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1. Introduction 

From Wiener's approximation theorem we know that the set of finite linear 
combinations of translates of a function fCL(R) is dense in L(R) if and only if 
its Fourier transform is never zero. What can be said if we only allow translates 
f ( .  - 2 )  with 2 belonging to some fixed set A? Problems of this type have been 
studied by Edwards [3], [4], Ganelius [6], Landau [8], L6nnroth [9], and Zalik [10], 
[11] among others. 

Several approximation problems can be transformed to problems about approxi- 
mation by translates. We take the Mfintz--Szfisz theorem as an example. Consider 
approximation in L(0, 1) by linear combinations of monomials x uk, where /~k are 
distinct numbers greater than - l .  Take gCL(O, 1). 
x = e x p  (--exp (--t)) the expression 

f2lY akx"k--g(x)ldx 
converts to 

Under the transformation 

ak -g (e -e - t ) e  -e-*-t dt f_= Z 1 - - ~ k f ( t - l ~  +/~k)) 

where f ( t ) = e x p  ( - e x p  (- t )- t ) .  Putting 2k=lOg (1 +/lk) this can be written 

f2~ [2 bkf(t--2k)--h(t) I dt 
where hEL('R). 

We will relate the approximation properties of the translates o f f  to its Fourier 

transform. In the example above the transform is F(l+it)~tl/~exp [ - 2  )l), 
and the corollary to theorem 5 gives the precise answer that approximation is possible 
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if and only if ~ ' e x p  (--]2k[)=o% that is 

We will study approximation in the spaces L(R), L~(R), and Co(R). In section 3 
we consider the case f ( t )=O(exp (-O(t))), where 0 is even, convex, and O(t)/t~ 
~ # 0 ,  ~o as t -~o .  Edwards [3] contains a result on approximation in Co(R) for the 
case f ( t )exp  (eJt [)EL(R), a more restrictive hypothesis. 

In section 4 we consider the case f ( t )=O(exp (-~lt}P)), p > l ,  Assuming that 
A satisfies a separation condition we obtain a rather sharp theorem. Zalik [10], [I 1], 
deals with this problem with no separation condition, but the resuRs do not involve 
the same degree of  precision as ours. 

[ wish to thank Professor Tord Ganelius for suggesting the topic and for his 
support and kind interest in my work. 

2. Zeros of functions analytic in a strip 

The following theorem will be important in the next section. We give the proof  
at the end of  this paper. By S, we denote the strip {z=x+iy:  tyI<o~}. The con- 
vex conjugate of  a convex function ~ is defined as usual; ~*(y)=supx (xy-~(x)) .  

Theorem 1. Let f be analytic in the strip S~, let ~ be an even, convex function 
on ( - ~ ,  ~), and let Q* be its convex conjugate. Suppose that 

( . )  sup If(x+iy)l-<-= exp (e(y)), [y{ < ~. 

Given 2ER, define 2* by 

2 f~*  o * ( x ) - o * ( O ) + l  dx = [hi. 
--'~ *' 1 X 2 

I f  {2n} ~ is a sequence of real zeros o f f  (counting multiplicities) and 

Z 1/4". = 
then f=O.  

Conversely, i f  the series converges there is a function f analytic in the strip S~, 
satisfying (*), with precisely the zeros {2,}~. In particular 

f 2  log+ (e(y))dy < ~176 

is a necessary and sufficient condition for the implication 

X e x p  - - ~ - [ 2 ,  = ~ = * f = 0  

to hold. 
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3. Mi intz- -Szdsz  type theorems 

In this section A is an indexed set of  real numbers. Given a function f we let 
A ( f )  denote the set of linear combinations of  functions f ( .  -2k),  2kEA. The class 
of  functions 0 that are even, convex, and satisfy O(t)/t-*e~O, ~, as t ~  oo is denoted 
by A. Given OEA and 2EA we define 4" by 

2 f .  o(t)-o(o)+l 
1 x~ dt = 12[. 

Fourier transforms will be taken without the factor (2re) -~/~. 
We first treat approximation in L 2. 

Theorem 2. Let fEL  ~, OEA, and suppose that f ( t ) r  a.e. and 

If(t)l  ~= exp (--O(t)). 

I f  ~ a  1/2; =oo then A ( f )  is dense in L 2. 
On the other hand, ~f 

exp (--O(t))/f (t)E L 2 

and ~A 1 /2~<~  then A ( f )  is not dense in L 2. 

Proof. Take 

Put 

gEL 2 such that gA_A(f ) .  

h(2) = f = j ( x - 2 )  g(x)dx. 

Then h is obviously the inverse Fourier transform of f ( - t ) ~ ( t ) .  Since 

f ( - t  )~(t ) exp (yt)EL 

for lyl<~, it is clear that h can be analytically extended to S~. If  we let 01 be the 
largest convex minorant to 0 ( t ) - l o g  (1 + t  2) the inversion formula gives 

I~(t)l , 
Ih(x+iy)l <= Co exp (tlyl-01(t))-i--~--~at. 

Hence 

(3.1) Ih(x+iy)[ <= Clexp (OF(y)), 

Defining 4 + with respect to 01 it easily follows that there are c1>0, c2 >0,  such that 
cl 2 k/2,  <c2. This implies 

(3.2) • 1/2~- = ~ .  

By the elementary theory of  convex functions (01)*=01. Obviously h(2 , )=0.  By 
theorem 1 (3.1) and (3.2) imply h=0 .  Since f ( t )~O a.e, we conclude g = 0  which 
proves the first part of the theorem. 
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Now take h # 0 ,  holomorphic in S, with h(2k)=0 for all k, and 

[h(x+iy)[ <= exp (0*(y)). 

This is possible by theorem l. Put ho(z)=h(z)/(z2+2e2). The Fourier transform 
of ho is given by 

[~o(t) ---- f ho(x)e -itx dx. 

The path of  integration can be taken to be Im (z )=- -y .  One easily obtains 

[/% (t)[ <_- C exp ( -  (ty - O* (y))). 

Since 0"* =0,  minimizing over y gives 

Iho(t)[ <= Cexp(-O(t) ) .  

Define G(t)=•o( t ) / f ( - t ) .  The assumptions o n f s h o w  that GEL ~ and by Planche- 
rel's theorem G is the Fourier transform of some g~L 2. By inversion 

ho(~) = f f(x-~) g(x) dx. 

It is clear that g •  A ( f ) .  Since g ~ 0  this completes the proof. 
In the special case f ( t ) = O ( e x p  (-~It[)) ,  the second part of theorem 2 does 

not give much information. We cover this case separately. 

Theorem 3. Let fl be an even, positive function, concave for t>~O, such that 

f l~ fl(t) dt < oo. 
t 2 

I I Suppose f E L  2, [f(t)l>=C exp ( - ~ l t l - f l ( t ) ) ,  C>O, c~>O, I f  ,~A exp -~-[)-kJ  <co,  

then A ( f )  is not dense in L 2. 

Proof. Put f lo( t )=f l ( t )+log( l+l t l )  and p(x)=eX/fio(e x) for x ~ 0 .  Then p 
will be increasing. Define a ~ e +  Up(0). For ZERa the function defined by 

R(z) = exp -- exp +exp - 

has modulus less than exp ( - - cexp  (blx[)) for some positive constants b and c 
(x=Re(z ) ) .  Put po(x)=p(bx) and O(x)=a+l/po(X). Let D be the region 
{ z=x+iy :  lyl<•(lx[)} and map it conformally onto S~ by ~o such that 9(0), 
q~'(0)>0. Define pk=q~(2k). By Ahlfors' distortion theorem, [1], 

ak = ~f~o~(x) +O(1)= 2k_f:~ dx 1 +~po(x) ~o(1). 
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The last integral is less than 

1 oo dx 1 rio(t) 
Y f ;  - Po (x) ab 

Hence ~ e x p  --~-]/~kl < ~ ,  and we can find g#O, holomorphic in S~ with 

g(/~k)=O and fg[<l .  
Define 

h(z) = g(cp(z))R(z)/(z2+2a2), zED. 

Its Fourier transform will be estimated by integration along the lower boundary 
o lD .  Suppose t~0 .  We substitute x = s - i a - i / p o ( s )  and easilyverify ]dxt<=Cds, 
for some C>0.  Using the estimate for IRI and the fact that [gl is bounded we 
obtain 

( po(s)t ) ds (3.3) <_-- Co f o exp --at ce bs s 2 + a 2  " 

Choosing a such that ceb*=t/Po(a), which is possible for all t>-_M for some M>O, 
we have 

t t (3.4) - -  + c e  b s  > -  - -  

po(s) - po( ) 

for all s->0, since at least one of the terms on the left hand side is not smaller than 
the right member. Since po(a)~oo as t ~ o  there is M I > M  such that t_>-_M~ 
implies po(a)>l/c,  and by the definition of o', a < l o g  (t)/b. Hence 

t~ (log t ]  
(3.5) t/po(a) > Po [ ~ j  = tip(log t) = rio(t). 

Using (3.4) and (3.5) in (3.3) yields 

Ih(t)l <-- C1 exp(-at -r io( t ) ) ,  t ~ M1. 

By the corresponding estimate for tN0 and suitable choice of C we obtain 

[h(t)f <= C exp ( -a l t l - r i ( t ) )  
l+[t]  

Proceeding in the same way as in the proof of theorem 2 we find that A ( f )  is not 
dense in L 2. This finishes the proof. 

Corollary. Let fE L 2 and suppose that 

Cl(I t l+l)-"  <= If(t)l exp (altl) <-- C2(It l+l)"  

for some n>-O, m>=O, a>0 .  
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Then A ( f )  is dense in L 2 if and only if z~,exp -~-~  I&l - -~ .  

Remark. With f ( x ) = e x p  { - e x p  ( - t ) - 2 }  one has 

f ( t )  = F{}+i t }  ~,, C e x p [ - }  Itl) 

and the corollary gives Mfintz--Sz~isz theorem for L 2 (0, 1), if one makes the trans- 
formation shown in the introduction. 

We now turn to approximation in L. Here it seems that stronger conditions on 
f are needed. 

Theorem 4. Let fEL, OEA, and suppose that f ( t )#O for all t, and 

[Dr(t){ ~ Cexp (-O(t)). 

I f  z~a 1/)~'=~o, then A ( f )  
On the other hand, if 

is dense in L. 

exp ( -  0 (t))/f (t) E L, 

and ~-~a 1/2~<~,  then A ( f )  is not dense in L. 

Proof. Put F--f .  First observe that F(t)=O(exp(-O(t))):  Since O'(t)>~/2 
for t sufficiently large, 

<= f = exp ( -  0 (x) dx) <= 2_ f ~ exp ( -  0 (x)) 0' (x) dx = -~2 exp (-O(t)). IF(t)l < , l  I,I 

It is no restriction to assume that, for all x, 

f ( x )  = ~--T f e'XtF(t)dt. 

It follows t h a t f h a s  an analytic extension to S~. We definefy and Fy in the following 
way 

fr(x) =f (x+iy) ,  ]yl< c~. 

Fy(t) = exp (-- yt ) F(t ). 

We have to show that fyEL. The L-norm can be estimated by Carlson's inequality. 
Since fy is the inverse Fourier transform of Fy we have 

IILII, ~ ~ ColIF, II,IIF;II=. 
Let Or(t) be the largest convex minorant to O( t ) - log  (1 +t=). 

dt 
II F, II~ --< G f  (exp (]Yl t--Ol(t))) ~ (1 + tz) ~ N C= exp (20{ (y)). 

Moreover 
tl F~ II ~ = II exp ( -  yt)F" (t) - yFy (t) llg <= Ca exp (207 (y)), 
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since both terms can be handled as in the preceding inequality. Hence 

IIL[I -< c~ p(O*(y)) 1 ~ -  e x  

and it is not difficult to see that the norm depends continuously on y. 
Suppose that gEL ~~ and g •  Put 

h(z) = f f ( x ' z ) g ( x ) d x .  

To see that h is holomorphic in S,, first note that h is continuous, then use Fubini's 
and Morera's theorems. Since ]h(x+iy)I<=Csexp (O~(y)), and h(2k)=0, theorem 1 
gives h =0,  and we conclude g = 0  by Wiener's approximation theorem. 

The second part of the theorem follows by a small change in the proof of the 
corresponding part in theorem 2. 

Theorem 5. I f  fEL  satisfies the conditions in theorem 3 and 

~ a  exp - ~ -  [2k < co, 

then A ( f )  is not dense in L. 

The proof is almost the same as for the theorem 3. 

Corollary. Let fEL  and suppose that for some m>=O, n>=O, ~>0,  

[Df(t)l exp (~[tD <-- C~([t[ + l) m, C1 > O, 

If(t)[ exp(~]t]) => Cz([t[+l)-", C2 > 0 .  

Then A ( f )  is dense in L if  and only i f  ~.,~a exp ---~-[~ki =co. 

Remark. If  we let f be as in the example in the introduction it follows, from 

IDf(t)l<=Cltla/~exp [ - 2 I t ! } .  Hence the properties of the gamma function, that 

corollary is applicable. 
The following theorem on approximation in Co has a proof similar to the proofs 

of  theorems 2 and 4. 

Theorem 6. Let f be the Fourier transform of gEL and let OEA. 
(a) Suppose that [g(t)[<=Cexp ( -O( t ) )  and that g is not zero a.e. on any open 

interval. I f  ~'a 1/2~=oo, then A ( f )  is dense in Co. 
(b) Suppose g is differentiable, exp ( -O(t)) /g( t )EL 2, and 

(3.6) [Dg/gl <= M, M > O. 

I f  ~ a  1/2~<oo, then A ( f )  is not dense in Co. 
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Differentiability is important in (b) as the following proposition shows. Let 
us call a strictly increasing sequence of positive numbers, {2k} ~, regular if its counting 
function n(2) coincides for 2 = 2  k with a function h(2) such that h'(e x) is convex 
and increasing. A doubly infinite sequence {2k}_~= will be called regular if {2k} ~' 
is regular and 2_k= --2 k. 

Proposition. Let f be the Fourier transform of gEL satisfying 
(a) [g(t)l<=Cexp (--~[t[) for some a>0 ,  C > 0 ,  
(b) the set of  points where g:s left and right hand limits exist and are different 

has a fin#e accumulation point, ~, 
(c) g is not zero a.e. on any open interval. 

I f  {2k}_~ is regular and 

(3.7) Z ~ =  (1 +2~) -1 = ~ ,  

then A ( f )  is dense in Co. 

Proof. It is easily seen that the number Of 2k in the interval [x, x +  1] is between 
h ' ( x ) - I  and h ' ( x + l ) + l  for x ~ 0 .  Take d t t •  put F ( 2 ) = f f ( x - 2 ) d p ( x )  
and extend F analytically to S,. Since F is uniformly bounded in, say, S~,~ and 
F(2k) =0,  Schwartz's lemma yields 

(3.8) log IF(x)l ~ ~ log I exp (nx/~O- exp (n2k/~) + Co 
exp (nx/~) + exp (n2k/~) 

<=-2 ~ exp(---~ lx-2kl)+Co ~ - C l h ' ( x ) - C ~ ,  (C1, C2 > 0). 

lzumi and Kawata [7], have proved that a function FCL satisfying log IF(x)l<_ - 
--co(Ix/) , where co(e x) is convex, and 

co(X) d x =  0% 
f ~  l + x  ~ 

has its Fourier transform in a quasi-analytic class. Now 

h ' ( x )  . 

o 1T-~ s 1-k2(t) ~'  

where 2 is the inverse function to h. Since 2 is increasing it follows from (3.7), by 
a comparison argument, that the integral to the right is divergent. Then, by (3.8) 
and the cited theorem, P is quasi-analytic. We claim that all derivatives o f /~  are 
zero at ~. This clearly would give the conclusion of  the theorem. Observe that, 
since TEL, 
(3.9) f ( t )  = g(t)ft(t) a.e. 
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Let t~ be a discontinuity point of g, as described in (b), and let t tend to t~ avoiding 
points where (3.9) does not hold. Since ff and/~ are continuous 

/~(ti) 1/treat ~ g(t) = ff(ti) = P(ti)li~ g(t). 

But the limits are different, hence /~(h)=0, so ff(ti)=0. Since ti-*~ repeated 
application of  Rolle's theorem shows D"ff(~)=0, all n. The proof  is complete. 

4. Functions with rapidly decreasing transforms 

The theorem in this section is stated for L 2, but it has analogues in L and Co 
in the same way as the theorems in section 3. The constant in front of log (r) is 
sharp for p > l ,  we give a simple example for p = 2 .  

Theorem 7. Let f E L  2, suppose ~>0,  p > l  and f ( t ) = O ( e x p  ( - ~ ] t f ) ) ,  f(t)~O 
a.e. Let q be the conjugate exponent to p and suppose that for some ~5 > 0  

~q - ~ q > ~ ,  (2 .>0)  n + l  " ~ .  = 

and 

{= I } l imsup o<~,<,22q (p~)l-q sin logr  = ~,. 

Then A ( f )  is dense in L 2. 

In the proof  we use the following lemma. 

Lemma. Suppose G is an entire function such that 

lim sup log [G(rei~ < fl isin0lq, 
r ~ ~ r q = 

q > l ,  f l>0.  Suppose that for n~O,  2 . > 0  , ~q - ~ q > ~ > 0 ,  and G (2.) ---- 0. I f  

l imsup 4, <, 22 a -  sin og r = o~, 

then G=0.  

Proof Define H(z )=G(z  x/q) for larg(z)l=~-. Then 

lim sup log I H(rei~ = lira sup l~176 

( <= fl(sin (O/q)) q <= fl sinl ,2q)j  = c, say. 
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We now use Fuchs' theorem concerning zeros of functions of exponential type, 
[5]. Evidently H is of exponential type c, has zeros at the points /~.=2. q, 
/z.+~ / G = 5 > 0  and 

lim s u p ~ .  <R 1-----ClogR~ = lira s u p { ~ ' ~ < . 2 2 q - - - ~ l o g r }  = ~o. 

Hence H = 0  and the lemma follows. 

Proof of  theorem 7. Take gEL 2, g_t_A(f)  and define F by convolution as 
before. Then F will be entire and 

~(t) dt 
}F(x + iy)l < exp ( -  ~t v +log (1 + t ~) + lYl t) 

= 1 + #  

C'exp (max { l y l t - c ~ t V + l o g ( 1  +t~)}). 
" t ~ O  

If  the maximum is attained at t=z ,  then 

2~ _ _ _  > ctpzV_ 1 _ 1, [Yl = o~P zp-1 l + z2 

hence lyI+ > v - l >  1 =~pz = lyl and the maximum value is 

fylz--c~vV+log (1 + z 2) <= a(p-- 1)vP + log(1 + z2) 

Hence 
< ~l_q(p_  1)p'q(lyl + 1)q + o  (lyl) = . 

limsup(l~176 <=~l-q(P--1)P-q(lsinOl)q" 

Now F = 0  follows from the lemma since F(2.)=0,  and ea -q (p -1 )p -qq= 
(pa) 1-q. It then follows that g = 0  and the theorem is proved. 

For p = 2  it is easy to see that the constant in front of log (r) cannot be 
smaller. Take e,g. F(x)=s in  (x2/2) exp (--x2/2)/x ~. Using the fact that IF(z)[~ 
exp (y2)/(x2+y2) one obtains 

IP(t)l ~ C exp ( -  t~/4)/(1 + It I). 

Hence, given f E L  2 with If(t)l,~exp ( - t2 /4)  there is gEL 2 such that the con- 
volution equation F = f , g  is satisfied. This shows that A ( f )  is not dense in L 2 
if  A={(27rn)l/2}1. On the other hand, by theorem 7, if c<2rc and A={(cn)l/2}~, 
then A ( f )  is dense in L e. 
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5. Proof of theorem 1 

It is no restriction to assume 0 twice continuously differentiable with 0">0 .  
Furthermore we may assume q(y)-~oo as y - ~ ,  since otherwise f is bounded and 
the theorem follows from Blaschkes theorem by a transformation to the unit disc. 

By definition of  convex conjugate, 

(5.1) O*(t) = s t - o ( s ) ,  where O'(s) = t. 

Differentiation of  (5.1) yields 

d 
(5.2) d--7 ~* (t) = s. 

Put O(t )=Q*( t ) .  By (5.2) a n d  (5.1) 

o (O'(t)) = Q (s) = s t -  Q* (t) = tO'(t) - 0 (t). 

Hence, by (*) in the statement of the theorem, 

(5.3) [ f (x  + iO'(t))l <= exp ( tO ' ( t ) -  0 (t)) 

independently of  x. Note that, by convexity, the right side increases with t. Also 
note that 0 ' ( t )>0  for t > 0  and O(t)/t-~a as t-~oo. 

We shall now prove the first part of theorem 1. Suppose t h a t f i s  not identically 
zero. We can assume f ( 0 ) ~ 0 .  Let D be the band-shaped domain bordered by 
the four curves 

+ 2  rt 
(5.4) t c - '~_~  j ~ O" (e") du + iO' (e'), t~[O, ~o[. 

The domain D is illustrated in figure 1. 

,Y" o~ 

Fig. 1 
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Let cO map S,v ~ conformally onto D, such that q~ (0), ~p' (0) >0. Then ~p preserves 
symmetry with respect to the axes. Putting h(z)=f(qs(z)) we obtain a function 
holomorphic in S,/2. We will use Ahlfors' distortion theorem [1] to show that 
h(0)r  leads to a contradiction. 

Let r (u) be half the length of  the intersection between the line x =u  and D. 
Given pER, put ~=q0@). By the distortion theorem there is a constant k such 
that for all ). 

Icp_~(2)_~,./,z dt <:k. (5.5) 
I 2 ,to 6 ( 0  

By symmetry it is sufficient to consider /~>0, hence A>O. Define 

(5.6) cb(~,) =-~f~Tr ~ dt . 
r 

Making the substitution t= 2 fo 0"(ex) dx and observing that, by construction, 

r we find ~( t )=u ,  hence 

2 , 
(5.7) ~-l(u) = ~ f s  O'(e~)dx. 

The function h extends continuously to ~/2. We shall estimate it at the bound- 

/ ary. For x=>0 we define x' by ~0(x')=Re q0 x + i ~  . By the distortion theorem, 

there is a constant kl such that ]x'-x]<kl. Put u=~(q~(x')). By (5.5) Ix'-ul<k, 
hence lu-xl<k~. By the definition of u and (5.7) 

h (x +i 2 )  = f(q~(x') + ir (q)(x')))= f ( 2  f ]  O" (e ~) dt + iO" (e")), 

and, by (5.3), 

(5.8) [h(x+i2)  I ~exp(eX+k~O'(eX+kO--O(eX+~)). 

Note also that, by the same argument, th(x+iy)l is majorized by the right side of 

(5.8), for lyld 2 .  

We now use the inequality 

�9 exp 0r/~,/2fl) + II 
(5.9) log Ih(0)l+ Z , o g  ~ ~ 1  

< 1 /.~ loglh(x+if l )h(x- i f l ) ldx 
= ~fid_ ~ exp (rcx/2fl) + exp (-- rcx/2fl)' 
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where /~.=~0-x(2.) are zeros of  h and 0<p<zr/2.  This inequality is obtained by 
transformation to the strip S, of the following well known inequality for F C H ' ( U ) ,  
where U is the unit disc. 

(1) , : .  
log IF(0)[ + ~ '  log -< ~ -  __ 

with F* the radial limit function and rke ~~ zeros of F. 
That h is bounded in each strip S# follows from 

(5.10) IIm ~p(x+iy)] ~_ 2__~.~ [Yl. 
7~ 

To see this, observe that Im r (z) is harmonic in ~,  and that the inequality holds 
for y = 0  and y =re/2. By a Phragm6n--Lindel6f argument it follows for O<=y<=rc/2 
which is sufficient, by symmetry. 

Using (5.8) we find that the right side of (5.9), for /~>rc/4 say, is not larger than 

C e~ , dx = C < Co~. 

Since the terms in the sum in (5.9) are not smaller than 2 exp (-zrl/~.[/2fl), it follows, 
by letting fl tend to ~r/2, that ~ ' exp  (--]/Zn])<oo. But ~-1(log2")=O(1)+12.[  
as is easily seen. Hence log2 .*=o(1 )+~( [2 . I )= [p . l+O( l )  and we can conclude 
~ '  1/2"< 0% which contradicts the hypothesis. 

We now turn to the converse part of theorem 1. 

Lemma 1. Suppose that 0 is an even, convex function on ( - ~ ,  ~), such that 
O* has an analytic continuation with uniformly bounded derivative in the region Izl >R,  
[arg (z)]<6 for some R > 0 ,  b>0.  

I f  {2.}Z~ is a real sequence such that Z 1/2" < co then there is a function f 
analytic in the strip S. such that f has precisely the zeros 2, (counting multiplicities) 
and supx ]f(x +iy)l<=exp (q(y)). 

Proof. Let 0 be the continuation of  0* and let D, go, and 4z be defined as on 
pp. 281--282. Let ~--~o-1: D~S~/2. 

The idea of the construction is to take a Blaschke product with suitably located 
zeros in S~/z, compose it with ~ to obtain a function F defined in D with zeros 2,. 
I f  we could continue ~ across the boundary of D to the strip S~ we would have a 
candidate for the function f .  However, by the construction of D, the func- 
tion ~ can only be extended to a region Do---Dw{w=u+iv:  [u]>x0, Iv]<a} for 
some x0>0. This is no serious limitation, but we have to introduce an auxiliary 
mapping w: S,~Do to obtain the desired function f ( z )=F(w(z ) ) .  
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We now claim 

( ,  , )  It is possible to continue ~ analytically to a region Do as above, in such a 
way that for some M>O one has I~'(w)l<=M in IRe (w)l>xo, IIm0v)l<a. 

We prove this fact showing that f has the desired properties. Note that it fol- 
lows that for Xo sufficiently large the image o f  D o under ~ is contained in, say, the 
strip S~,,I 4. 

Let w map S~ conformally onto Do with w(0)=0, w'(0)>0, so that symmetry 
with respect to the axes is preserved. Put a(z)=~(w(z)) and 

e~p (~ (~))- exp (~(~.)) ~ s=. 
(5.11) f(z) = ]-/ exp (a (z)) + exp (a (2.)) ' 

By the distortion theorem w(2.) =2.  + O (1) hence 

(SAN) Icr(,~.)l = 1r = log (2")+o(1) 

where the last equality follows as in the proof of the first part of theorem 1. Thus 
~'  exp @ ia(2.)l)< 0% hence the product (5.11) converges if a(z)C S., afortiori if 
z~S~,. 

By reasons of symmetry it is sufficient to consider z=x+iy, x>=O, y>=O. Put 
0=Im a(z)=Im (~(u+iv))=im (~(w(x+iy))). As in (5.10) it follows that O<=v<=y, 
We shall use the inequality 

n [M(y--~(u)) if ~(u)<=y 
(5.13) 0 - ~ -  --~ / O if ~(u) > y, 

To prove (5,13) we note that if ~(u)~v, then 0 - - 2 = I m  (~(u+iv))--Im ~(u+i~ (u))<= 

(5.14) 

then 0<~- ,  hence (5.13) is trivially M(v-O(u))<=M(y--O(u)). if ~(.)>~, 

satisfied. 
Using the easily proved inequality 

log l + r d  ~ if 0<=0<=~-, 

and putting rk=ex p ( - I R e  ~(z)-~(2.)l) we get 

,0 4 0 - ~  I I - r . e  I [ ( 2 t  ~ r "  
log li(~)i = 2 '  log 1• + r .e ,  ~ i ~ / 

0 / 

3~ n < 0 ~  , 0 ~ r ~ l ,  

rc 3z~ 
if ~ 0 < = - ~  -- 

7~ 
if 0-<_0== - 

2" 
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With �9 as in (5.6) we have, by (5.12) and (5.5), 

{Re(a(z))--a(2.)[ = {Re~ (u+iv)--~(2.)[ +O(l)  = {4~(u)-4~(2.)1+O(1 ). 
Thus 

[4MC(y-O(u) )  Z exp (-[~(u)--~(2.)[ )  if y _-> O(u) 
(5.15) loglf(z)l <-- [ 0 if y <  ~(u). 

We shall prove that one It is no restriction to assume 2.~2.+1 and 20=0. 
can choose N such that 

1 
(5.16) ~'la.l~jv exp {--]q~(u)- ~(2.)]} <= 4M-----(e~ for u ~ O .  

Since ~ ' e x p ( - 1 r  converges and has decreasing terms, there is a number 
no such that exp(--~(2.))<-l/(8MCn) for n>-_no, hence 2.0~2.<-u implies 
n-<exp (4~ (u))/(8MC). The contribution to the sum in (5.16) from the corresponding 
terfias therefore cannot exceed e~ If  N->2.o the remaining part of the 
sum in (5.16) is 

e-~ ~z.~_-N e-~ e~ Z~n~_max(u,N) e -~ 

which for N sufficiently large is less than exp (O(u))/(8MC). 
We assume that the product (5.11) is taken over indices n such that I2.)>=N. 

This is no restriction since the remaining zeros can be added by multiplication with 
a finite product with modulus less than 1. 

By (5.15) we have log lf(z)l<-SUpu~o (y- lp(u))  exp (~(u)). Putting O(u)=s 
we get O(u) =0'(eX). Hence 

log ]f(x + iy)] <= sup (y--O' (e~))e s <- sup (y -O( t )  +O(t)-tO'(t)) 
s ~ O  t ~ O  

<-- sup ( y t -  0 (t)) + Co = O* (y) + Co 
t ~ O  

since O(t)-tO'(t) is decreasing. 
It remains to prove ( . . ) .  It is sufficient to treat the case Re (w)>O, Im (w) >0. 

The boundary curve of D is given by 

x 
g(x) --- ~ - f s  O'(e")du+iO'(eX), x >= O. 

The assumptions on 0 permit us to extend g analytically to the half-strip 

{z = x+iv :  x > log R, ty[<5} 

by taking the integral along a path to z. Since O'(eX)-.-:~ as x~oo,  and [0" I is 

d (O,(eX))~O bounded, it follows by a standard argument that O'(e*)-+a and 
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uniformly for [y1~5o<6 as x---~. It follows that, given e>0,  there is a number 
K such that for x > K ,  Iyl<=5o, we have 

(5.17) Ig'(z)-2-~- ~ <~. 

Hence, for K large enough, g is a conformal mapping defined on 

and 
B = {z = x + i y :  x > K ,  IYl <-- 60} 

{ g(z)ED f Ira(z) <= 0 

g(z)~D if I m ( z ) > 0 .  

Because of (5.17) it follows that g(B) is a "road" with a certain width in the 
w-plane. Hence, for some x0>0 and r > 0  the half-strip 

D" --- {w = u+iv: u > xo-r ,  0 < v < a + r }  

is contained in D ~Jg(B). 
7~ 

Put h(z) =~(g(z))--i-~ for zEB, Im z<0.  Then h can be continuously extended 

to real zEB and h takes real values for z real. By Schwarz's reflection principle 
h can be extended to all of B. We denote this extension by h. For wEg(B) define 

7g 
~(w)=~(g- l (w) )+,~ .  Then ~ and ~ coincide on g(B)nD,  hence ~ can be con- 

tinued to D'. By the construction [Ira (~)l is uniformly bounded in D'. It easily 
follows that I~'l is uniformly bounded in the smaller half-strip D"={w=u+iv:  
U>Xo, 0< v< a } .  The proof of lemma 1 is complete. 

To remove the analyticity assumption in lemma 1 we need the following result 
on one-sided approximation of concave functions. 

Lemma 2. Let F be an increasing, concave function defined for x~O. There is 
a function G, analytic in a sector [argzt<v, v>O, such that 
(a) (G" I is uniformly bounded in the sector, 
(b) for x=>0, G is real. increasing and concave, 
(c) a ( x )  ~= F(x) ,  

(d') 

If, in addition, F'(O)~ ~,  then (d') can be sharpened to 

(d") 
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Proof. We assume F ' (0 )<  ~ and prove (a)--(d"). The other case is then trivial. 
Further we assume that F is twice differentiable and that F(0)=0 .  Put 
A =lim~_.~ F'(x). The representation 

(5.18) F(x) = A x - f ~  min (t, x)F"(t) dt 

is easily verified by differentiation. Let p(t)~-F(et)e -t and P = p , h  where h(t)= 
rc-1/2e-:. Since p is bounded it follows that P and P '  have bounded analytic exten- 
sions to the strip [Im (z)l<v, v>0 .  

We define G in the sector so that 

G(e ~) -~ e'P(z-F-~). 

Differentiation yields (a). Differentiating again and observing that F"___0 we get 

etG"(t) = ((p" + p') .  h)(t +-~} = (F" . h)(t +-~) <= O, 

hence G is concave. Of  course it is also real and increasing since F is. 
Put q(t)=min (1, e-t). By (5.18) 

(5.19) 

By Fubini's theorem 

p(u) -- A +fo q(, -Iog s) d,. 

(5.20) P (t) -= A + f o  ( -  F"(s)) Q ( t -  log s) ds 

where Q=q.h .  Putting R ( t ) = f t =  h(u)du we get after an elementary calculation 

1 
Q(t) = e-t+T R( t -~)+R(- - t ) .  

A rough estimate for R shows that 

:L dt<  

and it is easy to see that O(t)<e -t+l/a. Obviously O ( t ) < l  for all t, hence 

(5.21) Q(t)<q(t-~). 

By (5.19)--(5.21) e-'G(et)=e(t+-~)<=p(t)-~ e-'F(e') which proves (c). 



288 Birger Fax6n 

To prove (d") we substitute x = e  t and use Fubini's theorem 

fs  (~ (x ) - a (x ) ) -  7 = f _ ~  p ( 0 - e  t+  at 

= f ]  (-F" (s))ds.f~_~ ( q ( t l - Q  (t +-~))dt = ( f ' ( O ) - - A ) C  < co. 

Lemma 2 is proved. 
To prove the converse part  of  theorem 1 we put F ( x ) = a x - q * ( x )  and apply 

lemma2.  Putting a ( x ) = a l x I - G ( l x ] )  we obtain a convex function such that 
liml~l_.~ a(x ) / x=a .  Define Ol(y)=a*(y) .  Then 41 is a convex function on ( - a ,  a) 
and * ** 01 = a  = a ,  hence, by the properties of  G, Q~ satisfies the analyticity condition 
in lemma 1. 

In order to apply lemma 1 we must show that ~ 1/2 + < r where 

2 f c  e~ (x) - e~ (o) + 1 
n s 1 x= dx = 12,,I. 

By (d') of lemma 2 it follows that for some e>0 ,  + * * 2 , / 2  n >e. Hence ~Y l/k. < oo 
implies ~ 1/2+<oo. 

Now lemma 1 gives us a function f with zeros 2. such that sup~ I f ( x  +iy)I<= 
exp(el (y)) .  Since G(x)<=F(x) we have a (x) => 0* (x). Hence e~(y)=o*(y)<=o(y) 
and the proof  is complete. 

The last statement in theorem 1 is a consequence of  a lemma, proved in [2], 
and the first part of  theorem 1. Put f l (x )=otx-Q*(x) ,  x>=O. From the cited lemma 
it follows that 

#(x) 
f l  ~ dx < oo X 2 

if  and only if  

f o l o g + ( p ( y ) ) d y  < ~ .  

Suppose that the integrals converge. Then it is not difficult to see that IAnl = 

2__~ log (2")+O(1) .  Hence ~ e x p  - ~ - ~  >hi =~,  implies X 1/2~*=~o, which, as 

we have proved, leads to f = 0 .  

I f  the integrals diverge, then 1 /2"=o exp - ~ f f  12,1 , and it is possible to 

find a sequence {2,} 1 such that ~ e x p  -~-~~ I2,1 =~ ' ,  but ~Y 1/2~*<~. From 

the converse part of  theorem 1 it follows that there exists r e 0  with zeros at 2,,  
satisfying (*). 
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