theorem 2.4, we set $g=1_x$.

Corollary 2.7. Let f be a continuous selfmap of a complete metric space X and $\{g_{\lambda}\}_{\lambda \in \Lambda}$ a commuting family of selfmaps in C_f . If each g_{λ} is an (ε, δ) -f-contraction, then there exists a unique point $\eta \in X$ such that $f\eta = g_{\lambda}\eta = \eta$ for every $\lambda \in \Lambda$.

Proof. For each λ , g_{λ} and f have a unique common fixed point, say η . For any $\mu \in \Lambda$, $g_{\lambda}(g_{\mu}\eta) = g_{\mu}(g_{\lambda}\eta) = g_{\mu}(f\eta) = f(g_{\mu}\eta)$ implies $g_{\mu}\eta = \eta$ by the uniqueness.

In certain case the continuity of f in Theorem 2.4 can be relaxed to that of some iterate of f.

Corollary 2.8. Let f be a selfmap of a complete metric space X such that f^k is continuous for some positive k. Let $g: f^{k-1}X \to X$ be a map such that $gf^{k-1}X \subset f^kX$ and gf=fg whenever both sides are defined. If gf^{k-1} is an (ε, δ) - f^k -contraction, then f and g have a unique common fixed point.

Proof. By Theorem 2.4, gf^{k-1} and f^k have a unique common fixed point η . From $gf^{k-1}(f\eta) = g(f^k\eta) = g\eta$ and $gf^{k-1}(f\eta) = f(gf^{k-1}\eta) = f\eta$, we have $f\eta = g\eta$. From $f^k(f\eta) = f(f^k\eta) = f\eta$, we know that $f\eta$ is also a common fixed point of gf^{k-1} and f^k . Therefore, we have $\eta = f\eta = g\eta$. The uniqueness is clear.

Remark. The class of (ε, δ) -*f*-contractions contains the classes of selfmaps satisfying (2') and one of the following conditions:

(8) There exists a map φ: [0, ∞)→[0, ∞) which is upper-semicontinuous from the right such that φ(t)<t for all t>0 and

$$d(gx, gy) < \phi(d(fx, fy)), \quad fx \neq fy.$$

(9) There exists a nondecreasing map φ: [0, ∞)→[0, ∞) which is continuous from the right such that φ(t)<t for all t>0 and

$$d(gx, gy) < \phi(d(fx, fy)), \quad fx \neq fy.$$

(10) There exists an $\alpha \in [0, 1)$ such that

$$d(gx, gy) \leq \alpha d(fx, fy).$$

Note that $(10) \Rightarrow (9) \Rightarrow (8) \Rightarrow (2) \Rightarrow (3)$ and that (8) and (10) are investigated by Jeong [7] and Jungck [8], and particular types of (9) by Park [10]. Therefore, certain results in [7], [8], [10] are consequences of ours. Note also that for $f=1_X$, (8) and (9) reduce to non-linear contractive type conditions of Boyd—Wong [2] and Browder [3], respectively. Avramescu [1] obtained some results for (10) with $g=1_X$ and f surjective. We can easily obtain an extended form of a result in [6] with respect to (ε, δ) -f-contractions.

Finally, we consider compact metric spaces.

22.8 Sehie Park and Jong Sook Bae: Extensions of a fixed point theorem of Meir and Keeler

Theorem 2.9. Let f and g be continuous selfmaps of a compact metric space X such that $g \in C_f$ and (3) and (2') hold. Then f and g have a unique common fixed point η in X, and, for each x_0 in X, any f-iteration of x_0 under g converges to some $\xi \in X$ satisfying $f\xi = \eta$.

Proof. Given $\varepsilon > 0$, consider

$$\inf \left\{ d(fx, fy) - d(gx, gy) | \varepsilon \leq d(fx, fy) \right\} = \delta(\varepsilon).$$

Since X is compact, this infimum is achieved for some $(a, b) \in X \times X$ with $d(fa, fb) \ge \varepsilon$. Since (3) holds, we have $\delta(\varepsilon) > 0$. This shows that g is an (ε, δ) -f-contraction. Therefore, Theorem 2.9 follows from Theorem 2.4.

Remark. Theorem 2.9 was proved in [10]. For $f=1_x$, Theorem 2.9 is reduced to a result of Edelstein [5].

References

- 1. AVRAMESCU, C., Theoremes de point fixe pour les applications contractantes et anticontractantes, *Manuscripta Math.* 6 (1972), 405-411.
- 2. BOYD, D. W. and WONG, J. S. W., On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
- 3. BROWDER, F. E., On the convergence of successive approximations for nonlinear functional equations, *Indag. Ma^{*}h.* **30** (1968), 27-35.
- 4. CHUNG, K.-J., On fixed point theorems of Meir and Keeler, Math. Japonica 23 (1978), 381-383.
- 5. EDELSTEIN, M., On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79.
- 6. ISEKI, K., Application of Zamfirescu's fixed point theorem, Math. Sem. Notes 4 (1976), 215-216.
- 7. JEONG, K. S., Extensions of fixed point theorems of Boyd and Wong, M. S. Thesis, Seoul Nat. Univ., 1978.
- 8. JUNGCK, G., Commuting mappings and fixed points, Amer. Math. Monthly, 83 (1976), 261-263.
- 9. MEIR, A. and KEELER, E., A theorem on contraction mappings, J. Math. Anal. Appl. 2 (1969), 526-529.
- 10. PARK, S., Fixed points of f-contractive maps, Rocky Mountain J. of Math. 8 (1978), 743-750.

Received February 3, 1980

Sehie Park Jong Sook-Bae Department of Mathematics Seoul National University Seoul 151 Korea