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In [3] Havin gave a necessary and sufficient condition for L2-approximation by 
functions analytic in the neighbourhood ofa  Borel set. He also proved the possibility 
of approximation in LP-norm when 1 <p<2 .  A condition necessary and sufficient 
for all p, l < p < ~ ,  was given by Bagby [1]. He formulated this condition for 
approximation on compact sets by rational, functions. It was proved by a dual 
method depending on the behaviour of functions of a Sobolev space. Other results 
stating different conditions were obtained by Hedberg [4], [5]. In this paper we 
give a constructive method for LP-approximation by analytic functions analogous 
to the Vitu~kin method for uniform approximation [7]. We obtain a theorem equi- 
valent to that of Bagby, although it is here given a more general formulation. The 
necessary and sufficient conditions are here expressed in analytic p-capacity. For 
the interdependence between the analytic p-capacity and other capacities, including 
the one used by Bagby, see [5]. 

For any set E in C denote by AP(E) the LP(C)-closure of the functions in LP(C) 
analytic in a neighbourhood of E. 

Theorem 
If E and D are sets in C, and l < p ~ ,  the following statements are equi- 

valent. 

(a) AP(D) c AP(E). 

(b) For all open G and measurable ~ in C. (D bounded if p~2)  

?,(G'-..D, ~) ~ ?p(G'x,E, f2) 

(c) There is a sequence 6."..0 and a constant k > 0  such that for every open 
disc B(z, 6.) with centre zCE\D and radius 6. 

?p(B(z, 6.)\D, B(z, 26.)) ~= k?p(B(z, 6.)\E, B(z, 23.)). 
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(d) There is a sequence 6 . \ 0  such that for all z E E \ D  except a set of  capacity 
zero 

lim yp(B(z, 6.)\E, B(z, 26.)) 
6,)\D, B(z, 26~ 0. 

yp is here the analytic p-capacity, defined for any set E by ?p(E, ~2)=sup: [f'(oo)] = 
sups Ilimz_~ zf(z)[, where the supremum is taken over those functions f which 
are analytic off some compact subset of E, which satisfy f(~o)_-0 and 

[]f]["a = (L ]f(z)l" dx dy) I/'< = 1. 

For p > 2  there is no need to use the set f2 in the definition, it could everywhere be 
replaced by C. 

The conditions for approximation by rational functions follows immediately 
from the theorem. 

Corollary 
Let E be a compact set, and denote by L~(E) the functions in LV(E) which are 

analytic in the interior of E. Then the following are equivalent for l < p < ~ :  
(a') Rational functions with poles off E are dense in L~(E). 
(b') For all open G and measurable ~2 in C (f2 bounded i f  p~_2) 

?,(G",,,E ~ a) = ?p(G",,,,E, f2). 

The corollary follows by use of Runge's theorem on rational approximation. Thus 
(a') is true if  and only if  functions analytic in a neighbourhood of E are dense in 
L~(E), which is equivalent to A p (E) =A p (E~ 

Remarks 
1. When p < 2  the situation is much simplified, since rational functions with simple 

poles are then locally in L p. From this fact it follows that 

k I �9 21-(2/p) ~ ]:p(B(z, 6)~E, B(z, 26))  ~ k 2 �9 21-($/p) 

as soon as B(z, 6 ) \ E  is not empty. Thus the statement (c) is for p < 2  equi- 
valent to E~ 
The theorem is true also for p = 1. It can be proved by a constructive method 
used in [6]. 

2. It is possible to give conditions for approximation of a single function similar 
to those for uniform approximation ([7] Ch. IV w 2 Lemma 1 or [2] Ch. VIII 
Th. 8:1). 
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The constructive method could also be used to give results for approximation by 
other linear classes of functions in the plane. The only important thing is that the 
treated classes should be closed under the Tr 

The T,-operator 
If r is a Lipschitz continuous function with compact support in the plane, we 

can define an operator T, by 

~ 3 z - ~  05 z - ~  O~, 

The operator will be defined on any locally integrable function f We will use the 
following properties: 
(a) T~,fis analytic wheref i s  analytic. 
(b) T, f i s  analytic outside the support of ~0. 
(c) T,f(oo) =0. 
(d) f -  T~f is analytic both where f is analytic and in the interior of the set where 

tp (z) = 1. 
(e) If B(z, 6) contains the support of % then for any constant a: 

II T~, flip, B(~, 2~) 86 0~-~ I <= �9 Hf--allv, n(z,~). 

The statements (a)--(d) are well known, see [2]. To prove (e) let z=0  and let 
B=B(0, 6), 2B=B(0, 26) etc. Now 

f Oq~ (z) dx dy IlT~f}lv'2n ~ []~P'fllv'zBq-1 zf(Z----~)~ 05 v,2B 

= ~ p,B 1 0 9 ,  1 p~B" 

For the first term use that 1191[~<=26 009 since 9 has its support in B. To esti- 

mate the second term use Young's inequality. This gives 

, 6 0 q ~  [{T~,/I[v 2B<= 2 - ~  L'l]f}}v'" 

+ 1  f c3q~ 1 Oq9 
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Now observe that Te(f-a)=T~of for any constant a. Therefore (e) is obtained 
when f i s  replaced by f - a  in the inequality above. 

The Vitugkin constructive method for uniform approximation of analytic func- 
tions is briefly the following. Construct a partition of  unity by test functions ~oj 
each with its support in a small disc B~. Now f=~T~j f  andeach Tosf is analytic 
outside the disc Bj. For each T ~ f t h e n  choose a function gj from the desired class 
of approximating functions, in such a way that ~ gj approximate f For uniform 
approximation the crucial point is to choose gj such that T~jf-gj has a zero of  
order three at infinity. For LP-approximation however it will suffice to have a zero 
of  order two, due to the following lemma. 

]Leinma 

Let Bj, j = l ,  2 . . . .  , be discs with identical radii, such that no point in the 
plane lies in more than M discs. Let f i  be analytic outside Bj and have a double 
zero at infinity. Then for l < p < ~ ,  

Proof of the lemma 
The first part is to prove the inequality when every f j  has a zero of order three 

at infinity. Let Bj=B(zj, 6) and An(w)={zl(n-1)6<=lz-wl<n6}. 
I f f j  is analytic off B i and has a zero of order three at infinity, we have the 

inequality, 

This inequality is easily deduced from the fact that the integral 

f ~  r3Plf~(rei~ + zj)] p dO 

decreases when r increases, which is a consequence of the fact that I(z-zj)Sf(z)l z' 
is a subharmonic function on the Riemann sphere outside Bj. 

Thus for n=>l 
il fjllg, a,(z~) <= k~ n 1-ap Ilf~llg,~nj, 

where 2B i=B(z j ,  26). 
Let Mn be the number of points z~ that lie in An(w). Since the discs with these 

points as centers are contained in the annulus (n-2)6<=lz-wl<=(n+l)6, we get 

Mnzc62 <= M(~(n+ 1)~6z-Tr(n--2)~62), 

which gives Mn<=6M.n. 
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By use 
we get 

of Minkowski's and H61der's inequalities and the inequalities above 

[[~jf,.(z)[[, ~- ( f  (ZT=, Z ,  . Ifj(z)l)"dxdy) v" 
zj E An(z) 

<= Z L l ( f  ( z j  Ifj(z)i)Pdxdy) a/" 
zj  C a~(z) 

=< 2 ; = 1  ( f  M~lq(2j  ]fj(z)lP)dxdy) tip 
zj  E A.(z) 

<= ID(z)i'dxay) 
~(zj) 

Z2=~ (6M. ~)I/~(Z j IIfjll~,~,," k, ~-~') 1/" 
(6M) 1/q" kz/P (Zj II fill g. ~B) ~/" Z2=1 n-~ 

< k;.  M' /q(Z Ilfjltg) vp. = j 

Thus we have done the first part of the proof. We will now extend this result. Assume 
in the following that the functions f j  have zeros of order two at infinity. 

Let ff(~o)=lim=~oo z~fj(z), and define the functions & by 

[fj"(~)/~a 2 when Iz-z;I < a. 
gJ(z) = l O otherwise. 

$ince 7.(B(z, 6), B(z, 26))--<~k::p~i 1- (2 /p)  we get 

If;'(~)L <= ~,(Bj, 2Oj). II(z-zj)fjll,,~,, 
<-- kl, 62-(21") Ilfjllp, =~,, 

and therefore 

I]gjl]p <= kpllfjllp for some constant kp only depending on p. 

Now define a singular integral operator S by 

Sg (0 = lira f g ( ~  z) dx dy. 
r~O ,Sl~l>r z "  

From the theory on singular integral operators we know that 11 Sgllp<=k~llgll.. The 
functions gj are constructed so that f j - S g j  has a zero of order 3 at infinity, and 
we can apply the first part of the proof to these functions. 

IIz, DII.  112 ,sU l .+ l l z , (D-sgY[ .  
<- lls(   gDIl.+ k.,M(2, IIfs- Sgsllg) 11" 
<_- k. 112, gill,, + %,,. ( 2 j  2" (11 fjil." + % 11 g~.ll;)) '/" 
<= k. II.Z', g j l l . +%,~ (Z  lifjllf,) '/'. 

As no point in the plane is in the support of more than the number M of func- 
tions &, 

I~J gJ(z)! p ~ MP ~ i  Igj(z)l'. 
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This gives 
H Z j  gJl{P ~ M (Zj  [IgjilPp) lip ~ M. kp (ZJ [}DHpP) 1/p- 

Inserted in the inequality above this gives the lemma. 

Proof of the theorem 
We begin by proving that (c) gives (a). Let f i n  L v be analytic in a neighbour- 

hood of  D. Assume that (e) is true. Let (3 be an element of  the sequence 5,. Cover 
E~D with open discs Bj=B(zj, (3) of  radii (3 and with centers in E~D, such 
that also the half scale discs B(zj, 6/2) cover E\D,  and such that no point in C 
lies in more than M discs. The bound M is made independent of (3. 

It is possible to choose test functions q~S Co(Bj) such that 

[0q~j k 
~--< ~ and z~j~os(z) = 1 in a neighbourhood of E\D.  

The function T ~ f  is now analytic outside a compact subset of Bj\D, and 
T~,~f(o~) =0. Therefore according to the assumption (c) there is a function gj, ana- 
lytic outside B j \ E  with gj(~o)=O such that 

g~(oo) _= T~jf'(~o) 
and 

]1 gill p, B(z~, 2~) --<-- k II TeI f II p, s(z~, zz~- 

The function f - z~ j  (T, jf-g.t) is analytic in a neighbourhood of  E. Applying the 
lemma we get, kv, M denoting various constants: 

llZ; (r<.f- g;)ll., k.,M ZjllT ff-g;ilf, 
<= kv, u Z, j llT, p j f  -g j l [~,  ll(z,, =~) 

k~,,~ ZJ II, T~.,fll~,.(=,,2<, 
< kp ~ Z s l l f - a s l l f ~  B(~) " ~  I �9 z j ,  * 

Let now as=(na2)-i  fB%.~)fdxdy. 
P -_~ This will imply that ~Tj IIf--ajl]p.B%,a) 0 when (3+0. This is in fact true 

for a continuous function f ,  and follows generally since continuous functions are 
dense in L p. 

Thus we have obtained (a). 
To prove that (a) gives (b), let e>0,  G open and ~2 be given. We can assume 

that ?p(G"xD, f])>0,  otherwise there is nothing to prove. Therefore G"xD is 
not empty. We will assume that yp(G'ND, f2) is finite. I f  it is not, the proof  only 
needs a few adjustments. Now there exists a compact set KcG',,,D such that 

Let (PE Co(G) with ~0 (z)= 1 in a neighbourhood of  K. Choose a function f analytic 
off K w i t h  f(~o)=O, I l f l l p , ~ l  and If'(oo)l>=yp(K, f2)-e. Since ~o(z)=l where 
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f is not analytic, Tof-----f. Assume now that (a) is true. Then there is a sequence 
of  functions (g,)~ analytic in neighbourhoods of E, which tend to f in LP-norm. 

We will now get 

IlT~(g,-/)l[, ,~ -~ 0. 

When f2 is bounded, this can be seen directly from the property (e) of  the T, -  
operator. When p > 2 ,  also observe that there exists a bounded set ~ '  only depend- 
ent on the support of ~o, such that 

l tT,(g.-f)lv,  c <= kplT,(g,- f) lp,~, .  
We will also get 

r~,g'~(~) -~ f '  (~). 
This follows from the fact that 

Therefore, when n is large enough, we have 

]lZog, llv, s~ ~ Iflp, a+e <- 1-ks 
and 

This gives 

IT~g;(~)l ~ I f ' ( ~ ) l - e  
_-> r,(K, O)-2~ _-> 7 , (G\D,  ~)-3~.  

7v(G~E, ~) > 7P(G\D' f2)--3e 
= 1 - e  ' 

which implies (b). 
So far we have proved that (a), (b) and (c) are equivalent. This we will use 

to prove that (d) implies (a). We will also need the following three properties of  
the analytic p-capacity. 

1) I f  E,  for n =  1, 2 . . . .  is a decreasing sequence of  arbitrary sets, then 

2) For  any sets E1 and E~ 

7p(Eiu E2, ~"2) ~ kp(Tp(E1, O)-q-7;(E2, ~'~)) 
where 7" is the outer capacity. 

3) I f  E is a Borel set then 
Y~ (E, f2) <-- k, yp(E , f2). 

The first statement follows for arbitrary sets since it is true for compact sets. The 
other two follows by a comparison with the capacity used by Bagby, since this is 
subadditive and makes all Borel sets capacitable. 

The constants kp only depend on p, as long as there is a disc B containing E, 
E, and E~ with 2B contained in Q. 
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Assume now that  (d) is true. Define a sequence o f  sets EN by 

Es  = {zl~,(a(z,  6,) \E,  a(z, 26,)) 

< N 7p(B(z, 6,) \D, B(z, 26,)) for some n e N}. 

Since the condi t ion (e) is sufficient we know that  AP(D toEs)cAP(E) for  every N. 

F r o m  (b) we get 
7p(B\(DwEN), 2B) ~ "yp(B\E, 2B) 

for  all open discs B. 

The inequali ty 2) gives 

7p(BND, 2B) <= kpTp((BND)NE N, 2B) 

+k.7*(BnEs.  2B) <= kpg.(B~E. 2B) 

+ kpyp (ac~Es. 2B). 

Since the set {zlgp(B(z, a ) \ e ,  2a)=<a} is closed for  any constant  a, EN is a Borel 

set. By 3) this implies 
y* (amEs, 2B) <= kpTv(Bc~E u, 2B) 

7p B n  , 2 B  = 0. 

Thus we get for  all discs B, 7p(B\D, 2B)<=k~,~,I,(B\E, 2B) and therefore AP(D)c 
AP(E). 
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