Two problems on removable sets for analytic functions

Robert Kaufman

Introduction. Two elementary theorems on continuation of analytic functions across a compactum $C \subseteq R^{2}$ are stated, and to each an example is given to show that the sufficient condition is best possible. In I. we use methods from the theory of singular integrals to estimate a certain sum of analytic functions. In II. we use Fourier analysis in R^{2} to estimate certain sums of functions that seem immune to direct methods (especially their higher derivatives). We make explicit use of the "symbols" of the operators $\partial / \partial y$ and $\partial / \partial \bar{z}$; we are impelled to a complicated construction of the exceptional set by the necessity of evaluating certain integrals arising as Fourier transforms.
I. A compact set C in the plane is called non-removable if there is a uniformly continuous, nonconstant analytic function defined on $R^{2}-C$. By a theorem of Besicovitch [1], C is removable if C is of σ-finite Hausdorff 1-measure, hence a fortiori if C is a rectifiable curve. (The theorem must be changed if uniform continuity is replaced by uniform boundedness.) When C is the graph of a function $y=f(x)$, $-1 \leqq x \leqq 1$, then C is removable if f has bounded variation, or is differentiable everywhere (an elementary theorem). Our purpose is to show that this last statement cannot be improved.

Theorem. Let $h(u)$ be positive and increasing for $0<u \leqq 2$, and $\lim u^{-1} h(u)=$ $+\infty$ at $u=0+$. Then there is a curve $y=f(x),-1 \leqq x \leqq 1$, non-removable in the definition stated, such that $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leqq h\left(x_{1}-x_{2}\right)$ whenever $-1 \leqq x_{2}<x_{1} \leqq 1$.

It is clear that C has finite Hausdorff measure for the function $H(u) \equiv h^{-1}(u)$, and that $h^{-1}(u)$ can be any function $H(u)$ subject to the relation $H(u)=o(u)$. This corollary of our Theorem is due to Carleson [2]; however, the sets constructed by Carleson are disconnected and in fact do not appear to lie on any Jordan curves with interesting properties.
2. Let $\psi(t)=1-|t|$ for $|t|<1, \psi(=0$ oth $t)$ erwise, and then

$$
F_{0}(z)=\int_{-\infty}^{\infty} \psi(t)(z-t)^{-1} d t, \quad z \notin[-1,1] .
$$

Then $\left|F_{0}\right| \leqq C$ off $[-1,1]$ and $F_{0}(z)=z^{-1}+\frac{1}{6} z^{-3}+\ldots$ near infinity. We note the following approximation for $F_{0}:$ when $|z|>4$ and $|\xi| \equiv 2$, then $F_{0}(z+\xi)=$ $z^{-1}+O\left(z^{-2}\right)$.

Let now $0<r<1$ and $a_{k}=r \int_{k}^{k+1} \psi(r t) d t$, so that $\sum a_{k}=1$ and $\left|a_{k+1}-a_{k}\right|<$ r^{2}; moreover $a_{k}=0$ when $|k|>r^{-1}+1$. Let w be any complex number and $g(z)=$ $\sum a_{k} F_{0}(z-k w)$.

Lemma. $|g(z)| \leqq C^{\prime}\left(r|w|^{-1}+r\right)$ on the domain of holomorphy of g.
Proof. Clearly $g(\infty)=0,|g| \leqq C$, and g is analytic off the line segments [$k w-1, k w+1]$ with $|k| \leqq 2 r^{-1}$. It is sufficient therefore to prove the inequality for numbers z such that $|z-v w|<2$ with $|v| \leqq 2 r^{-1}$. We can suppose that $|w| \geqq 4 r$ (since $|g| \leqq C$), and then omit from the sum the indices satisfying the inequality $|k-v| \leqq 4|w|^{-1}$, because $\left|a_{k}\right|<r$. For the remaining indices k we observe that $z-k w=(v-k) w+z-v w$ so that

$$
F_{0}(z-k w)=(v-k)^{-1} w^{-1}+O\left(|w|^{-2}|v-k|^{-2}\right)
$$

Summation of the error $|\boldsymbol{w}|^{-2}|v-k|^{-2}$, over the range $|k-v|>4|w|^{-1}$, yields $O\left(\mid w^{-1}\right)$, which is then multiplied by r. Again $\left|a_{k}-a_{v}\right|<r^{2}|k-v|$, and the range of summation is taken as $4|w|^{-1}<|k-v| \leqq 4 r^{-1}$. The principal term $a_{v} w^{-1}(v-k)^{-1}$ sums up to 0 , and the error to $O\left(r|w|^{-1}\right)$.

We apply this inequality to the function $\sum a_{k} \cdot \lambda F_{0}(\lambda z-\lambda r k)$, wherein $0<r<1$ and $\lambda=w r^{-1}$. We find the inequality $|G(z)| \leqq|\lambda| \cdot\left|C^{\prime}\right|\left(r|w|^{-1}+r\right)=\left|C^{\prime}\right|+\left|C^{\prime}\right||w|$, on the open set where G is analytic. Suppose further that $r \rightarrow 0+,|\lambda| \rightarrow+\infty,|w|=$ $|\lambda| r<1$. Then $G(z)$ tends uniformly to F_{0} on each compact set K disjoint from $[-1,1]$; to see this we observe that if r is small and $a_{k} \neq 0$, then $|z-r k| \geqq \delta>0$ for all z in K, with a constant δ independent of k, r. Then $\lambda F_{0}(\lambda z-\lambda r k)=(z-r k)^{-1}+$ $O\left(\lambda^{-1}\right)$, so $G(z)$ may be compared with a Riemann sum for $F_{0}(z)$. At the same time $G(z)$ remains uniformly bounded, by the requirements on λ, r and λr. The open set G on which G is analytic tends to $R^{2}-[-1,1]$.
(The lemma and its applications remain valid if ψ is replaced by a Dini-continuous function; we have only to estimate $a_{k}-a_{v}$ more carefully.)
3. The curve $y=f(x)$ will be a limit of curves $y=f_{n}(x),-1 \leqq x \leqq 1$, with $f_{0} \equiv 0, f_{n}(-1)=f_{n}(1)=0$ and $\left|f_{n}\left(x_{1}\right)-f_{n}\left(x_{2}\right)\right| \leqq\left(1-2^{-n}\right) h\left(\left|x_{1}-x_{2}\right|\right)$. We suppose that φ_{n} is analytic off the curve $y=f_{n}(x),|x| \equiv 1-2^{-n-1}$, and that $\varphi_{n}=z^{-1}+O\left(z^{-2}\right)$ near infinity. Also, each φ_{n} is a sum $\sum_{j} b_{j} F_{0}\left(\alpha_{n} z+c_{j}\right)$, with some α_{n} depending
on n and each $\left|b_{j}\right| \leqq 3^{1-n}$. The singular lines of the different functions $F_{0}\left(\alpha_{n} z+c_{j}\right)$ are disjoint line segments contained in the curve $y=f_{n}(x)$, so $\operatorname{Re} \alpha_{n} \neq 0$. For φ_{0} we choose $2 F_{0}(2 z)$.

The singular line of $F_{0}\left(\alpha_{n} z+c_{j}\right)$ has end points $\alpha_{n}^{-1}\left(c_{j}-1\right), \alpha_{n}^{-1}\left(c_{j}+1\right)$; if $\alpha_{n}=\operatorname{Re}^{i \varphi}$ then this line has slope $-\tan \varphi$. We replace F_{0} by a sum

$$
\sum a_{k} \cdot \lambda F_{0}(\lambda z-k \lambda r)
$$

obtaining (for fixed j) a sum $\sum a_{k} \cdot \lambda F_{0}\left(\lambda \alpha_{n} z+\lambda c_{j}-\lambda k r\right)$. We shall take r very small, $|\lambda|=(6 r)^{-1}$, and choose the argument of λ in the following way. The singular line of $F_{0}\left(\lambda \alpha_{n} z+\lambda c_{j}-k \lambda r\right)$ is represented parametrically by the equation $z=$ $\left(\lambda \alpha_{n}\right)^{-1} t+k \alpha_{n}^{-1} r-\alpha_{n}^{-1} c_{j},-1 \leqq t \leqq 1$. Taking a number z^{*} on the singular line with a different index k^{*}, we see that $\left|\operatorname{Re}\left(z-z^{*}\right)\right| \geqq\left|\operatorname{Re}\left(\alpha_{n}^{-1} r\right)\right|-2\left|\operatorname{Re}\left(\lambda \alpha_{n}^{-1}\right)\right|$. Now α_{n} is not purely imaginary, as observed before, so that $\operatorname{Re}\left(\alpha_{n}^{-1} r\right) \mid \geqq \delta_{n} r$, for a certain $\delta_{n}>0$. Setting $\lambda=(6 r)^{-1} e^{i \psi}$, we calculate $\operatorname{Re}\left(\lambda \alpha_{n}\right)^{-1}=6 r R^{-1} \cos (\varphi+\psi)$. We therefore choose ψ so that $\cos (\varphi+\psi) \neq 0,|\cos (\varphi+\psi)|<R \delta_{n} / 24$.

Thus as k varies, but j is held fixed, the singular lines have projections on the x-axis separated by intervals of length at least $r \delta_{n} / 2$. Hence the lines can be completed to a graph with slope at most M_{n}, independent of r.

When $a_{k} \neq 0$, then $|k r| \leqq 1+r$, and so each point on the associated line is within $7 r\left|\alpha_{n}\right|^{-1}$ of the singular line for $F_{0}\left(\alpha_{n} z+c_{j}\right)$. For small r, therefore, the singular lines in the full sum $\varphi_{n+1}=\sum \sum b_{j} a_{k} \cdot \lambda F_{0}\left(\lambda \alpha_{n} z+\lambda c_{j}-k \lambda r\right)$ are disjoint and are contained in a graph $y=f_{n+1}(x)$ with $\left|f_{n+1}\left(x_{1}\right)-f_{n+1}\left(x_{2}\right)\right| \leqq\left(1-2^{-n-1}\right) h\left(\left|x_{1}-x_{2}\right|\right)$. Here we use for the first and only time the hypothesis that $u=o(h(u))$ as $u \rightarrow 0+$. Taking r small enough, we can ensure that the φ_{n+1} is analytic outside the strip $|x| \leqq 1-2^{-n-2}$. Moreover, $\left|b_{j}\right|\left|a_{k}\right||\lambda| \leqq 3^{1-n}(6 r)^{-1} 2 r=3^{-n}$.

We assert that for small enough $r>0,\left|\varphi_{n}-\varphi_{n+1}\right| \leqq C^{\prime \prime} 3^{-n}$, with $C^{\prime \prime}$ independent of n. By the Lemma, we certainly have

$$
\left|b_{j} F_{0}\left(\alpha_{n} z+c_{j}\right)-b_{j} \sum a_{k} \cdot F_{0}\left(\lambda \alpha_{n} z+\lambda c_{j}-k \lambda r\right)\right| \leqq C^{\prime} 3^{-n}
$$

for each fixed j. The singular lines of the functions $F_{0}\left(\alpha_{n} z+c_{j}\right)$ can be separated by Jordan curves; near the j-th line, all the other differences tend uniformly to 0 with r, so we can attain a bound $C^{\prime \prime} 3^{-n}=2 C^{\prime} 3^{-n}$.

Now $f=\lim f_{n}(x)$ exists uniformly, as does $\varphi=\lim \varphi_{n}$ outside the union of all the curves. To prove that φ is continuous in the entire plane, we fix a number z_{0} and observe that for each $n \geqq 1, \varphi_{n}$ is a sum $\varphi_{n}^{1}+\varphi_{n}^{2}$, where $\left|\varphi_{n}^{1}\right| \leqq C 3^{-n}$ and φ_{n}^{2} is continuous on a neighborhood of z_{0}. Plainly $\varphi=2^{-1}+O\left(z^{-2}\right)$ near infinity and φ is analytic except on the curve $y=f(x)$.
II. In this part we examine whether there is a function φ, analytic in $R^{2}-C$ but not a polynomial there, such that a certain derivative $\varphi^{(n)}$ is bounded. The examples of Carleson [2] suggest that Hausdorff measures alone cannot give
interesting results here, for $n \geqq 1$. We state an elementary theorem on removable singularities, and then prove that the condition named is best possible.

Let $h(t)$ be positive, continuous, and increasing for $0<t<+\infty$; we say that C has a perimeter of h-measure 0 if to each $\varepsilon>0$ we can find closed, rectifiable Jordan curves Γ_{i} in $R^{2}-C$, of lengths L_{i}, so that $\sum h\left(L_{i}\right)<\varepsilon$, and $2 \pi i=\sum \int_{\Gamma_{i}}(\zeta-z)^{-1} d \zeta$ for each $z \in C$. Because h is positive and increasing, we see that C is a Cantor set, and cannot separate $R^{2}-C$.

Theorem. (a) Let φ be analytic in $R^{2}-C$, and $\varphi^{(n)}$ bounded, for a certain $n=0,1,2, \ldots$. If C has a perimeter of h-measure $0, h(t) \equiv t^{n+1}$, then φ is a polynomial of degree at most n.
(b) Suppose that $\lim \inf h(t) t^{-n-1}=0$ as $t \rightarrow 0+$. Then there is a compactum C, with a perimeter of h-measure 0 , and a function φ, analytic in $R^{2}-C$, such that $\varphi, \ldots, \varphi^{(n)}$ are bounded and uniformly continuous in the plane, but φ is not constant.

Proof of (a). Subtracting a polynomial from φ, we can assume that $\varphi(z)=$ $\sum_{0}^{\infty} a_{k} z^{-k-1}$ in some region $|z|>R$. Then

$$
2 \pi i a_{k}=\sum \int_{r_{i}} f(\zeta) \zeta^{k} d \zeta .
$$

Each integral is 0 unless Γ_{i} surrounds a point in C, and we can assume that $h\left(L_{i}\right) \leqq 1$ for each Γ_{i}, so that the Γ_{i} fall within some circle $|z|<R_{1}$. On each curve we integrate $\zeta^{k} n$ times, choosing a primitive q_{i} on Γ_{i} so that $\left|q_{i}(\zeta)\right|=O\left(\operatorname{diam} \Gamma_{i}\right)^{n}=O\left(L_{i}\right)^{n}$. The integral is then $(-1)^{n} \int \varphi^{(n)}(\zeta) q_{i}(\zeta) d \zeta=O\left(L_{i}\right)^{n+1}$. As we can make the sum $\sum L_{i}^{n+1}$ arbitrarily small, each $a_{k}=0$, so that $\varphi=0$ for $|z|>R$; and then $\varphi \equiv 0$ because $R^{2}-C$ is connected.

For the proof of (b), we treat separately the cases $n=0$ and $n \geqq 1$, as they differ in important details. We use the operator $\bar{\partial}=\frac{1}{2}(\partial / \partial x+i \partial / \partial y)$ so that $f^{\prime}=$ $-i \partial f / \partial y$ on the interior of the set $\bar{\partial} f=0$, that is, the domain of analyticity of f. In place of singular integrals we have resort to the Fourier transform, using the symbol $e(t) \equiv e^{2 \pi i t}$. Let $F(u, v) \in L^{1}\left(R^{2}\right) \cap L^{\infty}\left(R^{2}\right)$ and

$$
\hat{F}(x, y) \equiv \iint e(u x+v y) F(u, v) d u d v
$$

A solution of the equation $\bar{\partial} g=\hat{F}$ is given by

$$
g(x, y)=(i \pi)^{-1} \iint e(u x+v y)(u+i v)^{-1} F(u, v) d u d v
$$

This is an absolutely convergent integral because $F \in L^{\mathbf{1}} \cap L^{\infty}$. We have also

$$
\partial g(x, y) / \partial y=2 \iint e(u x+v y) v(u+i v)^{-1} d u d v
$$

and this equals $i g^{\prime}$ when $\bar{\partial} g=0$.

Proof for $n=0$. To each pair of integers $M, N(M>N>2)$, we construct a function $g_{M, N}$ of class $C^{\infty}\left(R^{2}\right)$, period 1 in each variable, and mean-value 1. Let $f_{N}(x, y)$ have mean-value 1 and
(i) $f(x, y)=0$ unless $|x|<N^{-1},|y|<N^{-1}$ (Modulo 1),
(ii) $\left|f_{x x}\right|+\left|f_{y y}\right|<C_{1} N^{2} \cdot N^{2}=C_{1} N^{4}$.

The Fouier coefficients $a_{p q}$ of f satisfy
(iii) $a_{00}=1,\left|a_{p q}\right| \leqq 1$ always

$$
\left|a_{p q}\right| \leqq C_{1} N^{2}\left(p^{2}+q^{2}\right)^{-1} .
$$

Then we find from (iii)
(iv) $\sum \sum\left|a_{p q}\right|(1+|p|+|q|)^{-1} \leqq C_{2} N$.

To find this estimate, we use the first inequality when $p^{2}+q^{2} \leqq N^{2}$, and the second when $p^{2}+q^{2}>N^{2}$. We set $g_{M, N}(x, y)=f(M x, M y)$.

Lemma. Let $F(u, v)$ be a rapidly decreasing function on R^{2}. Then

$$
\hat{F}(x, y) g_{M, N}(x, y)
$$

is the Fourier transform of a rapidly decreasing function $G_{M, N}$.
If $N \rightarrow+\infty, M \rightarrow+\infty$ while $N=o(M)$, then

$$
\iint\left|F(u, v)-G_{M, N}(u, v)\right||u+i v|^{-1} d u d v \rightarrow 0
$$

Proof. The first statement follows from the smoothness of G as we shall see presently. Recalling that $a_{p q}$ are the Fourier coefficients of f_{N}, we have $g_{M, N}=$ $\sum \sum a_{p q} e(M p x+M q y)$, and we find that $G_{M, N}$ is a sum

$$
\sum \sum a_{p, q} F(u-M p, v-M q)
$$

It will be sufficient, therefore, to study the sum of integrals

$$
\Sigma \Sigma^{\prime}\left|a_{p, q}\right| \iint|F(u-M p, v-M q)||u+i v|^{-1} d u d v
$$

(As usual, a sum $\sum \Sigma^{\prime}$ means that $(0,0)$ is excluded.) Now the integral is $O(|M p|+|M q|)^{-1}$ as we see by dividing it into the domain ($\left.|u+i v|>|M p| / 2+|M q| / 2\right)$ and its complement, and using the rapid decrease of F. We arrive at the estimate $M^{-1} \sum \Sigma^{\prime}\left|a_{p q}\right|(|p|+|q|)^{-1}=O\left(M^{-1} N\right)$ by (iv), and this is $o(1)$.

We now explain how this estimate leads to the function φ and the set C. We take F so that \hat{F} has compact support and then define φ_{0} as a Fourier transform so that $\bar{\partial} \varphi_{0}=\hat{F}$. Then we take $M>N>2$ and define φ_{1} so that $\bar{\partial} \varphi_{1}=F \cdot g_{M, N}$. The support of $\hat{F} \cdot g_{M, N}$ is covered by squares of side $2 M^{-1} N^{-1}$, and the number of these that meet the support of \hat{F} is $O\left(M^{2}\right)$, as the centers of the squares are at the
points ($\left.M^{-1} k, M^{-1} l\right)$. For the h-measure of this system of boundaries we find $O\left(M^{2}\right) h\left(8 M^{-1} N^{-1}\right)$. To make this sum small, together with $N M^{-1}$, we find $t>0$ so that $h\left(t^{2}\right)<\varepsilon^{4} t^{2}$, and define $M \cong 10(\varepsilon t)^{-1}, N \cong \varepsilon t^{-1}$, so $M^{2} h\left(8 M^{-1} N^{-1}\right)<100 \varepsilon^{2}$ and $N M^{-1}<\varepsilon^{2}$.

We now choose sequences $\left(M_{1}, N_{1}\right), \ldots,\left(M_{j}, N_{j}\right)$ so that $M_{j}^{2} h\left(8 M_{j}^{-1} N_{j}^{-1}\right)=$ $o(1)$. We define φ_{p} by the equation $\bar{\partial} \varphi_{j}=F \cdot g_{M_{1} N_{1}} \ldots g_{M_{j} N_{j}}$; then $\varphi_{j}=\hat{G}_{j}$ and the construction can be carried out so that $G_{j} \rightarrow G_{\infty} \not \equiv 0$ in $L^{1}\left(R^{2}\right)$. Then $\varphi_{j} \rightarrow \varphi \not \equiv c$ uniformly and φ is analytic outside a set C with a perimeter of h-measure 0 .

Proof for $n \geqq 1$.
For $n \geqq 1$ it doesn't seem to be possible to use squares, or even rectangles, for the covering of C. We shall therefore need a function more complicated than $g_{M, N}$ used for $n=0$. Let $H(s, t)$ be a smooth function of period 1 and mean-value 1 , and let $H(s, t)=0$ if $|s| \leqq 1 / 3$ or $|t| \leqq 1 / 3$. As before, F is a function in $L^{1} \cap L^{\infty}$, such that $\hat{F}(x, y)$ has compact support.

Lemma. Let $s=0,1,2,3, \ldots$ and $F(u, v)=O(1+|u|+|v|)^{-s-3}$. For all real numbers α, β we have

$$
\begin{aligned}
I_{s}(\alpha, \beta) \equiv & \iint|F(u-\alpha, v-\beta)||v|^{s}|u+i v|^{-1} d u d v \\
& \leqq c(F)(1+|\alpha|)^{-1}(1+|\beta|)^{s}
\end{aligned}
$$

Proof. We rewrite the integral and use the inequality $|v+\beta|^{s}<2^{s}|v|^{s}+2^{s}|\beta|$, obtaining a majorant

$$
2^{s} \iint|F(u, v)|\left(|v|^{s}+|\beta|^{s}\right) \cdot|(u+\alpha)+i(v+\beta)|^{-1} d u d v
$$

We divide the (u, v) plane into two subsets.
(i) $(u+\alpha)^{2}+(v+\beta)^{2}>(1+|\alpha|)^{2} / 4$. The integral over this set is $O(1+|\alpha|)^{-1}\left(1+|\beta|^{5}\right)$ because $|F(u, v)|\left(1+|v|^{5}\right)$ is integrable.
(ii) $(u+\alpha)^{2}+(v+\beta)^{2} \leqq(1+|\alpha|)^{2} / 4$. The integral of $|(u+\alpha)+i(v+\beta)|^{-1}$ over this region is $\pi(1+|\alpha|)$. On this subset $|u| \geqq \frac{1}{2}|\alpha|-\frac{1}{2}$; considering separately the cases $|\alpha| \geqq 2$ and $|\alpha| \leqq 2$, we conclude that $|F(u, v)|=O(1+|\alpha|)^{-2}(1+|\beta|)^{-s}$, so the cofactor of $|(u+\alpha)+i(v+\beta)|^{-1}$ on this subset is $O(1+|\alpha|)^{-2}\left(1+|\beta|^{s}\right)$.

We use this observation about $p+q \sqrt{2}$, when p, q are integers and $p^{2}+q^{2} \geqq 1$: $|(p+q \sqrt{2})(p-q \sqrt{2})|=\left|p^{2}-2 q^{2}\right| \geqq 1$, whence $(|p|+|q|)|p+q \sqrt{2}|>1 / 2$.

To select pairs of integers M_{j}, N_{j}, we begin with a sequence of integers $N_{j} \rightarrow+\infty$ so that $h\left(8 N_{j}^{-1}\right)<j^{-2} N_{j}^{-n-1}$ and choose $M_{j} \cong j N_{j}^{n}$, so that $M_{j} N_{j} h\left(8 N_{j}^{-1}\right)=o(1)$, $N_{j}^{n}=o\left(M_{j}\right)$. In place of the functions $g_{M, N}$ used for $n=0$, we use $H(M x, M \sqrt{2} x+N y)$. This is zero along each line $M x=k$ or $M \sqrt{2} x+N y=l$, and these divide the plane into parallelograms of area $M^{-1} N^{-1}$ and perimeter $<8 N^{-1}$ (since $M>N$). The number of these meeting a fixed bounded set is $O(M N)$, and this leads to a sum
$M N h\left(8 N^{-1}\right)$ of the type just considered. Let H have Fourier coefficients $b_{p q}$, with $b_{00}=1$; if $F \in L^{1}$ then $H(M x, M \sqrt{2} x+N y) \hat{F}(x, y)$ is the Fourier transform of

$$
\sum \sum b_{p q} F(u-M p x-M \sqrt{2 q}, v-N q)
$$

To estimate the function ψ defined by $\bar{\partial} \psi=H(M x, M \sqrt{2} x+N y) \hat{F}(x, y)$, along with $\partial^{s} \psi / \partial \mathrm{y}^{s}, 1 \leqq s \leqq n$, we have to consider sums

$$
\Sigma \Sigma^{\prime}\left|b_{p q}\right| \iint|F(u-M p-M \sqrt{2 q}, v-N q)||v|^{s}|u+i v|^{-1} d u d v
$$

for $0 \leqq s \leqq n$, or

$$
\sum \Sigma^{\prime}\left|b_{p q}\right| I_{s}(M p+M \sqrt{2} q, N q)
$$

But $(M p+M \sqrt{2} q) \geqq M(|p|+|q|)^{-1} / 2$, so the cofactor of $\left|b_{p q}\right|$ has order of magnitude $(|p|+|q|) M^{-1}(1+|N q|)^{s}<(1+|p|+|q|)^{s+1} M^{-1} N^{s}$ (for $q \neq 0$) and $|p| M^{-1}$ for $q=0$. Since the coefficients $b_{p q}$ decrease rapidly, $\sum \sum b_{p q}(|p|+|q|)^{s+1}<+\infty$, and the construction can be completed for $n \geqq 1$.

The complicated function $H(M x, M \sqrt{2} x+N y)$ is introduced, to handle the terms with $p \neq 0, q \neq 0$ in the Fourier expansion of $H(s, t)$. For almost all real numbers $\xi,|p \xi+q| \geqq c(|p|+|q|)^{-2}$, for example, and this would be a sufficient lower bound.
III. In this section we consider briefly the class of sets $(F S): C$ is $F S$ if some element $\varphi \neq 0$ of $F L^{1}$ is analytic outside C.

Theorem. Let E be a compact set of R, and suppose that $E \times[0,1]$ is of class FS. Then E has positive logarithmic capacity.

Proof. There exist test functions $\theta(x)$ and $\psi(y)$ such that

$$
\iint \bar{\partial}(\theta(x) \psi(y)) \varphi(x, y) d x d y \neq 0
$$

in the opposite case, φ would be entire, while $\varphi(\infty)=0$. We define a distribution $T \neq 0$ carried by $E: T(\theta) \equiv \iint \bar{\partial}(\theta(x) \psi(y)) \varphi(x, y) d x d y$. Inasmuch as φ belongs to $F L^{1}$, we have the bound

$$
\begin{aligned}
|T(\theta)| & \leqq C \sup |u+i v||\hat{\theta}(u) \cdot \hat{\psi}(v)| \\
& \leqq C_{1} \sup (1+|u|)|\hat{\theta}(u)| .
\end{aligned}
$$

(The converse is true and easily proved: if E carries a distribution $T \neq 0$ with this bound, then $E \times[0,1]$ is of class $F S$. This applies, for example, to sets E of positive Hausdorff dimension.)

We define a function $\Phi(u+i v)$ harmonic outside $E: \Phi(u+i v)=T_{x}(\log |w-x|)$; T_{x} means that T operates on the variable x. If Φ were continuable to be harmonic in the plane, then $\Phi_{u}-i \Phi_{v}$ would be entire. For large w

$$
\Phi_{u}-i \Phi_{v}=T_{x}(w-x)^{-1}=\Sigma_{0}^{\infty} w^{-n-1} T\left(x^{n}\right)
$$

Assuming that $\Phi_{u}-i \Phi_{v}$ is entire, we obtain $T\left(x^{n}\right)=0$ for $n=0,1,2, \ldots$, so that $T=0$ by Weierstrass' theorem, a contradiction.

To prove the boundedness of $\Phi(w)$ near E, let $\chi(x)$ be a test function, equal to 1 on a neighborhood of E.

Then $\int \chi(x) \log |w-x| e(t x) d t=O(1) \log (e+|w|)$; we use this when $|t|<1$. For $|t|>1$ we use the observe that when $v \neq 0$

$$
\chi^{\prime}(x) \log |w-x|+\chi(x) \operatorname{Re}(w-x)^{-1}
$$

has Fourier transform bounded by the same quantity; hence $\chi(x) \log |w-x|$ has a Fourier transform bounded by $O(1) \cdot \log (e+|w|) \cdot(1+|t|)^{-1}$. This completes the proof that E has positive logarithmic capacity; in particular $E \times[0,1]$ need not be of class $F S$ when E is perfect, but $E \times[0,1]$ must be non-removable [2]. The case $n=0$ of (b) shows that Besicovitch's theorem [1] is best possible for sets of class FS. We state two problems on this class:

Is every set of positive Lebesgue measure necessarily of class FS? Every set $E \times[0,1]$, where E has positive logarithmic capacity?

References

1. Besicovitch, A., On sufficient conditions for a function to be analytic ... Proc. London Math. Soc. 2 (32) (1931), 1-9.
2. Carleson, L., On null-sets for continuous analytic functions. Arkiv för Mat. 1 (1952), 311-318.
