Boundedness of the shift operator related to positive definite forms: An application to moment problems

F. H. Szafraniec

Introduction

1. Positive definite forms. Suppose S is an involution semigroup and E is a complex linear space. Let $\omega: S \times E \times E \rightarrow \mathbf{C}$ be a map such that for every $s \in S$ $\omega(s, \cdot,-)$ is a (hermitian) bilinear form. We call ω simply a form (over ($S, E)$) although it is in fact a family of forms on E, indexed by S. We will see a little while later that we are not far from being precise at this point.

We say that a form ω is positive definite (in short: PD) if for all finite sequences $s_{1}, \ldots, s_{n} \in S$ and $f_{1}, \ldots, f_{n} \in E$

$$
\sum_{i j} \omega\left(s_{i}^{*} s_{j}, f_{j}, f_{i}\right) \geqq 0
$$

Such forms appear in many circumstances. Let us describe some of them:
1^{0} Suppose $\left\{\mu_{n}\right\}_{n=0}^{\infty}$ is a sequence of real numbers like in the classical moment problem. Then

$$
\omega(n, \xi, \eta)=\mu_{n} \xi \bar{\eta}
$$

is a form over (\mathbf{N}, \mathbf{C}). Here \mathbf{N} is understood as an additive semigroup of nonnegative integers with involution being just the identity mapping.
2^{0} Let $\varphi: S \rightarrow B(H)(B(H)$ stands for the algebra of all bounded linear operators in a Hilbert space H) be a PD map arising from the Sz.-Nagy dilation theory [14]. It leads to a PD form

$$
\omega(s, f, g)=\langle\varphi(s) f, g\rangle, f, g \in H, s \in S
$$

3^{0} The next sort of examples comes from unbounded operators in a Hilbert space. It is commonly known that in this case forms (in their usual meaning) rather than operators themselves are more appropriate to deal with. So as to have a con-
crete example (of a form in our sense) in mind take an unbounded symmetric operator A, denote by $C^{\infty}(A)$ the set of all f 's such that all the powers $A^{n} f$ are well defined and define

$$
\omega(n, f, g)=\left\langle A^{n} f, g\right\rangle, \quad f, g \in C^{\infty}(A)
$$

We get a PD form over ($\mathbf{N}, C^{\infty}(A)$).
4^{0} Another kind of forms comes from operator valued stochastic processes. The covariance kernel, generally depending on two separated variables s and t, may depend, and in many cases does, on the product $s^{*} t$. If this happens we get our form.
2. The Schwarz inequality. Let $\mathscr{F}(S, E)$ denote the complex linear space of all functions from S to E which are zero but a finite number of s. For $h, k \in \mathscr{F}(S, E)$ define

$$
\Omega(h, k)=\sum_{s, t} \omega\left(t^{*} s, h(s), k(t)\right)
$$

We get in this way a hermitian bilinear form on $\mathscr{F}(S, H)$ corresponding to ω. This correspondence goes back. Indeed, take $s \in S$ and $f \in E$ and define $\delta_{s f} \in \mathscr{F}(S, E)$ as $\delta_{s f}(s)=f$ and $=0$ otherwise. Then

$$
\omega\left(t^{*} s, f, g\right)=\Omega\left(\delta_{s f}, \delta_{t \xi}\right)
$$

This is why we have called ω just a form. It is easily seen that Ω is PD (i.e. $\Omega(h, h) \geqq 0)$ if and only if so is ω.

Positive definiteness of ω implies immediately (for example via Ω) the following Schwarz inequality

$$
\begin{equation*}
\left|\sum_{i, k} \omega\left(t_{k}^{*} s_{i}, f_{i}, g_{k}\right)\right|^{2} \leqq \sum_{i, j} \omega\left(s_{i}^{*} s_{j}, f_{j}, f_{i}\right) \sum_{k l} \omega\left(t_{k}^{*} t_{l}, g_{l}, g_{k}\right) \tag{1}
\end{equation*}
$$

for $s_{1}, \ldots, s_{m}, t_{1}, \ldots, t_{n} \in S$ and $f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{n} \in E$. Moreover we have the following symmetry relation

$$
\omega\left(t^{*} s, f, g\right)=\omega\left(s^{*} t, g, f\right)
$$

3. Factorization. We can apply to Ω the well known procedure (following Aronszajn-Kolmogorov) giving us the factorization (in terms of ω)

$$
\begin{equation*}
\omega\left(s^{*} t, f, g\right)=\langle F(t) f, F(s) g\rangle \tag{2}
\end{equation*}
$$

where, for every $s \in S, F(s)$ is a linear operator from E to some Hilbert space H_{ω}. Moreover the linear span of $F(S) E$, call it H_{ω}^{0}, is dense in H_{ω}. This minimality condition determines F and H_{ω} up to unitary equivalence. As the most appropriate reference in this matter we recommend [8].

The shift operator

4. Definition of the shift operator. Take $u \in S$. Since an arbitrary element of $H_{\omega}^{\boldsymbol{0}}$ is $\sum F\left(s_{i}\right) f_{i}$ with some $s_{1}, \ldots, s_{n} \in S$ and $f_{1}, \ldots, f_{n} \in E$, we can try to define $\varphi(u)$, called the shift operator, in the following way

$$
\begin{equation*}
\varphi(u) \sum_{i} F\left(s_{i}\right) f_{i}=\sum_{i} F_{i}\left(u s_{i}\right) f_{i} \tag{3}
\end{equation*}
$$

It is easily seen, via (2), that $\varphi(u)$ is well defined if the following implication holds:

$$
\begin{equation*}
\sum_{i j} \omega\left(s_{i}^{*} s_{j}, f_{j}, f_{i}\right)=0 \Rightarrow \sum_{i j} \omega\left(s_{i}^{*} u^{*} u s_{j}, f_{j}, f_{i}\right)=0 \tag{4}
\end{equation*}
$$

Proposition. $\varphi(u)$ is the well defined linear operator with the domain $D(\varphi(u))=$ H_{ω}^{0}. The adjoint $\varphi(u)^{*}$ always exists and

$$
\begin{equation*}
\varphi\left(u^{*}\right) \subset \varphi(u)^{*},\left.\quad \varphi(u)^{*}\right|_{H_{\infty}^{0}}=\varphi\left(u^{*}\right) . \tag{5}
\end{equation*}
$$

Thus $\varphi(u)$ is closable. Moreover the mapping $u \rightarrow \varphi(u)$ is multiplicative.
Proof. Use the Schwarz inequality (1) with $t_{i}=u^{*} u s_{i}, g_{i}=f_{i}$. Then we get

$$
\left|\sum_{i j} \omega\left(s_{i}^{*} u^{*} u s_{j}, f_{j}, f_{i}\right)\right|^{2} \leqq \sum_{i j} \omega\left(s_{i}^{*} s_{j}, f_{j}, f_{i}\right) \sum_{i j} \omega\left(s_{i}^{*}\left(u^{*} u\right)^{2} s_{j}, f_{j}, f_{i}\right)
$$

and this shows the implication (4). Linearity of $\varphi(u)$ follows also from (4). To see (5) write, using (2),

$$
\begin{aligned}
& \left\langle\varphi(u) \sum_{i} F\left(s_{i}\right) f_{i}, \sum_{j} F\left(t_{j}\right) g_{j}\right\rangle=\sum_{i j} \omega\left(t_{j}^{*} u s_{i}, f_{i}, g_{j}\right) \\
= & \omega\left(\left(u^{*} t_{j}\right)^{*} s_{i}, f_{i}, g_{j}\right)=\left\langle\sum_{i} F\left(s_{i}\right) f_{i}, \varphi\left(u^{*}\right) \sum_{j} F\left(t_{j}\right) f_{j}\right\rangle .
\end{aligned}
$$

Since $\varphi(u)=\varphi\left(\left(u^{*}\right)^{*}\right)$, It follows from (5) that $\varphi(u)$ is closable. Multiplicativity of φ follows just from its definition.

Now we can explicitly write (2) using $\varphi(u)$

$$
\omega\left(t^{*} u s, f, g\right)=\langle\varphi(u) F(s) f, F(t) g\rangle
$$

or, if the semigroup has a unit e,

$$
\begin{equation*}
\omega(u, f, g)=\langle\varphi(u) V f, V g\rangle \tag{6}
\end{equation*}
$$

with $V=F(e)$. Furthermore

$$
\begin{equation*}
\|V f\|^{2}=\omega(e, f, f) \tag{7}
\end{equation*}
$$

5. Main result. We deduce from (1) the following simple

Lemma. Let $v \in S$ be such that $v^{*}=v$. Then

$$
\begin{gather*}
\left|\sum_{i j} \omega\left(s_{i}^{*} v s_{j}, f_{j}, f_{i}\right)\right| \leqq\left[\sum_{i j} \omega\left(s_{i}^{*} s_{j}, f_{j}, f_{i}\right)\right]^{1-2-k} \tag{8}\\
\times\left[\sum_{i j} \omega\left(s_{i}^{*} v^{2^{k}} s_{j}, f_{j}, f_{i}\right)\right]^{2-k}
\end{gather*}
$$

for $k=1,2, \ldots$.

Proof. Use (1) with $t_{i}=v s_{i}$ and $g_{i}=f_{i}$. We have

$$
\left|\Sigma_{i j} \omega\left(s_{i}^{*} v s_{j}, f_{j}, f_{i}\right)\right|^{2} \leqq \sum_{i j} \omega\left(s_{i}^{*} s_{j}, f_{j}, f_{i}\right) \sum_{i j} \omega\left(s_{i}^{*} v^{2} s_{j}, f_{j}, f_{i}\right)
$$

Denote by $p(v)=\sum_{i j} \omega\left(s_{i}^{*} v s_{j}, f_{j}, f_{i}\right)$ and $a=\sum_{i j} \omega\left(s_{i}^{*} s_{j}, f_{j}, f_{i}\right)$. Then the above can be rewritten as follows

$$
\begin{equation*}
|p(v)|^{2} \leqq a p\left(v^{2}\right) . \tag{9}
\end{equation*}
$$

This implies

$$
\begin{equation*}
|p(v)|^{2 k} \leqq a^{2 k-1} p\left(v^{2^{k}}\right) \tag{10}
\end{equation*}
$$

Indeed, suppose

$$
|p(v)|^{2 k-1} \leqq a^{2 k-1-1} p\left(v^{2 k-1}\right)
$$

Then, by (9)

$$
\begin{aligned}
&|p(v)|^{2 k}=\left(|p(v)|^{2 k-1}\right)^{2} \leqq\left(a^{2 k-1} p\left(v^{2 k-1}\right)\right)^{2} \\
& \leqq a^{2 k-2} p\left(v^{2 k-1}\right)^{2} \leqq a^{2 k-1} p\left(v^{2 k}\right)
\end{aligned}
$$

This gives (10) and, after taking the 2^{k}-th root, implies (8).
We are interested in condition that would guarantee that the operator $\varphi(u)$ is bounded on H_{ω}^{0} and consequently extends to a bounded operator on H_{ω}. A look at definition of $\varphi(u)$ as well as the factorization formula enables us to state that $\varphi(u)$ is bounded if and only if the following condition is satisfied

$$
\begin{equation*}
\sum_{i j} \omega\left(s_{i}^{*} u^{*} u s_{j}, f_{j}, f_{i}\right) \leqq c_{1}(u) \sum_{i j} \omega\left\langle s_{i}^{*} s_{j}, f_{j}, f_{j}\right) \tag{1}
\end{equation*}
$$

where $c_{1}(u)$ is independent of s_{i} and f_{i}.
Besides ($B C_{1}$) consider two more conditions
$\left(\mathrm{BC}_{2}\right)$

$$
\omega\left(s^{*} u^{*} u s, f, f\right) \leqq c_{2}(u) \omega\left(s^{*} s, f, f\right)
$$

$\left(\mathrm{BC}_{3}\right)$

$$
\liminf _{k \rightarrow \infty}\left(\sum_{i j} \omega\left(s_{i}^{*}\left(u^{*} u\right)^{2^{k}} s_{j}, f_{j}, f_{i}\right)\right)^{2-k} \leq c_{3}(u)
$$

We show, in the same way as we did in [16] (see also [11], [12], [13] and [9, Complement 4, pp. 509-510]) for forms discussed in the case 2° of the first section, that these conditions are equivalent. Our lemma provides us at once the following

Proof. (i) implies (ii) trivially. To show that $\left(\mathrm{BC}_{2}\right) \rightarrow\left(\mathrm{BC}_{3}\right)$ observe first that the repeated use of $\left(\mathrm{BC}_{2}\right)$ gives

$$
\omega\left(s^{*}\left(u^{*} u\right)^{2 k} s, f, f\right) \leqq c(u)_{2}^{2 k-1} c\left(u^{*}\right)_{2}^{2^{k-1}} \omega\left(s^{*} s, f, f\right)
$$

Now we can write

$$
\begin{aligned}
& \sum_{i j} \omega\left(s_{i}^{*}\left(u^{*} u\right)^{2 k} s_{j}, f_{j}, f_{i}\right) \leqq \sum_{i j}\left|\omega\left(s_{i}^{*}\left(u^{*} u\right)^{2^{k}} s_{j}, f_{j}, f_{i}\right)\right| \\
\leqq & \sum_{i j}\left[\omega\left(s_{i}^{*}\left(u^{*} u\right)^{2 k} s_{i}, f_{i}, f_{i}\right)\right]^{1 / 2}\left[\omega\left(s_{j}^{*}\left(u^{*} u\right)^{2^{k}} s_{j}, f_{j}, f_{j}\right)\right]^{1 / 2} \\
= & {\left[\sum_{i}\left(\omega\left(s_{i}^{*}\left(u^{*} u\right)^{2 k} s_{i}, f_{i}, f_{i}\right)\right)^{1 / 2}\right]^{2} } \\
\leqq & c_{2}(u)^{2 k-1} c_{2}\left(u^{*}\right)^{2 k-1}\left[\sum_{i}\left(\omega\left(s_{i}^{*} s_{i}, f_{i}, f_{i}\right)^{2}\right]^{1 / 2}\right.
\end{aligned}
$$

To obtain the second inequality we have used the Schwarz inequality with $s_{i}^{*}\left(u^{*} u\right)^{2^{k}} s_{j}=\left(s_{i}^{*}\left(u^{*} u\right)^{2^{k-1}}\right)\left(\left(u^{*} u\right)^{2^{k-1}} s_{j}\right)$, applying it to each ingredient of the sum separately. Consequently

$$
\liminf _{k \rightarrow \infty}\left(\sum \omega\left(s_{i}^{*}\left(u^{*} u\right)^{2^{2 k}} s_{j}, f_{j}, f_{i}\right)\right)^{2-k} \leqq c_{2}(u)^{1 / 2} c_{2}\left(u^{*}\right)^{1 / 2}
$$

The implication (iii) \rightarrow (i) is a matter of Lemma. If we choose all constants to be minimal, then we can check that they are related as has been indicated in theorem.

Corollary 1. The shift operator $\varphi(u)$ is bounded if and only if any of the equivalent statements of Theorem 1 holds true. The norm of $\varphi(u)$ is $\|\varphi(u)\| \leqq c_{1}(u)$ and, when $c_{1}(u)$ is minimal in $\left(\mathrm{BC}_{1}\right),\|\varphi(u)\|=c_{1}(u)$.

Remark 2. In the case when S is commutative we can simplify $\left(\mathrm{BC}_{3}\right)$ in the following way: Lemma and the Schwarz inequality give us

$$
\begin{aligned}
& \left.\omega\left(s^{*} u^{*} u s, f, f\right) \leqq\left(\omega\left(s^{*} s, f, f\right)\right)^{1-2-k}\left(\omega\left(s^{*} s u^{*} u\right)^{2 k}, f, f\right)\right)^{2-k} \\
& \leqq\left(\omega\left(s^{*} s, f, f\right)\right)^{1-2-k}\left(\omega\left(\left(u^{*} u\right)^{2 k} s^{*} s, f, f\right)\right)^{2-k} \\
& \leqq\left(\omega\left(s^{*} s, f, f\right)\right)^{1-2-k}\left(\omega\left(\left(u^{*} u\right)^{2 k+1}, f, f\right)\right)^{2-k-1}\left(\omega\left(\left(s^{*} s\right)^{2}, f, f\right)\right)^{1 / 2}
\end{aligned}
$$

Thus the following condition
$\left(\mathrm{BC}_{3}^{\prime}\right)$

$$
\liminf _{k \rightarrow \infty}\left(\omega\left(\left(u^{*} u\right), f, f\right)\right)^{2-k} \leqq c_{3}^{\prime}(u)
$$

forces $\left(\mathrm{BC}_{2}\right)$ with $c_{2}(u) \leqq c_{3}^{\prime}(u)$. If S has a unit, $\left(\mathrm{BC}_{3}\right)$ implies trivially $\left(\mathrm{BC}_{3}^{\prime}\right)$ with $c_{3}^{\prime}(u) \leqq c_{3}(u)$. Consequently $c_{1}(u)=c_{2}(u)=c_{3}(u)=c_{3}^{\prime}(u)$. This will help us to find the constants $c_{i}(u)$ involved in Theorem and consequently to determine precisely the norm of $\varphi(u)$.

Applications

6. One-parameter moment problem. Let $\left\{\mu_{n}\right\}_{n=0}^{\infty}$ be a sequence of real numbers. Call it a moment sequence (on \mathbf{R}) if there exists a non-negative measure μ such that

$$
\mu_{n}=\int_{-\infty}^{+\infty} \lambda^{n} \mu(d \lambda) .
$$

This is the classical result of Hamburger which says that $\left\{\mu_{n}\right\}$ is a moment sequence (on \mathbf{R}) if and only if

$$
\begin{equation*}
\sum_{m, n=1}^{p} \mu_{m+n} \xi_{m} \bar{\xi}_{n} \geqq 0 \tag{12}
\end{equation*}
$$

for all finite sequences ξ_{1}, \ldots, ξ_{p}. In other words the form $\mu(m, \xi, \eta)=\mu_{m} \xi \bar{\eta}$ is PD. Our Theorem characterizes those moment sequences for which the measure μ is concentrated on the interval $[-a, a]$. Call such a sequence $\left\{\mu_{n}\right\}$ a moment sequence on $[-a, a]$.

Theorem 2. $\left\{\mu_{n}\right\}$ is a moment sequence on $[-a, a]$ if and only if it satisfies (12) and

$$
\begin{equation*}
\mu_{2 m+2} \leqq a^{2} \mu_{2 m} \quad m=0,1, \ldots . \tag{13}
\end{equation*}
$$

Then

$$
\begin{equation*}
a^{2}=\liminf _{k \rightarrow \infty} \mu_{2 k}^{2-k} \tag{14}
\end{equation*}
$$

and the measure μ is uniquely determined.
Proof. The operator $\varphi(1)$ is a bounded selfadjoint operator with the norm equal to a. This follows from Theorem 1, both Remarks and Proposition (cf. (5)). Let E be the spectral measure of $\varphi(1)$. Then we have

$$
\mu_{n}=\left\langle\varphi(1)^{n} V 1, V 1\right\rangle=\int_{-a}^{a} \lambda^{n}\langle E(d \lambda) V 1, V 1\rangle
$$

where V is given as in (7). We see what the measure μ is.
This theorem, especially (15), gives a necessary and sufficient condition for the Jacobi matrix corresponding to the moment sequence $\left\{\mu_{n}\right\}$ to be bounded (cf. [2, p. 7] and also [4]). Condition (13) essentially simplifies what is given there.

Using (14) we get a simple corollary of Theorem 1
Corollary 2. $\left\{\mu_{n}\right\}$ is a moment sequence on $[-1,1]$ if and only if it is PD and bounded.
7. Two-parameter moment problem. Going in the same way as in the preceding section we can get the following

Theorem 3. A necessary and sufficient condition in order that a sequence $\left\{\mu_{m n}\right\}_{m, n=0}^{\infty}$ is a moment sequence on the rectangle $[-a, a] \times[-b, b]$, i.e.

$$
\mu_{m n}=\int_{-a}^{a} \int_{-b}^{b} \lambda_{1}^{m} \lambda_{2}^{n} \mu\left(d\left(\lambda_{1}, \lambda_{2}\right)\right)
$$

is that $\left\{\mu_{m n}\right\}$ is PD which means

$$
\sum_{i, j} \mu_{m_{i}+m_{j}, n_{i}+n_{j}} \xi_{i} \bar{\xi}_{j} \geqq 0,
$$

and

$$
\begin{aligned}
\mu_{2 m+2, n} & \leqq a^{2} \mu_{2 m, 2 n} \\
\mu_{2 m, 2 n+2} & \leqq b^{2} \mu_{2 m, 2 n}
\end{aligned}
$$

The measure μ is uniquely determined and

$$
a^{2}=\liminf _{k \rightarrow \infty} \mu_{2^{k}, 0}^{2-k}, \quad b^{2}=\liminf _{k \rightarrow \infty} \mu_{0,22^{k}}^{2-k}
$$

The proof needs the same arguments as that before. The semigroup in this case is just $\mathbf{N} \times \mathbf{N}$ with $(m, n)(p, q)=(m+p, n+q)$ and $(m, n)^{*}=(m, n)$. It is generated by two elements $(1,0)$ and $(0,1)$. The operators $\varphi(1,0)$ and $\varphi(0,1)$ are selfadjoint, bounded and commuting (because $(1,0)$ and $(0,1)$ commute).

We can state an analogue of Corollary 2 in this case too.
Theorem 3 improves result of [3].
8. Complex moment problem. Here we consider the same semigroup as before with the involution defined in another way. Let $S=\mathbf{N} \times \mathbf{N}$ and $(m, n)(p, q)=$ $(m+p, n+q)$ and $(m, n)^{*}=(n, m)$. This semigroup is generated by one element $(1,0)$. The operator $\varphi(1,0)$, if it is bounded, becomes normal. This follows easily from Proposition. Thus we have the following

Theorem 4. A necessary and sufficient condition for the sequence of complex numbers $\left\{\mu_{m, n}\right\}_{m, n=0}^{\infty}$ to be a moment problem on the circle $|\lambda| \leqq a$ that is to be of the form

$$
\mu_{m, n}=\int_{|\lambda| \leqq a} \lambda^{m} \lambda^{-n} \mu(d \lambda)
$$

is that $\left\{\mu_{m n}\right\}$ is PD:

$$
\sum \mu_{m_{j}+n_{i}, m_{i}+n_{j}} \xi_{i} \xi_{j} \geqq 0,
$$

and
In this case

$$
\mu_{k+1, k+1} \leqq a^{2} \mu_{k, k} .
$$

$$
a^{2}=\liminf _{k \rightarrow \infty} \mu_{2 k}^{-22^{k}}
$$

and the nonnegative measure is uniquely determined.

This contributes to what is in [4] and [1]. Also an analogue of Corollary 2 is easy to formulate.
9. Operator moment problem. Suppose A_{0}, A_{1}, \ldots is a sequence of (possible unbounded) operators with the same dense domain D in some Hilbert space H. Moreover suppose

$$
\begin{equation*}
\sum_{i j}\left\langle A_{i+j} f_{j}, f_{i}\right\rangle \geqq 0 \tag{15}
\end{equation*}
$$

for all finite sequences f_{1}, \ldots, f_{n} in D. Such moment sequences have been considered in [14] and later in [6] and [7]. First of all notice that, by the Schwarz inequality, if A_{0} is a bounded operator so are all A_{1}, A_{2}, \ldots but the converse is not true. Then A_{0} is bounded if and only if so is V involved in (7). If $\varphi(1)$ is a bounded operator (here again $S=\mathbf{N}$), then we have its spectral measure E and we get

$$
\begin{equation*}
\left(A_{n} f, g\right)=\int_{-a}^{a} \lambda^{n}\langle F(d \lambda) f, g\rangle \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\langle F(\cdot) f, g\rangle=\langle E(\cdot) V f, V g\rangle, \quad f, g \in D \tag{17}
\end{equation*}
$$

and this does not depend on whether V is bounded or not. Anyhow, the values of the measure $F(\cdot)$ are (possible unbounded) positive operators. We get the following

Theorem 5. The sequence $\left\{A_{n}\right\}$ is of the form (16) with F factoring as in (17) if and only if it satisfies (16) and

$$
\left\langle A_{2 n+2} f, f\right\rangle \leqq a^{2}\left\langle A_{2 n} f, f\right\rangle
$$

for all $n=0,1, \ldots$. Then

$$
a^{2}=\liminf _{k \rightarrow \infty}\left\langle A_{2^{k}} f, f\right\rangle^{2-k}
$$

References

1. Atzmon, A., A moment problem for positive measures on the unit disc, Pac. J. Math., 59 (1975), 317-325.
2. Akhiezer, N. I., The classical moment problem, Oliver and Boyd, Edinburgh-London 1965.
3. Devinatz, A., Two parameter moment problems, Duke Math. J. 24 (1951), 481-498.
4. Kilpi, Y., Über das komplexe Momentproblem, Ann. Acad. Sci. Fenn. AI 236 (1951).
5. Krein, M. G., Nudelman, A. A., The Markov moment problem and extremal problems (in Russian), Izdat. Nauka, Moscow, 1973.
6. McNerney, J. S., Hermitian moment sequences, Trans. Amer. Math. Soc., 103 (1962), 45-81.
7. Narcowich, F. J., An imbedding theorem for indeterminate Hermitian moment sequences, Pac. J. Math., 66 (1976), 499—507.
8. Pedrick, G. B., Theory of reproducing kernels in Hilbert spaces of vector valued functions, Univ. of Kansas Tech. Rep. 19, Lawrence, 1957.
9. Riesz, F., Sz.-Nagy, B., Functional Analysis, 2-nd Russian edition, Izalet. Mir., Moscow, 1979.
10. Szafraniec, F. H., On the boundedness condition involved in a general dilation theory, Bull. Acad. Polon. Sci., Ser. sci. math. astr. et phys. 24 (1976), 877-881.
11. Szafraniec, F. H., Dilations on involution semigroups, Proc. Amer. Math. Soc., 66 (1977), 30-32.
12. Szafraniec, F. H., Apropos of Professor Masani's talk. Probability theory on vector spaces (Proceedings, Trziebieszowice, Poland 1977), 249-299, Lecture Notes in Math., vol. 656., Springer, Berlin, 1978.
13. Szafraniec, F. H., Boundedness in dilation theory, to appear in Banach Center Publications.
14. Sz.-Nagy, B., Extensions of linear transformations which extend beyond this space, F. Ungar, New York, 1960, an appendix to the English edition of [9].

Received April 25, 1980
Instytut Matematyki
Uniwersytet Jagielloński
ul. Reymonta 4
30-059 Kraków

