On approximation by translates and related problems in function theory

Birger Faxén

1. Introduction

From Wiener's approximation theorem we know that the set of finite linear combinations of translates of a function $f \in L(R)$ is dense in $L(R)$ if and only if its Fourier transform is never zero. What can be said if we only allow translates $f(\cdot-\lambda)$ with λ belonging to some fixed set Λ ? Problems of this type have been studied by Edwards [3], [4], Ganelius [6], Landau [8], Lönnroth [9], and Zalik [10], [11] among others.

Several approximation problems can be transformed to problems about approximation by translates. We take the Müntz-Szász theorem as an example. Consider approximation in $L(0,1)$ by linear combinations of monomials $x^{\mu_{k}}$, where μ_{k} are distinct numbers greater than -1 . Take $g \in L(0,1)$. Under the transformation $x=\exp (-\exp (-t))$ the expression

$$
\int_{0}^{1}\left|\sum a_{k} x^{k_{k}}-g(x)\right| d x
$$

converts to

$$
\int_{-\infty}^{\infty}\left|\sum \frac{a_{k}}{1+\mu_{k}} f\left(t-\log \left(1+\mu_{k}\right)\right)-g\left(e^{-e^{-t}}\right) e^{-e^{-t}-t}\right| d t
$$

where $f(t)=\exp (-\exp (-t)-t)$. Putting $\lambda_{k}=\log \left(1+\mu_{k}\right)$ this can be written

$$
\int_{-\infty}^{\infty}\left|\sum b_{k} f\left(t-\lambda_{k}\right)-h(t)\right| d t
$$

where $h \in L(R)$.
We will relate the approximation properties of the translates of f to its Fourier transform. In the example above the transform is $\Gamma(1+i t) \sim t^{1 / 2} \exp \left(-\frac{\pi}{2}|t|\right)$, and the corollary to theorem 5 gives the precise answer that approximation is possible
if and only if $\sum \exp \left(-\left|\lambda_{k}\right|\right)=\infty$, that is

$$
\sum \min \left(\frac{1}{1+\mu_{k}}, 1+\mu_{k}\right)=\infty
$$

We will study approximation in the spaces $L(R), L^{2}(R)$, and $C_{0}(R)$. In section 3 we consider the case $\hat{f}(t)=O(\exp (-\theta(t)))$, where θ is even, convex, and $\theta(t) / t \rightarrow$ $\alpha \neq 0, \infty$ as $t \rightarrow \infty$. Edwards [3] contains a result on approximation in $C_{0}(R)$ for the case $\hat{f}(t) \exp (\alpha|t|) \in L(R)$, a more restrictive hypothesis.

In section 4 we consider the case $\hat{f}(t)=O\left(\exp \left(-\alpha|t|^{p}\right)\right), p>1$. Assuming that A satisfies a separation condition we obtain a rather sharp theorem. Zalik [10], [11], deals with this problem with no separation condition, but the results do not involve the same degree of precision as ours.

I wish to thank Professor Tord Ganelius for suggesting the topic and for his support and kind interest in my work.

2. Zeros of functions analytic in a strip

The following theorem will be important in the next section. We give the proof at the end of this paper. By S_{α} we denote the strip $\{z=x+i y:|y|<\alpha\}$. The convex conjugate of a convex function ϱ is defined as usual; $\varrho^{*}(y)=\sup _{x}(x y-\varrho(x))$.

Theorem 1. Let f be analytic in the strip S_{α}, let ϱ be an even, convex function on $(-\alpha, \alpha)$, and let ϱ^{*} be its convex conjugate. Suppose that

$$
\begin{equation*}
\sup _{x}|f(x+i y)| \leqq \exp (\varrho(y)), \quad|y|<\alpha \tag{*}
\end{equation*}
$$

Given $\lambda \in R$, define λ^{*} by

$$
\frac{2}{\pi} \int_{1}^{\lambda^{*}} \frac{\varrho^{*}(x)-\varrho^{*}(0)+1}{x^{2}} d x=|\lambda|
$$

If $\left\{\lambda_{n}\right\}_{1}^{\infty}$ is a sequence of real zeros of f (counting multiplicities) and

$$
\sum 1 / \lambda_{n}^{*}=\infty
$$

then $f=0$.
Conversely, if the series converges there is a function f analytic in the strip S_{α}, satisfying $\left({ }^{*}\right)$, with precisely the zeros $\left\{\lambda_{n}\right\}_{1}^{\infty}$. In particular

$$
\int_{0}^{\alpha} \log ^{+}(\varrho(y)) d y<\infty
$$

is a necessary and sufficient condition for the implication

$$
\sum \exp \left(-\frac{\pi}{2 \alpha}\left|\lambda_{n}\right|\right)=\infty \Rightarrow f=0
$$

to hold.

3. Müntz-Szász type theorems

In this section Λ is an indexed set of real numbers. Given a function f we let $\Lambda(f)$ denote the set of linear combinations of functions $f\left(\cdot-\lambda_{k}\right), \lambda_{k} \in \Lambda$. The class of functions θ that are even, convex, and satisfy $\theta(t) / t \rightarrow \alpha \neq 0, \infty$, as $t \rightarrow \infty$ is denoted by A. Given $\theta \in A$ and $\lambda \in \Lambda$ we define λ^{*} by

$$
\frac{2}{\pi} \int_{1}^{\lambda^{*}} \frac{\theta(t)-\theta(0)+1}{x^{2}} d t=|\lambda| .
$$

Fourier transforms will be taken without the factor $(2 \pi)^{-1 / 2}$.
We first treat approximation in L^{2}.
Theorem 2. Let $f \in L^{2}, \theta \in A$, and suppose that $\hat{f}(t) \neq 0$ a.e. and

$$
|\hat{f}(t)| \leqq \exp (-\theta(t))
$$

If $\sum_{A} 1 / \lambda_{k}^{*}=\infty$ then $\Lambda(f)$ is dense in L^{2}.
On the other hand, if

$$
\exp (-\theta(t)) / \hat{f}(t) \in L^{2}
$$

and $\sum_{\Lambda} 1 / \lambda_{k}^{*}<\infty$ then $\Lambda(f)$ is not dense in L^{2}.
Proof. Take $g \in L^{2}$ such that $g \perp \Lambda(f)$.
Put

$$
h(\lambda)=\int_{-\infty}^{\infty} f(x-\lambda) g(x) d x
$$

Then h is obviously the inverse Fourier transform of $\hat{f}(-t) \hat{g}(t)$. Since

$$
\hat{f}(-t) \hat{g}(t) \exp (y t) \in ̧ L
$$

for $|y|<\alpha$, it is clear that h can be analytically extended to S_{α}. If we let θ_{1} be the largest convex minorant to $\theta(t)-\log \left(1+t^{2}\right)$ the inversion formula gives

$$
|h(x+i y)| \leqq C_{0} \int_{-\infty}^{\infty} \exp \left(t|y|-\theta_{1}(t)\right) \frac{|\hat{\mathrm{g}}(t)|}{1+t^{2}} d t
$$

Hence

$$
\begin{equation*}
|h(x+i y)| \leqq C_{\mathbf{1}} \exp \left(\theta_{\mathbf{1}}^{*}(y)\right) \tag{3.1}
\end{equation*}
$$

Defining λ_{k}^{+}with respect to θ_{1} it easily follows that there are $c_{1}>0, c_{2}>0$, such that $c_{1}<\lambda_{k}^{+} / \lambda_{k}^{*}<c_{2}$. This implies

$$
\begin{equation*}
\sum 1 / \lambda_{k}^{+}=\infty . \tag{3.2}
\end{equation*}
$$

By the elementary theory of convex functions $\left(\theta_{1}^{*}\right)^{*}=\theta_{1}$. Obviously $h\left(\lambda_{k}\right)=0$. By theorem 1 (3.1) and (3.2) imply $h=0$. Since $\hat{f}(t) \neq 0$ a.e. we conclude $g=0$ which proves the first part of the theorem.

Now take $h \neq 0$, holomorphic in S_{α} with $h\left(\lambda_{k}\right)=0$ for all k, and

$$
|h(x+i y)| \leqq \exp \left(\theta^{*}(y)\right)
$$

This is possible by theorem 1. Put $h_{0}(z)=h(z) /\left(z^{2}+2 \alpha^{2}\right)$. The Fourier transform of h_{0} is given by

$$
\hat{h}_{0}(t)=\int h_{0}(x) e^{-i t x} d x
$$

The path of integration can be taken to be $\operatorname{Im}(z)=-y$. One easily obtains

$$
\left|\hat{h}_{0}(t)\right| \leqq C \exp \left(-\left(t y-\theta^{*}(y)\right)\right) .
$$

Since $\theta^{* *}=\theta$, minimizing over y gives

$$
\left|\hat{h}_{0}(t)\right| \leqq C \exp (-\theta(t))
$$

Define $G(t)=\hat{h}_{0}(t) / \hat{f}(-t)$. The assumptions on f show that $G \in L^{2}$ and by Plancherel's theorem G is the Fourier transform of some $g \in L^{2}$. By inversion

$$
h_{0}(\lambda)=\int f(x-\lambda) g(x) d x
$$

It is clear that $g \perp \Lambda(f)$. Since $g \neq 0$ this completes the proof.
In the special case $\hat{f}(t)=O(\exp (-\alpha|t|))$, the second part of theorem 2 does not give much information. We cover this case separately.

Theorem 3. Let β be an even, positive function, concave for $t \geqq 0$, such that

$$
\int_{1}^{\infty} \frac{\beta(t)}{t^{2}} d t<\infty
$$

Suppose $f \in L^{2},|\hat{f}(t)| \geqq C \exp (-\alpha|t|-\beta(t)), C>0, \alpha>0$. If $\sum_{\Lambda} \exp \left(-\frac{\pi}{2 \alpha}\left|\lambda_{k}\right|\right)<\infty$, then $\Lambda(f)$ is not dense in L^{2}.

Proof. Put $\beta_{0}(t)=\beta(t)+\log (1+|t|)$ and $p(x)=e^{x} / \beta_{0}\left(e^{x}\right)$ for $x \geqq 0$. Then p will be increasing. Define $a=\alpha+1 / p(0)$. For $z \in \bar{S}_{a}$ the function defined by

$$
R(z)=\exp \left(-\left\{\exp \left(\frac{\pi z}{4 a}\right)+\exp \left(-\frac{\pi z}{4 a}\right)\right\}\right)
$$

has modulus less than $\exp (-c \exp (b|x|))$ for some positive constants b and c $(x=\operatorname{Re}(z))$. Put $p_{0}(x)=p(b x)$ and $\psi(x)=\alpha+1 / p_{0}(x)$. Let D be the region $\{z=x+i y:|y|<\psi(|x|)\}$ and map it conformally onto S_{α} by φ such that $\varphi(0)$, $\varphi^{\prime}(0)>0$. Define $\mu_{k}=\varphi\left(\lambda_{k}\right)$. By Ahlfors' distortion theorem, [1],

$$
\mu_{k}=\alpha \int_{0}^{\lambda_{k}} \frac{d x}{\psi(x)}+O(1)=\lambda_{k}-\int_{0}^{\lambda_{k}} \frac{d x}{1+\alpha p_{0}(x)}+O(1)
$$

The last integral is less than

$$
\frac{1}{\alpha} \int_{0}^{\infty} \frac{d x}{p_{0}(x)}=\frac{1}{\alpha b} \int_{1}^{\infty} \frac{\beta_{0}(t)}{t^{2}} d t<\infty .
$$

Hence $\sum \exp \left(-\frac{\pi}{2 \alpha}\left|\mu_{k}\right|\right)<\infty$, and we can find $g \neq 0$, holomorphic in S_{α} with $g\left(\mu_{k}\right)=0$ and $|g|<1$.

Define

$$
h(z)=\mathrm{g}(\varphi(z)) R(z) /\left(z^{2}+2 a^{2}\right), \quad z \in D .
$$

Its Fourier transform will be estimated by integration along the lower boundary of D. Suppose $t \geqq 0$. We substitute $x=s-i \alpha-i / p_{0}(s)$ and easily verify $|d x| \leqq C d s$, for some $C>0$. Using the estimate for $|R|$ and the fact that $|g|$ is bounded we obtain

$$
\begin{equation*}
|\hat{h}(t)| \leqq C_{0} \int_{0}^{\infty} \exp \left(-\alpha t-\frac{t}{p_{0}(s)}-c e^{b s}\right) \frac{d s}{s^{2}+a^{2}} \tag{3.3}
\end{equation*}
$$

Choosing σ such that $c e^{b \sigma}=t / p_{0}(\sigma)$, which is possible for all $t \geqq M$ for some $M>0$, we have

$$
\begin{equation*}
\frac{t}{p_{0}(s)}+c e^{b s} \geqq \frac{t}{p_{0}(\sigma)} \tag{3.4}
\end{equation*}
$$

for all $s \geqq 0$, since at least one of the terms on the left hand side is not smaller than the right member. Since $p_{0}(\sigma) \rightarrow \infty$ as $t \rightarrow \infty$ there is $M_{1}>M$ such that $t \geqq M_{1}$ implies $p_{0}(\sigma)>1 / c$, and by the definition of $\sigma, \sigma<\log (t) / b$. Hence

$$
\begin{equation*}
t / p_{0}(\sigma)>t / p_{0}\left(\frac{\log t}{b}\right)=t / p(\log t)=\beta_{0}(t) \tag{3.5}
\end{equation*}
$$

Using (3.4) and (3.5) in (3.3) yields

$$
|\hat{h}(t)| \leqq C_{1} \exp \left(-\alpha t-\beta_{0}(t)\right), \quad t \geqq M_{1}
$$

By the corresponding estimate for $t \leqq 0$ and suitable choice of C we obtain

$$
|\hat{h}(t)| \leqq C \frac{\exp (-\alpha|t|-\beta(t))}{1+|t|}
$$

Proceeding in the same way as in the proof of theorem 2 we find that $\Lambda(f)$ is not dense in L^{2}. This finishes the proof.

Corollary. Let $f \in L^{2}$ and suppose that

$$
C_{1}(|t|+1)^{-n} \leqq|\hat{f}(t)| \exp (\alpha|t|) \leqq C_{2}(|t|+1)^{m}
$$

for some $n \geqq 0, m \geqq 0, \alpha>0$.

Then $\Lambda(f)$ is dense in L^{2} if and only if $\sum_{\lambda} \exp \left(-\frac{\pi}{2 \alpha}\left|\lambda_{k}\right|\right)=\infty$.
Remark. With $f(x)=\exp \left(-\exp (-t)-\frac{t}{2}\right)$ one has

$$
\hat{f}(t)=\Gamma\left(\frac{1}{2}+i t\right) \sim C \exp \left(-\frac{\pi}{2}|t|\right)
$$

and the corollary gives Müntz-Szász theorem for $L^{2}(0,1)$, if one makes the transformation shown in the introduction.

We now turn to approximation in L. Here it seems that stronger conditions on \hat{f} are needed.

Theorem 4. Let $f \in L, \theta \in A$, and suppose that $\hat{f}(t) \neq 0$ for all t, and

$$
|D f(t)| \leqq C \exp (-\theta(t))
$$

If $\sum_{A} 1 / \lambda_{k}^{*}=\infty$, then $\Lambda(f)$ is dense in L.
On the other hand, if

$$
\exp (-\theta(t)) / \hat{f}(t) \in L
$$

and $\sum_{\Lambda} 1 / \lambda_{k}^{*}<\infty$, then $\Lambda(f)$ is not dense in L.
Proof. Put $F=\hat{f}$. First observe that $F(t)=O(\exp (-\theta(t)))$: Since $\theta^{\prime}(t)>\alpha / 2$ for t sufficiently large,

$$
|F(t)| \leqq \int_{|t|}^{\infty} \exp (-\theta(x) d x) \leqq \frac{2}{\alpha} \int_{|t|}^{\infty} \exp (-\theta(x)) \theta^{\prime}(x) d x=\frac{2}{\alpha} \exp (-\theta(t))
$$

It is no restriction to assume that, for all x,

$$
f(x)=\frac{1}{2 \pi} \int e^{i x t} F(t) d t
$$

It follows that f has an analytic extension to S_{α}. We define f_{y} and F_{y} in the following way

$$
\begin{aligned}
& f_{y}(x)=f(x+i y), \quad|y|<\alpha \\
& F_{y}(t)=\exp (-y t) F(t)
\end{aligned}
$$

We have to show that $f_{y} \in L$. The L-norm can be estimated by Carlson's inequality. Since f_{y} is the inverse Fourier transform of F_{y} we have

$$
\left\|f_{y}\right\|_{1}^{2} \leqq C_{0}\left\|F_{y}\right\|_{2}\left\|F_{y}^{\prime}\right\|_{2}
$$

Let $\theta_{1}(t)$ be the largest convex minorant to $\theta(t)-\log \left(1+t^{2}\right)$.

$$
\left\|F_{y}\right\|_{2}^{2} \leqq C_{1} \int\left(\exp \left(|y| t-\theta_{1}(t)\right)\right)^{2} \frac{d t}{\left(1+t^{2}\right)^{2}} \leqq C_{2} \exp \left(2 \theta_{1}^{*}(y)\right) .
$$

Moreover

$$
\left\|F_{y}^{\prime}\right\|_{2}^{2}=\left\|\exp (-y t) F^{\prime}(t)-y F_{y}(t)\right\|_{2}^{2} \leqq C_{3} \exp \left(2 \theta_{1}^{*}(y)\right)
$$

since both terms can be handled as in the preceding inequality. Hence

$$
\left\|f_{y}\right\|_{1} \leqq C_{4} \exp \left(\theta_{1}^{*}(y)\right)
$$

and it is not difficult to see that the norm depends continuously on y.
Suppose that $g \in L^{\infty}$ and $g \perp \Lambda(f)$. Put

$$
h(z)=\int f(x-z) g(x) d x
$$

To see that h is holomorphic in S_{α}, first note that h is continuous, then use Fubini's and Morera's theorems. Since $|h(x+i y)| \leqq C_{5} \exp \left(\theta_{1}^{*}(y)\right)$, and $h\left(\lambda_{k}\right)=0$, theorem 1 gives $h=0$, and we conclude $g=0$ by Wiener's approximation theorem.

The second part of the theorem follows by a small change in the proof of the corresponding part in theorem 2.

Theorem 5. If $f \in L$ satisfies the conditions in theorem 3 and

$$
\sum_{A} \exp \left(-\frac{\pi}{2 \alpha}\left|\lambda_{k}\right|\right)<\infty
$$

then $\Lambda(f)$ is not dense in L.
The proof is almost the same as for the theorem 3.
Corollary. Let $f \in L$ and suppose that for some $m \geqq 0, n \geqq 0, \alpha>0$,

$$
\begin{aligned}
|D \hat{f}(t)| \exp (\alpha|t|) & \leqq C_{1}(|t|+1)^{m}, & & C_{1}>0 \\
|\hat{f}(t)| \exp (\alpha|t|) & \geqq C_{2}(|t|+1)^{-n}, & & C_{2}>0
\end{aligned}
$$

Then $\Lambda(f)$ is dense in L if and only if $\Sigma_{A} \exp \left(-\frac{\pi}{2 \alpha}\left|\lambda_{k}\right|\right)=\infty$.
Remark. If we let f be as in the example in the introduction it follows, from properties of the gamma function, that $|D \hat{f}(t)| \leqq C|t|^{3 / 2} \exp \left(-\frac{\pi}{2}|t|\right)$. Hence the corollary is applicable.

The following theorem on approximation in C_{0} has a proof similar to the proofs of theorems 2 and 4.

Theorem 6. Let f be the Fourier transform of $g \in L$ and let $\theta \in A$.
(a) Suppose that $|g(t)| \leqq C \exp (-\theta(t))$ and that g is not zero a.e. on any open interval. If $\sum_{A} 1 / \lambda_{k}^{*}=\infty$, then $\Lambda(f)$ is dense in C_{0}.
(b) Suppose g is differentiable, $\exp (-\theta(t)) / g(t) \in L^{2}$, and

$$
\begin{equation*}
|D g / g| \leqq M, \quad M>0 . \tag{3.6}
\end{equation*}
$$

If $\sum_{A} 1 / \lambda_{k}^{*}<\infty$, then $\Lambda(f)$ is not dense in C_{0}.

Differentiability is important in (b) as the following proposition shows. Let us call a strictly increasing sequence of positive numbers, $\left\{\lambda_{k}\right\}_{1}^{\infty}$, regular if its counting function $n(\lambda)$ coincides for $\lambda=\lambda_{k}$ with a function $h(\lambda)$ such that $h^{\prime}\left(e^{x}\right)$ is convex and increasing. A doubly infinite sequence $\left\{\lambda_{k}\right\}_{-\infty}^{\infty}$ will be called regular if $\left\{\lambda_{k}\right\}_{1}^{\infty}$ is regular and $\lambda_{-k}=-\lambda_{k}$.

Proposition. Let f be the Fourier transform of $g \in L$ satisfying
(a) $|g(t)| \leqq C \exp (-\alpha|t|)$ for some $\alpha>0, C=0$,
(b) the set of points where $g: s$ left and right hand limits exist and are different has a finite accumulation point, ξ,
(c) g is not zero a.e. on any open interval.

If $\left\{\lambda_{k}\right\}_{-\infty}^{\infty}$ is regular and

$$
\begin{equation*}
\sum_{-\infty}^{\infty}\left(1+\lambda_{k}^{2}\right)^{-1}=\infty \tag{3.7}
\end{equation*}
$$

then $\Lambda(f)$ is dense in C_{0}.
Proof. It is easily seen that the number of λ_{k} in the interval $[x, x+1]$ is between $h^{\prime}(x)-1$ and $h^{\prime}(x+1)+1$ for $x \geqq 0$. Take $d \mu \perp \Lambda(f)$, put $F(\lambda)=\int f(x-\lambda) d \mu(x)$ and extend F analytically to S_{α}. Since F is uniformly bounded in, say, $S_{x ; 2}$ and $F\left(\lambda_{k}\right)=0$, Schwartz's lemma yields

$$
\begin{gather*}
\log |F(x)| \leqq \sum \log \left|\frac{\exp (\pi x / \alpha)-\exp \left(\pi \lambda_{k} / \alpha\right)}{\exp (\pi x / \alpha)+\exp \left(\pi \lambda_{k} / \alpha\right)}\right|+C_{0} \tag{3.8}\\
\leqq-2 \sum \exp \left(-\frac{\pi}{\alpha}\left|x-\lambda_{k}\right|\right)+C_{0} \leqq-C_{1} h^{\prime}(x)-C_{2}, \quad\left(C_{1}, C_{2}>0\right) .
\end{gather*}
$$

Izumi and Kawata [7], have proved that a function $F \in L$ satisfying $\log |F(x)| \leqq$ $-\omega(|x|)$, where $\omega\left(e^{x}\right)$ is convex, and

$$
\int_{0}^{\infty} \frac{\omega(x)}{1+x^{2}} d x=\infty
$$

has its Fourier transform in a quasi-analytic class. Now

$$
\int_{0}^{\infty} \frac{h^{\prime}(x)}{1+x^{2}} d x=\int_{h(0)}^{\infty} \frac{d t}{1+\lambda(t)^{2}},
$$

where λ is the inverse function to h. Since λ is increasing it follows from (3.7), by a comparison argument, that the integral to the right is divergent. Then, by (3.8) and the cited theorem, \hat{F} is quasi-analytic. We claim that all derivatives of \hat{F} are zero at ξ. This clearly would give the conclusion of the theorem. Observe that, since $F \in L$,

$$
\begin{equation*}
\hat{F}(t)=g(t) \hat{\mu}(t) \quad \text { a.e. } \tag{3.9}
\end{equation*}
$$

Let t_{i} be a discontinuity point of g, as described in (b), and let t tend to t_{i} avoiding points where (3.9) does not hold. Since \hat{F} and $\hat{\mu}$ are continuous

$$
\hat{\mu}\left(t_{i}\right) \lim _{t \neq t_{i}} g(t)=\hat{F}\left(t_{i}\right)=\hat{\mu}\left(t_{i}\right) \lim _{t+t_{i}} g(t)
$$

But the limits are different, hence $\hat{\mu}\left(t_{i}\right)=0$, so $\hat{F}\left(t_{i}\right)=0$. Since $t_{i} \rightarrow \xi$ repeated application of Rolle's theorem shows $D^{n} \hat{F}(\xi)=0$, all n. The proof is complete.

4. Functions with rapidly decreasing transforms

The theorem in this section is stated for L^{2}, but it has analogues in L and C_{0} in the same way as the theorems in section 3. The constant in front of $\log (r)$ is sharp for $p>1$, we give a simple example for $p=2$.

Theorem 7. Let $f \in L^{2}$, suppose $\alpha>0, p>1$ and $\hat{f}(t)=O\left(\exp \left(-\alpha|t|^{p}\right)\right), \hat{f}(t) \neq 0$ a.e. Let q be the conjugate exponent to p and suppose that for some $\delta>0$

$$
\lambda_{n+1}^{q}-\lambda_{n}^{q} \geqq \delta, \quad\left(\lambda_{n}>0\right)
$$

and

$$
\limsup _{r \rightarrow \infty}\left\{\sum_{0<\lambda_{n}<r} \lambda_{n}^{-q}-\frac{(p \alpha)^{1-q}}{\pi}\left(\sin \left(\frac{\pi}{2 q}\right)\right)^{q} \log r\right\}=\infty .
$$

Then $\Lambda(f)$ is dense in L^{2}.
In the proof we use the following lemma.
Lemma. Suppose G is an entire function such that

$$
\limsup _{r \rightarrow \infty} \frac{\log \left|G\left(r e^{i \theta}\right)\right|}{r^{q}} \leqq \beta|\sin \theta|^{q}
$$

$q>1, \beta>0$. Suppose that for $n \geqq 0, \lambda_{n}>0, \lambda_{n+1}^{q}-\lambda_{n}^{q} \geqq \delta>0$, and $G\left(\lambda_{n}\right)=0$. If

$$
\limsup _{r \rightarrow \infty}\left\{\sum_{\lambda_{n}<r} \lambda_{n}^{-q}-\frac{\beta q}{\pi}\left(\sin \left(\frac{\pi}{2 q}\right)\right)^{q} \log r\right\}=\infty
$$

then $G=0$.
Proof. Define $H(z)=G\left(z^{1 / q}\right)$ for $|\arg (z)| \leqq \frac{\pi}{2}$. Then

$$
\begin{aligned}
& \limsup _{r \rightarrow \infty} \frac{\log \left|H\left(r e^{i \theta}\right)\right|}{r}=\limsup _{r \rightarrow \infty} \frac{\log \left|G\left(r^{1 / q} e^{i(\theta / q)}\right)\right|}{r} \\
& \quad \leqq \beta(\sin (\theta / q))^{q} \leqq \beta\left(\sin \left(\frac{\pi}{2 q}\right)\right)^{q}=c, \quad \text { say }
\end{aligned}
$$

We now use Fuchs' theorem concerning zeros of functions of exponential type, [5]. Evidently H is of exponential type c, has zeros at the points $\mu_{n}=\lambda_{n}^{q}$, $\mu_{n+1}-\mu_{n} \geqq \delta>0$ and

$$
\limsup _{R \rightarrow \infty}\left\{\sum_{\mu_{n}<R} \frac{1}{\mu_{n}}-\frac{c}{\pi} \log R\right\}=\limsup _{r \rightarrow \infty}\left\{\sum_{\lambda_{n}<r} \lambda_{n}^{-q}-\frac{c q}{\pi} \log r\right\}=\infty
$$

Hence $H=0$ and the lemma follows.
Proof of theorem 7. Take $g \in L^{2}, g \perp \Lambda(f)$ and define F by convolution as before. Then F will be entire and

$$
\begin{aligned}
|F(x+i y)| & \leqq C \int_{0}^{\infty} \exp \left(-\alpha t^{p}+\log \left(1+t^{2}\right)+|y| t\right) \frac{\hat{g}(t) d t}{1+t^{2}} \\
& \leqq C^{\prime} \exp \left(\max _{t \geqq 0}\left\{|y| t-\alpha t^{p}+\log \left(1+t^{2}\right)\right\}\right)
\end{aligned}
$$

If the maximum is attained at $t=\tau$, then

$$
|y|=\alpha p \tau^{p-1}-\frac{2 \tau}{1+\tau^{2}}>\alpha p \tau^{p-1}-1
$$

hence $|y|+1 \geqq \alpha p \tau^{p-1} \geqq|y|$ and the maximum value is

$$
\begin{aligned}
& |y| \tau-\alpha \tau^{p}+\log \left(1+\tau^{2}\right) \leqq \alpha(p-1) \tau^{p}+\log \left(1+\tau^{2}\right) \\
& \leqq \alpha^{1-q}(p-1) p^{-q}(|y|+1)^{q}+o(|y|)
\end{aligned}
$$

Hence

$$
\limsup _{r \rightarrow \infty}\left(\frac{\log \left|F\left(r e^{i \theta}\right)\right|}{r}\right) \leqq \alpha^{1-q}(p-1) p^{-q}(|\sin \theta|)^{q}
$$

Now $F=0$ follows from the lemma since $F\left(\lambda_{n}\right)=0$, and $\alpha^{1-q}(p-1) p^{-q} q=$ $(p \alpha)^{1-q}$. It then follows that $g=0$ and the theorem is proved.

For $p=2$ it is easy to see that the constant in front of $\log (r)$ cannot be smaller. Take e.g. $F(x)=\sin \left(x^{2} / 2\right) \exp \left(-x^{2} / 2\right) / x^{2}$. Using the fact that $|F(z)| \leqq$ $\exp \left(y^{2}\right) /\left(x^{2}+y^{2}\right)$ one obtains

$$
|\hat{F}(t)| \leqq C \exp \left(-t^{2} / 4\right) /(1+|t|)
$$

Hence, given $f \in L^{2}$ with $|\hat{f}(t)| \sim \exp \left(-t^{2} / 4\right)$ there is $g \in L^{2}$ such that the convolution equation $F=f * g$ is satisfied. This shows that $\Lambda(f)$ is not dense in L^{2} if $\Lambda=\left\{(2 \pi n)^{1 / 2}\right\}_{1}^{\infty}$. On the other hand, by theorem 7, if $c<2 \pi$ and $\Lambda=\left\{(c n)^{1 / 2}\right\}_{1}^{\infty}$, then $\Lambda(f)$ is dense in L^{2}.

5. Proof of theorem 1

It is no restriction to assume ϱ twice continuously differentiable with $\varrho^{\prime \prime}>0$. Furthermore we may assume $\varrho(y) \rightarrow \infty$ as $y \rightarrow \alpha$, since otherwise f is bounded and the theorem follows from Blaschkes theorem by a transformation to the unit disc.

By definition of convex conjugate,

$$
\begin{equation*}
\varrho^{*}(t)=s t-\varrho(s), \quad \text { where } \quad \varrho^{\prime}(s)=t . \tag{5.1}
\end{equation*}
$$

Differentiation of (5.1) yields

$$
\begin{equation*}
\frac{d}{d t} \varrho^{*}(t)=s \tag{5.2}
\end{equation*}
$$

Put $\theta(t)=\varrho^{*}(t)$. By (5.2) and (5.1)

$$
\varrho\left(\theta^{\prime}(t)\right)=\varrho(s)=s t-\varrho^{*}(t)=t \theta^{\prime}(t)-\theta(t)
$$

Hence, by $\left(^{*}\right)$ in the statement of the theorem,

$$
\begin{equation*}
\left|f\left(x+i \theta^{\prime}(t)\right)\right| \leqq \exp \left(t \theta^{\prime}(t)-\theta(t)\right) \tag{5.3}
\end{equation*}
$$

independently of x. Note that, by convexity, the right side increases with t. Also note that $\theta^{\prime}(t)>0$ for $t>0$ and $\theta(t) / t \rightarrow \alpha$ as $t \rightarrow \infty$.

We shall now prove the first part of theorem 1. Suppose that f is not identically zero. We can assume $f(0) \neq 0$. Let D be the band-shaped domain bordered by the four curves

$$
\begin{equation*}
t \curvearrowright \pm \frac{2}{\pi} \int_{0}^{t} \theta^{\prime}\left(e^{u}\right) d u \pm i \theta^{\prime}\left(e^{t}\right), \quad t \in[0, \infty[. \tag{5.4}
\end{equation*}
$$

The domain D is illustrated in figure 1.

Fig. 1

Let φ map $S_{\pi / 2}$ conformally onto D, such that $\varphi(0), \varphi^{\prime}(0)>0$. Then φ preserves symmetry with respect to the axes. Putting $h(z)=f(\varphi(z))$ we obtain a function holomorphic in $S_{\pi / 2}$. We will use Ahlfors' distortion theorem [1] to show that $h(0) \neq 0$ leads to a contradiction.

Let $\psi(u)$ be half the length of the intersection between the line $x=u$ and D. Given $\mu \in R$, put $\lambda=\varphi(\mu)$. By the distortion theorem there is a constant k such that for all λ

$$
\begin{equation*}
\left|\varphi^{-1}(\lambda)-\frac{\pi}{2} \int_{0}^{\lambda} \frac{d t}{\psi(t)}\right|<k \tag{5.5}
\end{equation*}
$$

By symmetry it is sufficient to consider $\mu>0$, hence $\lambda>0$. Define

$$
\begin{equation*}
\Phi(\lambda)=\frac{\pi}{2} \int_{0}^{\lambda} \frac{d t}{\psi(t)} \tag{5.6}
\end{equation*}
$$

Making the substitution $t=\frac{\pi}{2} \int_{0}^{u} \theta^{\prime}\left(e^{x}\right) d x$ and observing that, by construction, $\psi(t)=\theta^{\prime}\left(e^{u}\right)$ we find $\Phi(t)=u$, hence

$$
\begin{equation*}
\Phi^{-1}(u)=\frac{2}{\pi} \int_{0}^{u} \theta^{\prime}\left(e^{x}\right) d x \tag{5.7}
\end{equation*}
$$

The function h extends continuously to $\bar{S}_{\pi / 2}$. We shall estimate it at the boundary. For $x \geqq 0$ we define x^{\prime} by $\varphi\left(x^{\prime}\right)=\operatorname{Re} \varphi\left(x+i \frac{\pi}{2}\right)$. By the distortion theorem, there is a constant k_{1} such that $\left|x^{\prime}-x\right|<k_{1}$. Put $u=\Phi\left(\varphi\left(x^{\prime}\right)\right)$. By (5.5) $\left|x^{\prime}-u\right|<k$, hence $|u-x|<k_{2}$. By the definition of u and (5.7)

$$
h\left(x+i \frac{\pi}{2}\right)=f\left(\varphi\left(x^{\prime}\right)+i \psi\left(\varphi\left(x^{\prime}\right)\right)\right)=f\left(\frac{2}{\pi} \int_{0}^{u} \theta^{\prime}\left(e^{t}\right) d t+i \theta^{\prime}\left(e^{u}\right)\right)
$$

and, by (5.3),

$$
\begin{equation*}
\left|h\left(x+i \frac{\pi}{2}\right)\right| \leqq \exp \left(e^{x+k_{2}} \theta^{\prime}\left(e^{x+k_{2}}\right)-\theta\left(e^{x+k_{2}}\right)\right) \tag{5.8}
\end{equation*}
$$

Note also that, by the same argument, $|h(x+i y)|$ is majorized by the right side of (5.8), for $|y| \equiv \frac{\pi}{2}$.

We now ase the inequality

$$
\begin{align*}
& \log |h(0)|+\sum \log \left|\frac{\exp \left(\pi \mu_{n} / 2 \beta\right)+1}{\exp \left(\pi \mu_{n} / 2 \beta\right)-1}\right| \tag{5.9}\\
\leqq & \frac{1}{2 \beta} \int_{-\infty}^{\infty} \frac{\log |h(x+i \beta) h(x-i \beta)| d x}{\exp (\pi x / 2 \beta)+\exp (-\pi x / 2 \beta)},
\end{align*}
$$

where $\mu_{n}=\varphi^{-1}\left(\lambda_{n}\right)$ are zeros of h and $0<\beta<\pi / 2$. This inequality is obtained by transformation to the strip S_{β} of the following well known inequality for $F \in H^{\infty}(U)$, where U is the unit disc.

$$
\log |F(0)|+\sum \log \left(\frac{1}{r_{k}}\right) \leqq \frac{1}{2 \pi} \int_{-\infty}^{\infty} \log \left|F^{*}\left(e^{i \theta}\right)\right| d \theta
$$

with F^{*} the radial limit function and $r_{k} e^{i \theta_{k}}$ zeros of F.
That h is bounded in each strip S_{β} follows from

$$
\begin{equation*}
|\operatorname{Im} \varphi(x+i y)| \leqq \frac{2 \alpha}{\pi}|y| . \tag{5.10}
\end{equation*}
$$

To see this, observe that $\operatorname{Im} \varphi(z)$ is harmonic in \bar{D}, and that the inequality holds for $y=0$ and $y=\pi / 2$. By a Phragmén-Lindelöf argument it follows for $0 \leqq y \leqq \pi / 2$ which is sufficient, by symmetry.

Using (5.8) we find that the right side of (5.9), for $\beta>\pi / 4$ say, is not larger than

$$
C \int_{0}^{\infty} \frac{e^{x} \theta^{\prime}\left(e^{x}\right)-\theta\left(e^{x}\right)}{e^{x}} d x=C\left[\frac{\theta(t)}{t}\right]_{1}^{\infty}<C \alpha
$$

Since the terms in the sum in (5.9) are not smaller than $2 \exp \left(-\pi \mid \mu_{n} / 2 \beta\right)$, it follows, by letting β tend to $\pi / 2$, that $\sum \exp \left(-\left|\mu_{n}\right|\right)<\infty$. But $\Phi^{-1}\left(\log \lambda_{n}^{*}\right)=O(1)+\left|\lambda_{n}\right|$ as is easily seen. Hence $\log \lambda_{n}^{*}=O(1)+\Phi\left(\left|\lambda_{n}\right|\right)=\left|\mu_{n}\right|+O(1)$ and we can conclude $\sum 1 / \lambda_{n}^{*}<\infty$, which contradicts the hypothesis.

We now turn to the converse part of theorem 1 .
Lemma 1. Suppose that ϱ is an even, convex function on $(-\alpha, \alpha)$, such that ϱ^{*} has an analytic continuation with uniformly bounded derivative in the region $|z|>R$, $|\arg (z)|<\delta$ for some $R>0, \delta>0$.

If $\left\{\lambda_{n}\right\}_{-\infty}^{\infty}$ is a real sequence such that $\sum 1 / \lambda_{n}^{*}<\infty$ then there is a function f analytic in the strip S_{α} such that f has precisely the zeros λ_{n} (counting multiplicities) and $\sup _{x}|f(x+i y)| \leqq \exp (\varrho(y))$.

Proof. Let θ be the continuation of ϱ^{*} and let D, φ, and ψ be defined as on pp. 281-282. Let $\zeta=\varphi^{-1}: D \rightarrow S_{\pi / 2}$.

The idea of the construction is to take a Blaschke product with suitably located zeros in $S_{\pi / 2}$, compose it with ζ to obtain a function F defined in D with zeros λ_{n}. If we could continue ζ across the boundary of D to the strip S_{α} we would have a candidate for the function f. However, by the construction of D, the function ζ can only be extended to a region $D_{0}=D \cup\left\{w=u+i v:|u|>x_{0},|v|<\alpha\right\}$ for some $x_{0}>0$. This is no serious limitation, but we have to introduce an auxiliary mapping w: $S_{\alpha} \rightarrow D_{0}$ to obtain the desired function $f(z)=F(w(z))$.

We now claim

(**) It is possible to continue ζ analytically to a region D_{0} as above, in such a way that for some $M>0$ one has $\left|\zeta^{\prime}(w)\right| \equiv M$ in $|\operatorname{Re}(w)|>x_{0},|\operatorname{Im}(w)|<\alpha$.
We prove this fact showing that f has the desired properties. Note that it follows that for x_{0} sufficiently large the image of D_{0} under ζ is contained in, say, the strip $S_{3 \pi / 4}$.

Let w map S_{α} conformally onto D_{0} with $w(0)=0, w^{\prime}(0)>0$, so that symmetry with respect to the axes is preserved. Put $\sigma(z)=\zeta(w(z))$ and

$$
\begin{equation*}
f(z)=\Pi \frac{\exp (\sigma(z))-\exp \left(\sigma\left(\lambda_{n}\right)\right)}{\exp (\sigma(z))+\exp \left(\sigma\left(\lambda_{n}\right)\right)}, \quad z \in S_{\alpha} \tag{5.11}
\end{equation*}
$$

By the distortion theorem $w\left(\lambda_{n}\right)=\lambda_{n}+O(1)$ hence

$$
\begin{equation*}
\left|\sigma\left(\lambda_{n}\right)\right|=\left|\zeta\left(\lambda_{n}\right)\right|+O(1)=\log \left(\lambda_{n}^{*}\right)+O(1) \tag{5.12}
\end{equation*}
$$

where the last equality follows as in the proof of the first part of theorem 1. Thus $\sum \exp \left(-\left|\sigma\left(\lambda_{n}\right)\right|\right)<\infty$, hence the product (5.11) converges if $\sigma(z) \in S_{\pi}$, a fortiori if $z \in S_{a}$.

By reasons of symmetry it is sufficient to consider $z=x+i y, x \geqq 0, y \geqq 0$. Put $\theta=\operatorname{Im} \sigma(z)=\operatorname{Im}(\zeta(u+i v))=\operatorname{Im}(\zeta(w(x+i y)))$. As in (5.10) it follows that $0 \leqq v \leqq y$. We shall use the inequality

$$
\theta-\frac{\pi}{2} \leqq\left\{\begin{array}{ccc}
M(y-\psi(u)) & \text { if } & \psi(u) \leqq y \tag{5.13}\\
0 & \text { if } & \psi(u)>y
\end{array}\right.
$$

To prove (5.13) we note that if $\psi(u) \leqq v$, then $\theta-\frac{\pi}{2}=\operatorname{Im}(\zeta(u+i v))-\operatorname{Im} \zeta(u+i \psi(u)) \leqq$ $M(v-\psi(u)) \leqq M(y-\psi(u))$. If $\psi(u)>v$, then $\theta<\frac{\pi}{2}$, hence (5.13) is trivially satisfied.

Using the easily proved inequality

$$
\log \left|\frac{1-r e^{i \theta}}{1+r e^{i \theta}}\right| \leqq\left\{\begin{array}{cc}
4 r\left(\theta-\frac{\pi}{2}\right) & \text { if } \\
\frac{\pi}{2} \leqq \theta \leqq \frac{3 \pi}{4}, \quad 0 \leqq r \leqq 1 \\
0 & \text { if } \\
0 \leqq \theta \leqq \frac{\pi}{2}
\end{array}\right.
$$

and putting $r_{k}=\exp \left(-\left|\operatorname{Re} \sigma(z)-\sigma\left(\lambda_{n}\right)\right|\right)$ we get

$$
\log |f(z)|=\sum \log \left|\frac{1-r_{n} e^{i \theta}}{1+r_{n} e^{i \theta}}\right| \leqq\left\{\begin{array}{ccc}
4\left(\theta-\frac{\pi}{2}\right) \sum r_{n} & \text { if } & \frac{\pi}{2} \leqq \theta \leqq \frac{3 \pi}{4} \tag{5.14}\\
0 & \text { if } & 0 \leqq \theta \leqq \frac{\pi}{2}
\end{array}\right.
$$

With Φ as in (5.6) we have, by (5.12) and (5.5),

$$
\left|\operatorname{Re}(\sigma(z))-\sigma\left(\lambda_{n}\right)\right|=\left|\operatorname{Re} \zeta(u+i v)-\zeta\left(\lambda_{n}\right)\right|+O(1)=\left|\Phi(u)-\Phi\left(\lambda_{n}\right)\right|+O(1)
$$

Thus

$$
\log |f(z)| \leqq\left\{\begin{array}{c}
4 M C(y-\psi(u)) \sum \exp \left(-\left|\Phi(u)-\Phi\left(\lambda_{n}\right)\right|\right) \text { if } y \geqq \psi(u) \tag{5.15}\\
0 \quad \text { if } \quad y<\psi(u)
\end{array}\right.
$$

It is no restriction to assume $\lambda_{n} \leqq \lambda_{n+1}$ and $\lambda_{0}=0$. We shall prove that one can choose N such that

$$
\begin{equation*}
\Sigma_{\left|\lambda_{n}\right| \geqq N} \exp \left\{-\left|\Phi(u)-\Phi\left(\lambda_{n}\right)\right|\right\} \leqq \frac{1}{4 M C} e^{\Phi(u)} \quad \text { for } \quad u \geqq 0 . \tag{5.16}
\end{equation*}
$$

Since $\sum \exp \left(-\left|\Phi\left(\lambda_{n}\right)\right|\right)$ converges and has decreasing terms, there is a number n_{0} such that $\exp \left(-\Phi\left(\lambda_{n}\right)\right) \leqq 1 /(8 M C n)$ for $n \geqq n_{0}$, hence $\lambda_{n_{0}} \leqq \lambda_{n} \leqq u$ implies $n \leqq \exp (\Phi(u)) /(8 M C)$. The contribution to the sum in (5.16) from the corresponding terims therefore cannot exceed $e^{\Phi(u)} /(8 M C)$. If $N \geqq \lambda_{n_{0}}$ the remaining part of the sum in (5.16) is

$$
e^{-\Phi(u)} \sum_{\lambda_{n} \leqq-N} e^{-\Phi\left(\left|\lambda_{n}\right|\right)}+e^{\Phi(u)} \sum_{\lambda_{n} \geqq \max (u, N)} e^{-\Phi\left(\lambda_{n}\right)}
$$

which for N sufficiently large is less than $\exp (\Phi(u)) /(8 M C)$.
We assume that the product (5.11) is taken over indices n such that $\left|\lambda_{n}\right| \geqq N$. This is no restriction since the remaining zeros can be added by multiplication with a finite product with modulus less than 1.

By (5.15) we have $\log |f(z)| \leqq \sup _{u \geqq 0}(y-\psi(u)) \exp (\Phi(u))$. Putting $\Phi(u)=s$ we get $\psi(u)=\theta^{\prime}\left(e^{x}\right)$. Hence

$$
\begin{aligned}
\log |f(x+i y)| & \leqq \sup _{s \geqq 0}\left(y-\theta^{\prime}\left(e^{s}\right)\right) e^{s} \leqq \sup _{t \geqq 0}\left(y-\theta(t)+\theta(t)-t \theta^{\prime}(t)\right) \\
& \leqq \sup _{t \geqq 0}(y t-\theta(t))+C_{0}=\theta^{*}(y)+C_{0}
\end{aligned}
$$

since $\theta(t)-t \theta^{\prime}(t)$ is decreasing.
It remains to prove $(* *)$. It is sufficient to treat the case $\operatorname{Re}(w)>0, \operatorname{Im}(w)>0$. The boundary curve of D is given by

$$
g(x)=\frac{2}{\pi} \int_{0}^{x} \theta^{\prime}\left(e^{u}\right) d u+i \theta^{\prime}\left(e^{x}\right), \quad x \geqq 0 .
$$

The assumptions on θ permit us to extend g analytically to the half-strip

$$
\{z=x+i v: x>\log R,|y|<\delta\}
$$

by taking the integral along a path to z. Since $\theta^{\prime}\left(e^{x}\right) \rightarrow \alpha$ as $x \rightarrow \infty$, and $\left|\theta^{\prime}\right|$ is bounded, it follows by a standard argument that $\theta^{\prime}\left(e^{z}\right) \rightarrow \alpha$ and $\frac{d}{d z}\left(\theta^{\prime}\left(e^{x}\right)\right) \rightarrow 0$
uniformly for $|y| \leqq \delta_{0}<\delta$ as $x \rightarrow \infty$. It follows that, given $\varepsilon>0$, there is a number K such that for $x>K,|y| \leqq \delta_{0}$, we have

$$
\begin{equation*}
\left|g^{\prime}(z)-\frac{2 \alpha}{\pi}\right|<\varepsilon \tag{5.17}
\end{equation*}
$$

Hence, for K large enough, g is a conformal mapping defined on

$$
B=\left\{z=x+i y: x>K,|y| \leqq \delta_{0}\right\}
$$

and

$$
\left\{\begin{array}{lll}
g(z) \in \bar{D} & \text { if } & \operatorname{Im}(z) \leqq 0 \\
g(z) \notin D & \text { if } & \operatorname{Im}(z)>0
\end{array}\right.
$$

Because of (5.17) it follows that $g(B)$ is a "road" with a certain width in the w-plane. Hence, for some $x_{0}>0$ and $r>0$ the half-strip

$$
D^{\prime}=\left\{w=u+i v: u>x_{0}-r, 0<v<\alpha+r\right\}
$$

is contained in $D \cup g(B)$.
Put $h(z)=\zeta(g(z))-i \frac{\pi}{2}$ for $z \in B, \operatorname{Im} z<0$. Then h can be continuously extended to real $z \in B$ and h takes real values for z real. By Schwarz's reflection principle h can be extended to all of B. We denote this extension by \tilde{h}. For $w \in g(B)$ define $\tilde{\xi}(w)=\tilde{h}\left(g^{-1}(w)\right)+i \frac{\pi}{2}$. Then $\tilde{\xi}$ and ζ coincide on $g(B) \cap D$, hence ζ can be continued to D^{\prime}. By the construction $|\operatorname{Im}(\zeta)|$ is uniformly bounded in D^{\prime}. It easily follows that $\left|\zeta^{\prime}\right|$ is uniformly bounded in the smaller half-strip $D^{\prime \prime}=\{w=u+i v$: $\left.u>x_{0}, 0<v<\alpha\right\}$. The proof of lemma 1 is complete.

To remove the analyticity assumption in lemma 1 we need the following result on one-sided approximation of concave functions.

Lemma 2. Let F be an increasing, concave function defined for $x \geqq 0$. There is a function G, analytic in a sector $|\arg z|<v, v>0$, such that
(a) ($G^{\prime} \mid$ is uniformly bounded in the sector,
(b) for $x \geqq 0, G$ is real, increasing and concave,
(c) $G(x) \leqq F(x)$,
(d') $\int_{1}^{\infty}(F(x)-G(x)) \frac{d x}{x^{2}}<\infty$.
If, in addition, $F^{\prime}(0)<\infty$, then $\left(\mathrm{d}^{\prime}\right)$ can be sharpened to
$\left(\mathrm{d}^{\prime \prime}\right) \int_{0}^{\infty}(F(x)-G(x)) \frac{d x}{x^{2}}<\infty$.

Proof. We assume $F^{\prime}(0)<\infty$ and prove (a)-(d"). The other case is then trivial. Further we assume that F is twice differentiable and that $F(0)=0$. Put $A=\lim _{x \rightarrow \infty} F^{\prime}(x)$. The representation

$$
\begin{equation*}
F(x)=A x-\int_{0}^{\infty} \min (t, x) F^{\prime \prime}(t) d t \tag{5.18}
\end{equation*}
$$

is easily verified by differentiation. Let $p(t)=F\left(e^{t}\right) e^{-t}$ and $P=p * h$ where $h(t)==$ $\pi^{-1 / 2} e^{-t^{2}}$. Since p is bounded it follows that P and P^{\prime} have bounded analytic extensions to the strip $|\operatorname{Im}(z)|<v, v>0$.

We define G in the sector so that

$$
G\left(e^{z}\right)=e^{z} P\left(z+\frac{1}{4}\right)
$$

Differentiation yields (a). Differentiating again and observing that $F^{\prime \prime} \leqq 0$ we get

$$
e^{t} G^{\prime \prime}(t)=\left(\left(p^{\prime \prime}+p^{\prime}\right) * h\right)\left(t+\frac{1}{4}\right)=\left(F^{\prime \prime} * h\right)\left(t+\frac{1}{4}\right) \leqq 0
$$

hence G is concave. Of course it is also real and increasing since F is.
Put $q(t)=\min \left(1, e^{-t}\right)$. By (5.18)

$$
\begin{equation*}
p(u)=A+\int_{0}^{\infty}\left(-F^{\prime \prime}(s)\right) q(u-\log s) d s \tag{5.19}
\end{equation*}
$$

By Fubini's theorem

$$
\begin{equation*}
P(t)=A+\int_{0}^{\infty}\left(-F^{\prime \prime}(s)\right) Q(t-\log s) d s \tag{5.20}
\end{equation*}
$$

where $Q=q * h$. Putting $R(t)=\int_{-\infty}^{t} h(u) d u$ we get after an elementary calculation

$$
Q(t)=e^{-t+\frac{1}{4}} R\left(t-\frac{1}{4}\right)+R(-t)
$$

A rough estimate for R shows that

$$
\int_{-\infty}^{\infty}\left|Q(t)-q\left(t-\frac{1}{4}\right)\right| d t<\infty
$$

and it is easy to see that $Q(t)<e^{-t+1 / 4}$. Obviously $Q(t)<1$ for all t, hence

$$
\begin{equation*}
Q(t)<q\left(t-\frac{1}{4}\right) \tag{5.21}
\end{equation*}
$$

By (5.19)-(5.21) $e^{-t} G\left(e^{t}\right)=P\left(t+\frac{1}{4}\right) \leqq p(t)=e^{-t} F\left(e^{t}\right)$ which proves (c).

To prove ($\mathrm{d}^{\prime \prime}$) we substitute $x=e^{t}$ and use Fubini's theorem

$$
\begin{gathered}
\int_{0}^{\infty}(F(x)-G(x)) \frac{d x}{x^{2}}=\int_{-\infty}^{\infty}\left(p(t)-P\left(t+\frac{1}{4}\right)\right) d t \\
=\int_{0}^{\infty}\left(-F^{\prime \prime}(s)\right) d s \cdot \int_{-\infty}^{\infty}\left(q(t)-Q\left(t+\frac{1}{4}\right)\right) d t=\left(f^{\prime}(0)-A\right) C<\infty .
\end{gathered}
$$

Lemma 2 is proved.
To prove the converse part of theorem 1 we put $F(x)=\alpha x-\varrho^{*}(x)$ and apply lemma 2. Putting $\sigma(x)=\alpha|x|-G(|x|)$ we obtain a convex function such that $\lim _{|x| \rightarrow \infty} \sigma(x) / x=\alpha$. Define $\varrho_{1}(y)=\sigma^{*}(y)$. Then ϱ_{1} is a convex function on $(-\alpha, \alpha)$ and $\varrho_{1}^{*}=\sigma^{* *}=\sigma$, hence, by the properties of G, ϱ_{1}^{*} satisfies the analyticity condition in lemma 1 .

In order to apply lemma 1 we must show that $\sum 1 / \lambda_{n}^{+}<\infty$ where

$$
\frac{2}{\pi} \int_{1}^{\lambda_{n}^{+}} \frac{\varrho_{1}^{*}(x)-\varrho_{1}^{*}(0)+1}{x^{2}} d x=\left|\lambda_{n}\right|
$$

By (d) of lemma 2 it follows that for some $c>0, \lambda_{n}^{+} / \lambda_{n}^{*}>c$. Hence $\sum 1 / \lambda_{n}^{*}<\infty$ implies $\sum 1 / \lambda_{n}^{+}<\infty$.

Now lemma 1 gives us a function f with zeros λ_{n} such that $\sup _{x}|f(x+i y)| \leqq$ $\exp \left(\varrho_{1}(y)\right)$. Since $G(x) \leqq F(x)$ we have $\sigma(x) \geqq \varrho^{*}(x)$. Hence $\varrho_{1}(y)=\sigma^{*}(y) \leqq \varrho(y)$ and the proof is complete.

The last statement in theorem 1 is a consequence of a lemma, proved in [2], and the first part of theorem 1. Put $\beta(x)=\alpha x-\varrho^{*}(x), x \geqq 0$. From the cited lemma it follows that

$$
\int_{1}^{\infty} \frac{\beta(x)}{x^{2}} d x<\infty
$$

if and only if

$$
\int_{0}^{\alpha} \log ^{+}(\varrho(y)) d y<\infty
$$

Suppose that the integrals converge. Then it is not difficult to see that $\left|\lambda_{n}\right|=$ $\frac{2 \alpha}{\pi} \log \left(\lambda_{n}^{*}\right)+O(1)$. Hence $\sum \exp \left(-\frac{\pi}{2 \alpha}\left|\lambda_{n}\right|\right)=\infty$ implies $\sum 1 / \lambda_{n}^{*}=\infty$, which, as we have proved, leads to $f=0$.

If the integrals diverge, then $1 / \lambda_{n}^{*}=o\left(\exp \left(-\frac{\pi}{2 \alpha}\left|\lambda_{n}\right|\right)\right)$, and it is possible to find a sequence $\left\{\lambda_{n}\right\}_{1}^{\infty}$ such that $\sum \exp \left(-\frac{\pi}{2 \alpha}\left|\lambda_{n}\right|\right)=\infty$, but $\sum 1 / \lambda_{n}^{*}<\infty$. From the converse part of theorem 1 it follows that there exists $f \neq 0$ with zeros at λ_{n}, satisfying (${ }^{*}$).

On approximation by translates and related problems in function theory

References

1. Ahlfors, L., Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen. Acta Soc. Sci. Fenn. N.S.1. No 9 (1930).
2. Beurling, A., Analytic continuation across a linear boundary. Acta Math. 128 (1972), 153182.
3. Edwards, R. E., The translates and affine transforms of some special functions. J. London Math. Soc. 27 (1952), 160-175.
4. Edwards, R. E., Approximation theorems for translates. Proc. London Math. Soc. 35 (1959), 321-342.
5. Fuchs, W. H. J., A generalization of Carlson's theorem. J. London Math. Soc. 21 (1946), 106-110.
6. Ganelius, T., Some approximation theorems related to Wiener's. Proc of the Conference on Constructive Theory of Functions, Budapest 1969, 173-181. Eds: Alexits, G., Stechkin, S. B., Akadémiai Kiadó, Budapest 1972.
7. Izumi, S., Kawata, T., Quasi-analytic class and closure of $\left\{t^{n}\right\}$ in the interval ($-\infty, \infty$). Tohoku Math. J. 43 (1937), 267-273.
8. Landau, H. J., On the completeness of a set of translates. J. Approx. Th. 5 (1972), 438440.
9. Lönnroth, J., Hahn-Banach's sats och korta translationer. Master's thesis at the University of Göteborg, 1966.
10. Zalik, R., On some gap theorems and closure of translates. Notices A.M.S.25, No 2, *754B35, (1978).
11. Zalik, R., On approximation by shifts and a theorem of Wiener. Trans. Amer, Math. Soc. 243 (1978), 299—308.
