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Let T be an invertible aperiodic measure preserving transformation on a prob- 
ability space (X, N, m) where we assume that (X, ~ )  is a standard Borel space 
and m is continuous, i.e., assigns mass zero to singletons. Let r be a Borel func- 
tion on X of  absolute value one and consider the unitary operator V ~ defined on 
L2 (X, ~ ,  m) by 

(V~'f)(x) = q~(x)f(Tx), fE L2(X, ~ ,  m). 

In a paper entitled "cocycles and spectra" Helson and Par ry  prove that for every 
T there exists a q~ such that V ~ has Lebesgue spectrum, moreover q~ can be chosen 
to be real, i.e., taking values + 1 and - 1. The purpose of this paper is to extend 
this result to certain actions of countable groups which includes ergodic non-singular 
actions of countable abelian groups. We blend the method of  Helson and Parry 
with the notions of  weak equivalence and weak von Neumann transformations. 
In section 3 and 4 we discuss these results in connection with systems of  imprimi- 
tivity. 

The problem of  extending the result quoted above to countable groups was 
raised by H. Helson to one of  us. It is a pleasure to acknowledge his interest and 
encouragement in this work. 

Section 1 

Definition. A non-singular transformation z on Of, ~ ,  m) is said to be weak von 
Neumann transformation if there exists a sequence ~k(z)=(D k . . . .  , Dkk) k = l ,  2, ... 
of  ordered partitions of  X into measurable sets such that 

(a) D k - - D k + I u D  TM i = l ,  , 2  k,  k 1,2 ,3 ,  
- -  i i + 2  k , " ' "  = "'" 

(b) D k = z i - l D  k, i = l  . . . .  , 2  k, k = 1 , 2 , 3 , . . .  

Remark 1. I f  the sets D k, i =  1, ..., 2 k, k = 1, 2 . . . .  generate the a-algebra 
(modulo null sets) then z is said to be yon Neumann transformation. We will not 
need yon Neumann transformation. 
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Remark 2. Let us write Orb (x, n) to mean the finite set (x, Tx . . . .  , z " - lx )  if 
n ~ 0  and the set ( z - ix  . . . .  ,z"x) if  n < 0 .  I f  we put  

Fk = Dzk_~, Fkl = D T M  Fk2 = D T M  2k-1~ 2 k - l + 2 k  

then Fk=FklUFk2. Further if  2k~[n[<2  T M  then O r b ( x , n )  intersects Fk in 
atleast one point and it intersects Fk~ and Fk2 in atmost  one point. This fact will 
be useful later. 

I t  is known that  every ergodic non-singular transformation is weakly equivalent 
to a weak yon Neumann  transformation (see Hajian, Ito, Kakutani  [3] for the measure 
preserving case and K. Schmidt [5] for the non-singular case). More generally 
ergodic non-singular action of  a countable abelian group is known to be hyperfinite, 
hence weakly equivalent to a yon Neumann transformation (see Feldman and 
Lind [2]). Let G be a countable group, not necessarily abelian but written additively. 
Let To, gEG, be a group of  non-singular transformations on X weakly equivalent 
to a weak yon Neumann transformation. This means that there exists a weak von 
Neumann  transformation z on X such that  for almost every x, orbit of  x under Tg, 
gC G is same as the orbit of  x under z. Define (almost everywhere) the function 
C: G •  Z denoting group of  integers, by 

C ( g , x ) = n  if Tox=z"x .  

For  fixed g, {x: C(g,x)=n}={x:  Tox=z"x } is a measurable set. Hence for 
every fixed g, the function C(g, .) is measurable. Moreover  it can be verified 
that  C satisfies the cocycle identity: 

C(g+h, x) = C(g, x)+C(h, Tgx) a.e. x 

for all g, hEG. For  gEG and kEZ let m ~ and m k denote measures defined by 
1 1 

(dmO) Y (dmk] T 
mg(B)=m(ToB), mk(B)=m(zkB), Br~ .  Let mg= I,-dm-m) dm, rag= I,--d-ram) dm, 

these being measures whose R a d o n - - N i k o d y m  derivatives with respect to m are 
1 1 

(dm O)'~ (dmk]~ 
-d-m-m) and I dm ) respectively. Schwarz inequality immediately gives 

rag(B) < l/--m-(B) m (X) -~ 1 

and similar inequalities for  mk(B ) and mk(X). I f  g and k 
BC={x: Tox=.ckx} then 

are fixed and 
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from which we conclude that on the set {x: Tox=zkx} we have 

Hence also 

(1) m o = m k on the set {x: Tox = zkx}. 

dm g dm k 

dm dm " 

Lemma 1. Given e > 0  and a positive integer k there exists a finite set SO= G 
such that i f  

Q(k, g) = {x: IC(g, x)[ < 2 k} 
then 

Zg r s m. (Q (k, g)) < e. 

Proof. Choose 6 > 0  so small that m(B)<6 implies mj(B)<2ke+l, --2*< 

j < 2  k. Let gl, gz, g3 . . . .  be a denumeration of  G. Then IC(g,, x)]-+oo as n~oo 
for a .e .x .  By Egorov's theorem there exists a set B of  measure less than 6 such that 
[C(g,, x)[ ~ oo uniformly on X - B .  Choose N so large that if g ~ {gl, g2 . . . . .  gN}= S 
then ]C(g,x)[~=2 k for xCX--B. Now 

Y~oCS mo(Q(k, g)) = Zgcs  ~'lil<~ ~ rag(x: C(g, x) = j )  

= Zljl<~ ~ Z . ~  m.(x: C(g, x) = j )  

= ~_~ljl<2 k •oCs mj(x: C(g, x) = j )  

where the last step follows from (1). For  fixed j ,  the set {x: C(g, x)-- j}  are all 
disjoint as g runs over G and for g ~! S they are all contained in B. Hence 

ZoCS mo(Q(k, g)) <= XIJI<2" mj(B) < 

by choice of  the set B. Q.e.d. 

Remark 3. I f  S satisfies the conclusion of  the above lemma then any finite sub- 
set of G containing S also satisfies the conclusion of the lemma. In view of  this 
we have the following. 

Corollary 1. There exist finite sets SkCG, k = 0 ,  1, 2 . . . .  such that 

(i) S0=0, Sk ~ Sk+l for all k 
(ii) Wk=0Sk=G 

(iii) i f  gE Sk+l-- Sk and if we set 

Q(g) = {x: [C(g, x)[ < 2*} = Q(k, g) 

then Y--oCG mo(Q(g))<~" 
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Proof. Choose positive s k so that ~ ' = z  ek<~176 For each k=>l, Sk~Sk--1 be 
so chosen that ~g~skmg(a(k,g))<ek. This is possible by lemma above and 
remark 3. 

We may assume that U~'=I Sk =G. Then 

Zoco mo(Q(g)) = Z~_-o Zacs.+~-s. mo(Q(k, g)) 

<= Z~=o Zgcs. mo(Q(k, g)) < oo 

where we have used also the fact that Q(0, g) is empty except for g=0 .  Q.e.d. 

Section 2 

Let p be a real measurable function on X. We shall write ~"p(xkx) to mean 
the sum 

n--1 Zk=oP('ckx) if n > 0 ,  - -Zkn lp( ' c -kx)  

i f  n < 0  and zero if n=O. The function ~o(n,x)=exp (i~"p(zkx)) is then a 
Z •  cocycle (relative to z) taking values in thecircle group. The function A (g, x ) :  
cp(C(g, x), x) can be verified to be a GXX cocycle (relative to T o, gEG), i.e., 
A(g, .) is a Borel function for each g and satisfies 

A(g+h,x)= A(g,x)A(h, Tax), g, hEG, xEX. 

Define the unitary group Vo, gEG, on L~(A ", ~ ,  m) by 

]/tim~ 
(2) (Vgf)(x) = A(g,x)f(Tgx) y dm (x). 

We are now ready to state the generalization of  the result of  Helson and Parry 
mentioned in the introduction. The proof  follows the pa.ttern of  the first construc- 
tion of  their paper [4]. 

Theorem 1. Let To, gEG, be a non-singular action of G on (X, ~, m)which 
is weakly equivalent to a weak yon Neumann transformation. Then there exists a 
G• cocycle A taking values +1 and - 1  such that for all 

fEL2(X, ~, m), ZaeG l(Vgf, f ) l  2 < oo. 

Proof. Let �9 be a weak von Neumann transformation on X such that for a.e. 
xEX{z"x: nEZ}={Tox: gEG}. Let Ej, ( j = 1 , 2 , 3  . . . .  ), be disjoint measurable 
sets in X with characteristic function hi. Form the random set E whose characteristic 
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function h is ~ tljhj, where t/j's are independent random variables .taking values 
0 and 1 each with probability ~ Define p = n  h which is now a function of  x and ~-. 

w, where w is in the space on which t/j s are defined. Set 

q (n, x) = exp (i Z" P(Zkx)) 

A(g, x) = x), x) 

which are now random Z X X  and G X X  cocycles respectively. For  fCL=(X, ~,  m) 
let Q(g)=(Vof, f ) ,  where Vg, gEG, is defined by (2) using the random cocycle 
A defined above. 0 (g) depends on w. We shall show that Ej's can be so chosen 
that for all f ~ L = ( X , ~ , m )  Z, gc~ Io(g)[ 2 < ~  for a.e.w. A routine calculation 
shows that 

[0(g)[ = f f  exp :gi (~;=1  C(g, x) tljhj(zkx) 

-- Z f=l Z c(~ ") rlj hj (zky)) (* �9 )dm (x) dm (y) 

where �9 in the integrand stands for the expression f(Tox)f(x)f(Toy)f(y) and * * 
1 

(drag (x).dm a )'V. over for the expression t dm dm (y) Integrating the probability space 

on which t/j s are defined gives 

(3) f lo(g)l~dw=H(*)H~.=l-~[(l+exp~zi~c(~ 

-- Z c(g,'' hj (z k y))] ( .  �9 ) d m  (x) am (y). 

The product on the right hand side takes values 0, 1, and equals 1 on the set in 
X •  consisting of  all (x, y) such that 

Set 

parity of  z~c(~ = parity of  ~C(~ for all j = 1, 2, 3 . . . . .  

t0 if Orb(x ,  C(g, x)) intersects Ej in even number of  points 

a}(x) = ]1 if Orb(x ,  C(g, x)) intersects Ej in odd number  of  points 

Let a~ aO~(x) . . . .  ), a sequence of  zeros and ones, terminating in zeros 
since for any x, Orb (x, C(g, x)) is a finite set and El,  E2, E3 . . . .  are pairwise 
disjoint non-empty sets. For  each sequence a of  zeros and ones terminating in zeros 
let G~ be the set of  x~X such that  aO(x) =a. For  a fixed g, G, ~ form a disjoint cover- 
ing of  X as a runs over all sequences of  zeros and ones terminating in zeros. Evi- 
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dent ly  ag(x) =a=a~ if and only if x and y belong to G~ ~ The mgXmg measure  

of this set of  (x, y) is (m,(Gg)) 2. Thus by (3) we have 

f I~(g)l 2 dw <= ]lfll~ ~ 'a  (mo(G~ 2. 

Since z is a weak yon Neumann transformation we have sets Fkl, Fk2, as per 
remark 2, for k = l ,  2, 3, . . . .  Let Sk'S be as in corollary of  lemma 1. Since Sk 
is finite and mo, gE G~ are all absolutely continuous with respect to m we can decom- 
pose Fkl, Fk2 into finitely many sets F~, ..., Fa t~ such that for all gESk the 
sets Ul~l.<z~,+~ zSFtk have mg measure less than 6k, where 6 k will be chosen later. 
Let Ej, j =  1, 2, 3, ... be a denumeration of  sets F~, l =  1, . . . ,  lk, k= 1, 2, 3 . . . . .  
These are the sets needed to prove the theorem. The Ej 's  are disjoint by construction. 
Each E] is contained in a unique Fk=FklW Fk~. I f  2 k<- [nl<2 TM, then by remark 2, 
for each x, Orb (x, n) intersects Fk and then such an orbit intersects each F t in at most  
one point since each F~ is contained in only one of F,~ or Fk~. 

Fix g and choose r such that  gESr-Sr_l .  The measure of  mg(G~ is to be 
estimated. Now 

rno(G~) <= ~ = r  rno(G~ {x: 2 k <= [C(g, x)l < 2k§ 

where Q (g) is as in corollary 1. We now estimate the U h term under the summation. 
Let a=(al, a2 .. . .  ). Suppose aj~-O f o r e a c h j f o r w h i c h  Ej C=F,. I f  2k<=[C(g,x)l < 
2 TM, then Orb (x ,  C(g,x)) intersects some EjC=Fk in exactly one point. Hence 

G~n{x: 2<-IC(g,x)]<2 k+l} is empty if aj=O for each j with EjC=Fk . For  
such a, 

rno(Ggn{x: 2 k <= ]C(g, x)l < 2k+1}) = 0. 

Otherwise aj = 1 for at least one j  such that Ej c= Fk. The set 

Ga g n {x :2k<= [C(g, x)[<2 k+l} 

is then contained in the set of  all x such that Orb (x, C(g, x)) intersects Ej and 
2<= lC(g, x ) l < 2  *+~. Thus 

a~n{X:2k<--lC(g,x)l<2k+~}C= U zSEs 
tsl<2t'+l 

mg(G~c~{x: (32" <= If(g, x)] < 2k+~}) <= Ok 

mo(G~ <= ,~k~_r 'Sk +rng(a(g)) = 7~ +mg(O(g))  

where we have put ~,=~-~k~, 6k. 
NOW for a fixed gE St--  S,-1,  G~ ~ form a disjoint covering of X as a runs over 

sequences of  zeros and ones terminating in zeros. Hence 

~a(mg(a~ 2 ~ (]; r-q-mg(O(g)) �9 2 a  rng(a~ ~ 7,+ mo(O(g)). 
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Finally summing over gE G we get 

(4) --~Yo c o (Z~  (G,~ 2 <= Z~=I  number of  elements in (S, - S,_ 1)" 7~ + ~'0 Eamo (Q (g)). 

We now choose 6k'S in such a way that  the first sum on the right hand side of  (4) is 
convergent. The second sum is convergent by corollary 1. Thus ~oEo f IQ(g)I 2dw< 
co. Hence for almost every w, ~ 'oca I(Vof, f)l 2<~, the null set of  w where 

Y~oco [(Vof, f)l ~ may not converge depends on f But L2(X, YJ, m) is separable, 
hence there is a grand null set N of  w points such that  ~ 'gco I(Vof, f)[ 2 converges 
for every wr and every fEL=(X, ~,  m) hence also by approximation for every 

fCL2(X, ~,  m). Q.e.d. 

Remark 4. In case G is a countable abelian group the above theorem shows 
that A can be so chosen that  the unitary group Vo, gEG, has spectral measure 
absolutely continuous with respect to Haar  measure on the compact  dual of  dis- 
crete G. 

Remark 5. I f  To ~, gE G1 . . . .  , T~, gE G, are finitely many non-singular actions of  
countable groups G1 . . . .  , G, all having orbits same as a single weak yon Neumann 
transformation z on X, then there exists a single Z •  cocycle q~ relative to �9 such 
that the associated V~, gEGi,j= 1 ..... n defined by (2) all satisfy Z,a~a~ ]Vaf, f)l 2< 
~,  for fEL2(X, ~,  m). This can be accomplished by choosing 6k's in the proof  of  
the theorem suitably small. 

Section 3 

In this section we give an application of theorem 1 to systems of  imprimitivity 
(see [1], [6]). 

Let X denote the circle group. Let G ~ X be a countably infinite subgroup 
with discrete topology. Let K be the compact  dual of  G. The identity map e: e (g) =g ,  
gC G, is a character of  G, hence an element of  K. Translation by e is an ergodic 
action on K equipped with Haar  measure h on its Borel sets. Let H be a complex 
separable Hilbert space and consider L~(K, H, h), the space of  H valued square 
integrable functions on K. Let ~0 be a Borel function on K whose values are unitary 
operators on H. Finally let unitary operator V ~ be defined by 

(V~f)(x) = (p(x)f(x+e), fEL2(K, H, h). 

It  is known that  the spectral measure E ~ of V ~' is of  uniform multiplicity. Further 
any n0n-negative finite measure m on X having the same null sets as E e is quasi- 
invariant and ergodic under translation action of  the group G on X. 
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Theorem 2. Given a non-negative finite measure m on X quasi-invariant and 
ergodic under action of  G by translation, there exists a ~o such that the spectral measure 
E ~~ has multiplicity one and has same null sets as m. 

Proof. As permitted by theorem 1 let A be a G X J (  cocycle of  absolute value 
one such that  Vg, gEG, as defined by (2) has absolutely continuous spectrum. 
I t  is known that  such a Vg, gEG, has uniform multiplicity, say n<-R0 . Let H 
be an n-dimensional complex Hilbert space and let S be an isometry f rom L 2 (X, ~ ,  m) 
onto L2(K, H, h) such that  for all g, SVgS- l=mul t ip l ica t ion  by Zg, where )~g is 
the character on K corresponding to gEG. I f  U is the operator on L2(X, ~ ,  m) 
given by (Uf ) (x )=x f (x ) ,  f E L 2 ( X , N ,  m) then it is known that  S U S - I = V  ~ for 
some q~. But U has multiplicity one and its spectral measure has the same null 
sets as m. Q.e.d. 

Section 4 

In this section we prove that  the result o f  Helson and Parry quoted in the 
introduction is best possible in a sense made precise by the following theorem. 

Theorem 3. I f  p is a continuous probability measure on the circle group singular 
with respect to Haar measure, then there is an ergodic T such that # does not appear 
in the spectrum of  V~' for any go, i.e., there is a support S o f  l z such that E~~ 
where E ~ is the spectral measure of  V ~~ 

Proof. Let S be a Borel set of  Haar  measure zero on which # is supported. 
Then the set F = { 2 :  # ( S n 2 S ) > 0 }  has Haar  measure zero, for otherwise the 
Haar  measure of  S is seen to be positive (contrary to assumption) by convoluting 
# with Haar  measure. The sets F ,={) . :  )~"EF}, n~O, then have Haar  measure 
zero. I f  ~ U , ~ 0  F, ,  then # ( S c ~ " S ) = 0  for all n # 0 .  Choose )~U,~0 F, such 
that  {2": nEZ}  is dense in X, the circle group. Define T on X by Tx=2x .  T acts 
ergodically on X equipped with its Haar  measure m. Let ~o be any Borel function 
on X of  absolute value one. Define V ~ on Lz(X, ~ ,  m) by (V~f ) (x )  =go(x)f(Tx), 
for a.e. x E X  with respect to Haar  measure. Let E e denote the spectral measure of  
V '~ Then it is known that  E ~ is ergodic under T, which means that if  a Borel set 
B is invariant under T then E~'(B) is either zero or the ~dentity operator. Since 
the support  S of  # is a wandering set under T, i.e., # ( S n  T " S ) = 0  for all n ~ 0 ,  
it follows that  E ~~ (S) = 0  if E is continuous. I f  E is discrete, then the result is obvious, 
since # is continuous. Q.e.d 
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