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Abstract 

Proofs are given of two theorems of Berezin and Karpelevi~, which as far as we know never 
have been proved correctly. By using eigenfunctions of the Laplace---Beltrami operator it is shown 
that the spherical functions on a complex Grassmann manifold are given by a determinant of certain 
hypergeometric functions. By application of this result, it is proved that a certain system of operators, 
for which explicit expressions are given, generates the algebra of radial parts of invariant differential 
operators. 
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O. Introduction and motivation 

In [1] BEREZIN and K A R P E L E V I C  gave an explicit expression for the zonal 
spherical functions on a complex Grassmann manifold. Unfortunately, no p roof  
was given there. 

In [9] T A K A H A S H I  stated the same result, but he also gave a proof. This 
proof,  however, was not correct. I t  relies upon another result of  B E R E Z I N  and 
K A R P E L E V I Q  (also in [1], unproved), namely that the algebra 5 (D0(G)) of radial 
parts of  invariant differential operators is generated by a system of operators Ai 
( i =  1 .. . . .  n), for which they could give explicit expressions. This being proved, it 
is sufficient to find the eigenfunctions of  all Ai. 

Takahashi 's  error was in the proof  that 6(D0(G)) is generated by the Ai. I ' l l  
try to indicate where he went wrong. He proceeded as follows. 

Let G : = S U ( n , n + k ; C ) ,  and g = ~ u ( n , n + k )  its Lie algebra. Let g = ~ + p  
be a Cartan decomposition of g. Let S(p) be the symmetric algebra over p, and 
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let I(p) be the subalgebra consisting of K-invariants. Let 2 denote the canonical 
linear one-to-one mapping of S(g) onto D(G). Take pCI(ta). Then there exists 
a polynomial q such that ~(2(p))=q(sl . . . . .  sn)+terms of lower order. Define 
p':=~(2(p))-q(A1, ..:, An). Then we have degree p'<degree p. Now, according to 
Takahashi, the result follows by induction to the degree ofp. But nothing guarantees 
us that p '  has  a highest order term with constant coefficients, so the induction step 
is not justified. 

In this paper another proof of  these two theorems is given, namely by using 
eigenfunctions of all 6(D) (DED0(G)) - -  say �9 - -  which have a certain convergent 
series expansion at co in a positive Weyl chamber, instead of spherical functions 
- -  say q~ - -  which are eigenfunctions of all ~5 (D) being regular in 0. To obtain these 
�9 , we only need to find the eigenfunctions of  t5 (~2) (radial part of the Laplace-- 
Beltrami operator) which have the desired series expansion. That such a function 
is an eigenfunction of all ~ (D) (DED0(G)) is a result of HARISH- -CHANDRA [3]. 
A simpler proof is given by HELGASON [4]. Then we use that a spherical func- 
tions ~o can be written as a combination of ~ 's .  This gives us the first theorem of 
Berezin and Karpelevi~. Finally, in the last chapter the second theorem of Berezin 
and Karpelevir, which states that the algebra tS(D0(G)) is generated by the Ai 
( i= l, 2 . . . . .  n), is proved. 

1. The g r o u p  G=SU(n, n+k; C) 

Let G=SU(n, n+k; C) be the group of  all complex (n+m)• matrices 
with determinant 1 (m=n+k, k>=O), which leave invariant the hermitian form: 

X1.XI"-~-X2,X2 "~ . . .  " ~  X n X n - - X n +  I X n +  1 - -  . . .  - - X n + m X n +  m . 

Then G is a connected, semisimple Lie group with finite center (see TAKAHASHI [9]). 
Let g=lie (G) be the Lie algebra of G. Then g---su(n,n+k;  C) and g is a 

real, semisimple Lie algebra. 
Let g = ~ + p  be a Cartan decomposition of g, with 

Let a c p  be a maximal abelian subalgebra. We may choose for a the set of 
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all matrices of the form 

T O.• O~r• 

HT = Om• 

\ O k  X n 

where Op~q denotes the (pXq)-matrix with only zeros as entries, and 

T = diag (q . . . .  , t,) 

(tiER for all i). Let aiEa* ( i = l  . . . . .  n) be defined by ~i(HT)=ti . Then the roots 
of (g, a) are given by _+ai, ! 2 a i  (l~i--<n) and ~-(ai~aj )  (l<=i<j<=n), with 
multiplicities m, =2k, m 2 , = 1  and m~,+,j---2. 

Let aT := exp Hr ,  and A :-- {aT = exp HT : HT E a}. 
On the root system we choose an ordering such that the positive Weyl chamber 

C + is given by the T with q > t 2 > . . . > t , > O .  Then the positive roots are ai, 2ai 
(l<=i<=n) and a i + a  j (l~i<j<=n). The simple roots are a l - a 2 ,  a2-c% . . . .  , a , - 1 -  

a n ,  an �9 

Let ~ be the set of all roots, and ~'+ the set of all positive roots. 
From now on we identify T and H T . 

Let O.--~'~,r m,a. 
Then o(T)=~7=~ Oitl, with o i = k + l + 2 ( n - i ) .  

Let A(aT):= f l ,  E~+ (e~(T)--e-'(T))",. 
Then we have: 

A = aco ~, with a(aT) ----- 2 "(2k+1) [/~=1 ( sh~k ti sh 2ti), 

and CO(aT) = 2 ~"("-1) J~i<j (ch 2t i - c h  2tj). 

Let D(G) be the algebra of left G-invariant differential operators on G, and 
let D0(G ) be the subalgebra of D(G) of right K-invariant operators. I f  DED0(G), 
let 6 (O) denote the radial part of D. 

As usual let C, R, Z, Z +, Z -  denote the sets of all complex numbers, real 
numbers, integers, positive (non zero) integers and negative (non zero) integers, 
respectively. 

2. Radial part of the Laplace--Beltrami operator 

Let 6(f2) denote the radial part of the Laplace--Beltrami operator. In [3] 
HARISH- -CHANDRA proved the following lemma: 

Lemma 2.1. Let H 1 . . . .  , H z be a basis of  a, and let (glJ)l~_i,j~_l denote the 
inverse o f  the matrix with elements B(Hi, Hi) (B(. ,  .) Killing form). Then 

(2.1) c5(f2) = Zx~_,,m, A-1 giJ H, oAHj" 
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Take for H i the matrix Hr, , with Ti=diag (0 . . . . .  0, 1, 0, ..., 0) (with 1 on 
the i'th place). Then 

B(H,, Hj) = tr (ad Hi ad Hi) 

= Z p ~  m p ~ ( ~ ) p ( H j )  

= 4(k+2n)6ij. 
So formula (2.1) gives: 

(As a differential operator Hi corresponds with O/Oti). Hence: 

02 1 0co 

02 
= ~ i ~ o _ l ( ~ + a _  1 0 a  01o~o 

Oti Ot i 

( O~ oa 

= o) -~S l (L1  . . . . .  L . ) o o ~ - o ~ - l X l ( L 1  . . . .  , L.)o~, 
where we have defined 

0 2 0 
Li :--- - ~ F + 2  (k coth t i+ coth 2ti) Oti 

and 

Sj(L1 ..... L.) := the j-th elementary symmetric polynomial in L1 . . . . .  L. 

(see [9]). 
Now define 

Aj := og-I Sj(L1 . . . . .  L,)oo3, 

then we have, because of  the relation Sj(L1 ..... L,) co:cjc9 (cj defined by 
S "  c ;~" - J - - /7" -~ (~+4 i ( i+k+ l ) ) ,  see [9]): ~ j = 0  J'~ - - /1i=0 

(2.2) 4 ((k + 2n) 6 (f2)) "-~ " " = A l - ~ i = l  4z (z+k+  1). 

3. Eigenfunctions of 6(f2) 

In this chapter we make use the following lemma (see [4], ch. II, prop. 1.10). 
Let A be the root lattice, that is A = {zl fll + . . .  + z,13,: fli ~ ~ ,  fl~ is simple, zl ~ Z+ u (0)}. 
Let 7 denote the natural isomorphism of D(X) onto I(A) (X=G/K, A Lie group 
corresponding to a, 1(tl) set of  W-invariant polynomials on A, see [4], oh. II, theo- 
rem 1.2). 
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Lemma 3.1. The equation 

6(~)u =--((~., 2 )+(e ,  e))u 

has a unique solution on C + of the.form 

u(H) = ~ ( e x p  H) = ~ , ~ a  F~ exp ((t / -- 12-- ~ - /2 )H)  

with F o = l .  u = ~ o e x p  is also a solution of the system of differential equations 

(3.1) 6(D)u = 7 (D) (t/ ------]-2) u, DED0(G). 

In our case, the function 4~ of the lemma takes the form 

(3.2) ~ ( a r )  = e (r (r) z~, ea r , (2)  e-U(r) 

where 
TEC + 

2=(21 . . . .  ,2n)E a~ 

Fo = 1, 

in order to be an eigenfunction of all ~5 (D), D E Do (G). 
So we have to solve 

@ o - l S l ( Z l  . . . . .  Ln)oto)u =tlU, 
i.e. 

S l ( L 1  . . . . .  L . )  (~ou) = ~ (cou). 

Let us try a solution u(T) of the form 

co ( T )  u ( T )  = v l ( t l )  �9 . . .  �9 v .  ( t . ) ,  

where vi is a solution of the equation 

(3.3) Liv i = - ( 2 ~  +(k  + l)2)v,, t, > O, 

such that v~ is of  the form 

(3.4) vi(fi) -~- e(]/~-121 -(k+l))t` Xn=0 En e-nt'' 1" 0 = 1. 

Definition 3.1. Let vi(ti) be a solution of (3.3), which is of the form (3.4). 
Then we define 

~,t(aT) := Vl( tX) ' ' " ' vn ( tn )  

Theorem 1. 
a. ~a(aT) satisfies 6(f2)~Z(aT)=--((2, 2 )+(e ,  e))~b~(aT). 
b. ~bx(aT) has a series expansion 0.2). 
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Proof.  

a. According to (2.2) we have 

(3.5) 4 ( k  + 2n) 6 (Q)O~(ar )  . -1  �9 �9 = (A1-  ~,=o 4t (t + k + 1)) Ok (at). 

Because of  the relation 
is given by 
Hence 

(3.6) 

B ( H i ,  H i ) = 4 ( k + 2 n ) 6 i j ,  the inner product ( . ,  .) 
<~, ' />=(4(k+2n)) -~ Z~=~ ~,q,, if ~ = ( ~  . . . . .  ~,), r/=(rh, ...,'/n). 

Alq~(ar  ) -- co- lS l (L1, - . . ,  Ln)o(o (m-1 En=l vi(h)) 

= w-'(-(4(k+2n)(2, 2)+n(k+ 1)~))//7=~ v,(t,) 

= -(4(k+2.)(;.  ~)+n(k+ 1)9 ~ (~0 ,  

because of  the relation L,  v j ( t j ) =  - ( 2 ~ + ( k +  1 ) g v j ( t j ) f  u .  Since e , = k +  1 + 2 ( n - i )  
we have 4(k+Zn)(Q, e ) = n ( k +  1)~+z~.__-0 ~ 4 j (k+  1 +j ) ,  and this together with 0.5)  
and (3.6) proves a. 

b. To prove that Cx(T) has a series expansion (3.2) we use the fact that 
v~(h) is of  the form (3.4). We have 

~a(aT) = V l ( t l ) "  "'"" Vn(tn) 
c o ( a t )  

According to (3.4) the numerator is o f  the form 

(3.7) dg----- lh-(k+l)) t~+.. .+(r  X ' =  r . - l ~ , ~ .  " ~'~=o Fl. e-l"f"" 

For the denominator we have 

co (a r) = 2�89 1) H i  < 1 ~ ( e=' + e - st, _ e2,, _ e - 2'0 

(3.8) = 22("-l)tl+2("-~)'=+'"+~t"-I/L<j (1 - e-2(',-',))(1 --e-2(h+'J)). 

In C + we have t a > t 2 > . . , > t , > O ,  so for all T E C  + the exponents in the 
denominator (i.e. - 2 ( t i - t j )  and - 2 ( f i + t j )  with i < j )  are <0 ,  so we have the 
power series expansions 

1 
1 - -  e - 2 ( t , - t s  ) ~-  ~;=0 e - 2 t K t l - t j ) ,  

1 
l--e-2(t~+t~ ) = ~q=~  =q(',+9). 
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Using these power series expansion and formulas (3.7) and (3.8) we get for ~a : 

�9 z(aT) = e(lf'Ui).l--(k+l)-2(n--1))q+...+(l/--~).._a-(k+l)--2)t._x+(I/Z'iZ.--(k+l))~ . 

" 1-[7=1 ( .~,=o F,, e-t,',) 1-[,<j ( 2 ; = 0  e-2~"-' /2q~ e - 2 q ( " + ' ) )  , 

i.e. e (r multiplied with a finite product of convergent series of the form 
z~zea b,(2) e-"(r)" 

Hence multiplication of the power series gives 

Ok (at) = e (r ~ ,  ~a F ,  (2) e-~(r). 

Clearly we have F 0 =- 1 which proves b. [] 

Now we've come to the point where we have to find the function v~(h ) which 
satisfies (3.3) and (3.4). The equation Liv~=#ivi can be seen as a differential 
equation for Jacobi functions (see [8]). The general equation for Jacobi functions is- 

(3.9) (/ta'#(t))-i ~ t  {A~.# ( t ) ~ }  = --(2 2-F-(a-t-fl ~-1)2)U (t), 

where A =, ~ (t) = (e t -  e-t) == +1 (e* + e -')2a + 1. 

The left-hand side of (3.9) in the case a = k ,  fl=0, t = h  is easily seen to be 
equal to L,u. So let us try to find a solution of 

a 0(h)~ -10 /A , , ,0u/ (3.10) ( k, , at, 

which is of the form (3.4). 
Substitute h : = - s h 2  t,. Then equation (3.10) leads to a hypergeometrical 

differentM equation. I f  we let t i+~,  (3.4) gives the asymptotic behaviour: 

(3.11) v, (ti) = e (g-2-i~,-(k+ 1))h ( 1 + o (1)). 

According to [2, 2.9(9)] the Jacobi function of the second kind 

~,(k'~ E~ ~oi~ = ( e'-e-tng-~r(k+l)j u F11,-ff(1 ~--( k + 1 -I/-Z-12i), T ( k  + 

1 - l/-L--i';ti; - sh-2 t,) 

is a solution of 0.10) for all ;t~ with Im 2, ([Z-, having the asymptotic behaviour 
0.11). 

I_emma 3.2. ~ '~  has a convergent series expansion (3.4)for t i >0. 
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Proof 

,.~(k, O) ( t  "~ = ~"z, ,oi, ( e t ' - e - t@/- lZ ' - (k+l )2Fat~ , -k+l -  ~ 2 w ,  ~ k " ] ' l  r l _/-Z--i- ~ l ( 

1 - -  l / ~  12i; - s h - 3  ti) 

=(e',+e-',)r -(k+l) 2F1 ( l ( k +  1 - l/-S]-21); -~(k+ 1 - 1/-L--]'21); 

1-1/~--121; ch-2tl) (see [2, 2.10(6)]) 

= e(1/~-lz'-(k+ll)t'( 1 +e-2h) r z~;=0 ({~ (k+  1 -- I/--~-i';.,)),) 2 
(1 - ! ( c h - S t , ) " .  

absolutely convergent for t > 0  since O<ch-2h<l .  Hence 

~(k,O)/, ~ (~t"~--12t--(k+l)) t  ~ ~ - ' ~  - - 2 n t . , ,  _~ e-2tg-2n+l/--ZTai-k-1 
hi \ t i . I  = e ~an=o Tne ' [ 1  

The lemma follows by expansion of (1 +e-2t,) -2"+r in powers of 
e-2t , .  [ ]  

Combining theorem 1, lemma 3.1 and lemma 3.2 we get 

Theorem 2. The function 
. ~ . o ~ ,  ~ . ~ . 0 ~ ( t , )  

~x(ar) = ~'~ ~ ,v ' . . .  o)(ar) 
satisfies 

6 (D) ~ (a r) = ? (D) (t/-S-i'2) ~ (a r) 
for all DCDo(G ). 

4.  Spher ica l  h m c t i o n s  on SU (n, n + k; C) 

Let tpz be a spherical function on G, that is an eigenfunction of  all DCD0(G), 
having value 1 at e. Then we have (see [5]): 

(4.1) rp~(ar) = Z ~ w  c(s2) cb~x(ar), TCC +, 

where W is the Weyl group of  G and ~ ( a r )  an eigenfunction of  6(f2) with a series 
expansion (3.2). Our main goal in this chapter is to find q)~, or to find the func- 
tion c. 

Let us first look at the rank 1 case (see [8]). As a solution of  the hypergeo- 
metrical differential equation (3.10), which is regular for t=0 ,  we get: 

1 - -  1 ( k +  1-1/---]-2i); k +  1 . -  sh2 tl). qg(~'~ = 2F1 {~-(k+ 1 + ] / -  1),i), y 
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Now, assume that ,~ ~-I/-Z-i-Z. Then we know from [2, 2.10(2)/that 

uF1 (-~ (k + 1 + 1/--~-2,), ~ (k + 1 - l/---12i) ; k + 1; sh~ti) 

= ZsE{I,--1} c ( s~ '~ ) (e t ' - - e - tOt /~ - l sZ ' - ( k+D 

with 

(4.2) 

�9 2F1 (~ (-- k + 1 - 1/--S--ls2i), ~ (k + 1 - 1/--~-s21) ; 1 - I/-----(s2,; - sh-2 ti) 

So we have 

c(,~3 - 
r ( k +  1 ) r ( -  I/----i-,~,) 2r +k+l 

F (~ (k + 1-1/~----]-2i)) F (~  (k + 1 + I/--~-R,)) " 

(4.3) q)z, (t j) = e (2i) ~4, (t j) + c (-- 21) ~ -  4, (t j) 

(from now on we omit the indices (k, 0), that is we'll write ~0a, instead of  9(zk ' 0) etc.) 
where c is defined as in (4.2). Because (-2i)~=2~ the following relation is also 
valid. 

(4.4) 

Definition 4.1. 

L i  ~o4,(tj) = - (2~ + (k + 1)2) ~o z,(tj). 

~o4 ( a t ) : =  
A det ((P,h (t)))l~-i, j ~ n  

(A is a normalization constant, independent of  T and 2, which has yet to be deter- 
mined.) 

We want to prove that ~04(ar) is a spherical function on G. Therefore, we'd 
like to write q)a as a combination of  ~4's, in a way which is similar to (4.1). Accord- 
ing to [9] we have W = { s :  S ( t l ,  . . . ,  tn ) -~(e l t~(1)  , . . . ,  ent~( , ) ) ,  e l = q - 1  , fiE&}. We'll 
denote such an s 6 W  by s = ( e , a )  with e=(el ,  . . . ,e,) and a 6 S , .  Thus 

det (qh, (t j)) 
A - 1 .  co(at)qgz(ar ) _ /r / i<J (2~--2~) 

_ Z ~ e s .  (-- 1) ~g" ~ g ; = l  ~04=(,,(tv) 
( -  1)~"("-  ~) det ((2~)' - 1) 

Z a6S ( 13sgna ~;~ 
i=l~...,n 

ZaEs. z~=q-i 

( -  1)~ "("-1) det ((2~) i-1) 

c ( ~ , t o ( ~ ) )  . . . .  �9 c (~.,~o(.)) 
( -  ~ d - e - ~ ( ( ~ 2 ( - T  -n)  fl~,=, ~,,z~(,,(t,) �9 
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Hence 

(4.5) 

where 

(4.6) 

9x(ar) = Z , ~ w  C(s2)# ,~(ar) ,  

C(/],) = A c( /~ l )"  "'" " c ( 2 n )  
( -  1)~ "("-1) det (2~ (g-~)) " 

Since @2, s2}=(2, 2} for all s~ W, it follows from (4.5) and theorem 1 a that 

(4.']) 6 (f2) ~o~ (a r) = - ((2, 2) + ( 0, Q)) ~o~ (a r). 

Lemma 4.1. (HUA [6].) Suppose f l ( x )  . . . . .  f , ( x )  are C~176 on a real 
interval L Le t  

X ~ d e t  ( f i ( j ) )  
F(Xl . . . .  , Xn) := / / i< j  (Xi--Xj) " 

Then F is C ~ and symmetr ic  on I" and, f o r  aE I, 

F(a,  . . . , a )  = 
(-- 1)~n("-a) 

1!2! . . . (n - - l ) !  
det (f/t J- 1) (a)). 

Moreover, i f  all the f f  are polynomials, then so is F. 

Proof. 

det (f~ (x  j)) = ( x 2 -  x1) �9 .. (x  n - -  Xl)" det 

(Sketch) Use complete induction with respect to n, by writing 

f l  (Xl)  . . .  i n (X1)  

f l  (X2) - - f l  (Xl)  f n  (X2) - - f n  (X1) 

X 2 - -  X 1 X2 - -  X 1 

f l  (x~) - Z  (Xl) 
x~ - x l  

f~(xn)-- f~(xl)  ~ 
X n - -  X 1 

and next expanding the determinant with respect to the first row. 
According to [2, 2.8(20)], we have 

[] 

(4.8) 

Now 

d I (a)l(b)l 
-5-~_zaFl(a, b; c; z) -- z F l ( a + l ,  b + l ;  c + l ;  z). (c)~ 

lim det'((q~a,)(tj)) _ 
T ~ 0  co(T) 

det (2F1 (1 (k + 1 + ~c-Si-2i), ff(k + 1-1/-Sq-~i); k + 1" - sh~tj)) 
= lim 

r-0 2"t"- 1)/L<j ( shz t i -  sh ~ tj) 
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Using lemma 4.1 and (4.8) we see that this expression is equal to 

2-n(n-1) (-- 1)~,(, -1) 

1!2! ... (n-- l ) !  

1 . . .  1 

1 1 1 
- - -~-(k@l )(2~ + (k + 1) 2) ...---~" (~--~)(2,~ + (k + 1) 2) 

"det I(_ 1 ) " -1  ( : 1 ) (2~§ 
( (k+ 1)... ( k + ( n -  1)) "'" 

1 
= det 

2",(~-~)/7 "-~ !} ~ j=~ {(k +j)"-Jj 

I . . .  I 

21~+(k+ 1) 2 ... 2.2+(k+ l) 2 
7 

()o~+(k+ 1)2) "-~ ... (2~+(k+ 1)2) "-x 

( - -  1) t n ( ' - l )  2 22 
= H i < j  (~i  - j ) .  2 2 n ( n -  1 )  n - 1 Hj=t {(kwJ)'-JJ !} 

Hence, if we take 

(4.9) A = (-- 1)~"("-1)22"("-1)/-/7----~ {(k+j)n-Jj!} 

in definition 3.1 we obtain 

(4.10) g0a(a0) = 1. 

Now, since it is obvious from the definition that g0a is W-invariant and C ~ 
everywhere on A, it follows from theorem 2 and the relations (4.5) and (4.10) that 
for all ),~a c with 2p ~ 1/--=-IZ for all p, ~0a(ar) is the restriction to A of a spherical 
function on G. Because the set {2CC': t/--Z-12pCZ Vp} is an open, dense subset 
of  C', we can catch all 2 by analytic continuation (if 2p=2q for some p, q, p r  
continuation according to lemma 4.1), so we have proved the first theorem of  Bere- 
zin and KarpeleviS. 

Theorem 3. (BEREZIN and KARPELEVI(~ [1].) The zonal sphericalfimctions 
~o~ on G = S U  (n, n+k; C) are given by 

go a (a T) = 

A det(2F~(�88 k + l ; - s h 2 t j ) )  
2 2 

/7~ < j (~ - '~j) 

where A is as in (4.9). 

2'"(n--1)//i< j" (ch 2t i -ch  2ty) 
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5. The algebra 6 (O o (G)) 

Now we come to the point where we can prove the second theorem of Berezin 
and Karpelevir. We proceed as follows. First, we show that the functions 9~ sat- 
isfy Aj~o~=aj(2)9 ~ for all j ,  and next, by using a method of  KOORNWlNDER 
(see [7], w 6), we show that every differential operator, which has all the 94 as eigen- 
functions, is a polynomial in the Aj ( j =  1 . . . .  , n), and this polynomial is uniquely 
determined. Thus, because of  the fact that  6(D)q~=?(D) (1/--~-12)~o~ (DEDo(G)) 
(this folows from theorem 2 and (4.5)) it follows that the algebra 6(D0(G)) is gen- 
erated by the Aj ( j = l  . . . .  , n). 

For reasons of convenience we'll work with a slightly larger set than 6 (D O (G)). 

Lemma 5.1. Ajcp~(aT)=a~(2)9~(aT) for all j. 

Proof. In 1 variable t we have 

L, ~zj(t) ---- - ( 2 y + ( k +  1) ~) q)~s(t)f,j. 
Hence 

n L " = . / / ,=~ ({+ i) -/-/i=~ #~j(tj) = -/-/7 ~ ({ - ( 2 ~ + ( k +  1)~)) i-/j=~ 4~z~(t~). 

* the functions ai(2) by Define on a c 

/~n=1 (r 1)2)) = Z~=o aj(2) ~n-.i. 

Sj (L 1 . . . .  , L.) ]/~=1 ~a,(tl) = a j  (2) jr/~= 1 ~ , ( t i )  

( 0 ) - - 1 S j ( L 1  . . . . .  Ln)oR) ) ~b~(aT) ---- a j(2) ~ ( a T )  

=~ (o~-~Sj(L1 . . . .  , L.)ooJ) r = a j(2) ~ox(ar) 

=~ Aj~oz(a~) = aj(2)9~(ar) 

Then 

for all j. 

for all j. 

for all j. 

for all j. [] 

For the second part: remark first that every differential operator which is a 
polynomial in the A j,  has to have all 9a as eigenfunctions, because of lemma 5.1. 
So we have to prove that every D which has all 94 as eigenfunctions must be a poly- 
nomial in the Aj. We'll restrict ourself to those 94 which are polynomials, that is 

~- (k + 1 +__ 1/-~-1 2,)E Z - .  I f  we can prove that this, i.e. every D which has all poly- 
nomial 94 as eigenfunctions, is a polynomial in the A j,  we are done because of 
the remark above. 

Let JVbe the ordered set of all n-tuples P=(#I  . . . .  , p,) with / r i t z  for all i, 
and #l_->/t.,=>..._-->~t,~0, and let ~ denote the lexicographical ordering on ~ .  

Let t=(fi  . . . .  , t,) with ti~Z for all i. 
Now, let ~0z~(t) be a polynomial. Say 

- ~ ( k + l - 1 / - - Z - f 2 i ) = - m , - n + i  for i =  1 . . . . .  n and ser i f .  
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Then qg~(t) becomes 

~oz,(t ) = 2F l ( - - ( m i+n- i  ), m i + n - - i + k + l ;  k + l ;  - sh~t ) .  

1 (k + 1 - l/--~-f 2,) : - m i -  n + i by Pro, (t). Thus We'll denote such a (pz,(t) with 
pm,(t) is a polynomial of  degree m i + n - i  in - s h  2 t. Then it follows from lemma 4.1 
that (pz(aT) is a polynomial of the form qgz(aT) = c ( - - s h  2 tl)ml... (--sh 2 t , )"-+terms 
of  lower order (according to the lexicographical ordering of  the n-tuples (ml, ..., m,)). 
This polynomial function we'll denote by P~(ar) (mEW). 

Definition 5.1. Let DW(G) be the set of  all W-invariant differential operators 
on R", regular in the interior of  all Weyl chambers, and having all the P,, as eigen- 
functions, that is DEDW(G) implies DPm=b(m)P m. 

Clearly DW(G) includes both 6(D0(G)) and all polynomials in the Aj. 

Lernrna 5.2. Let DEDW(G). Let m=(ml ,  ..., m,)EJV be the order of  D. Then 
D is completely determined by its eigenvalues ofPu,  b(p), with Iz<m. 

Proof. By the W-invariance of  D, D can be written as a symmetric operator 
in - sh 2 t~, ..., - sh 2 t,. L e t - - s h  2 t~ denote the vector ( -  sh 2 t~ta), ..., - sh 2 t~(,)) (a t  Sn). 
Then 

~ u  ~--~Es. O(_sh2q) ) " O(_sh2t~) 

where the sum ~'~(m) is extended to those # for which #___ m. 
We'll prove by complete induction with respect to # that c. is completely deter- 

mined by b(g) (~-<m). We have co=b(O). It follows from DP.=b(# )P .  that 

sh2q) "'" ( 0 ( _ s h 2 t , ) )  "P ,  

+ w,'(u)w c~(_sh~ t,) (.0( ffh2tl) ) v~'(1) ( 0 ( _  s0h2 t,))"(") / ~  ~-~cs, "'" "Pu, 

where the sum ~,0~) is extended to those v for which v ~/~, because the terms of 

D with v ~ #  annihilate Pu. Hence 

n[fiuc,(-shZt) -= b(p)Pu-Z '~(u)Z ,~s  C~(-shZt,) i,O(_shZtO ) .., 

0 
... (O(__-sh2t,))~'( ) 'Pu  

where f lu=pl ! . . . # ,  ! times the coefficient of  the term of order (p~, ...,/~,) in Pu. 
The lemma now follows by the induction hypothesis. [] 

Lemma 5.2 immediately implies: 

Lemma 5.3. Let D1, D2EDW(G). Then D1D2=D2D 1. 
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We have by definition 
s such that 

s: 
This implies: 

Lemma 5.4. 

DEDrV(G)=~D is W-invariant. W is the set o fa l lmaps  

( t l ,  . . . ,  t,) ~ (e~t,(~) . . . . .  r ~ = •  Vi, aES, .  

Let DEDW(G). Suppose D is written in the form 

Then D is invariant under the operations 

t i --~ - t i V i ,  

(tl . . . .  , t,) ~ (t,(~), ..., G(,)) VaES, .  

Lemma 5.5. Let DEDW(G), and let d=degree  D. Then D can be written in 

the Jbrm 

(5.1) 

Proof  

(5.2) 

We have 

c t 0 ? l  f 0 ] "  D = Z ,  " t ~ )  " t ~ J  +1.o. 
Xa~=d 

(1.O. means lower order terms), where the cu are constants. 

Lemma 5.3 implies that D commutes with all the A j ,  hence 

D A j - A j D  = 0 for all j. 

[0 ~ 0s } 
A j : s j . ~  .... , ~ +1.o. 

Let D be written in the form given by (5.1), only with cu=cu(t). Now we 
use (5.2), in particular we use the fact that the terms of  order d + 2 j -  1 disappear. 
This yields: 

0 5 0 2 " 0 .l,~ 0 "- 
( d + 2 j - 1 )  th order part of--IX [ O'/2 . . . .  - -  - -  ) " 

Hence 

Z~ zv,=~+~J-1. -~v (cvl-,l~,,, ....... _i.r " " ~ )  ) = o, 

where we have defined: 

- V [  -~ := the set of all . ( j -  1)-subsets of {1, ..., p -  1, p +  1, ..., n}, 

1 if q = p ,  

- iq (p ,  ~z):= 2 if pE~z, 
0 else; 

--cjl ..... j . = 0  if one or m o r e j i < 0 .  
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Hence we have to solve the system of equations 

(5.3) Znp=l Z ,  cvf,-aO~ p (c~_ix~p,~) ....... _i.r ---- 0 

for all l < = j < = n , v  with ~ ' v ~ = d + 2 j - 1 .  

We'll prove by complete induction with respect to the lexicographical ordering 
that (5.3) implies 

0 
(5.4) -~z--~ c ......... (t)----0 Vq: l<--q<--n, Vv: ~ , v i = d .  

otq 

(Remember that 
and #t<mz.) 
i. By taking . i = l  and vq=l,  v~--0 

O 
~ - c 0  . . . . .  o(t) =0  Vq. 

q 

ii. Let (ll . . . . .  l,)--(0 . . . .  ,0,  lp+l . . . .  , l,) 

( J / l ,  " ' ' ,  p , )<(ml ,  . . . ,m,) iff 3l such that #i=m, if l<=i<-l-1 

for i r  it is clear from (5.3) that 

with lp+x~0, and assume that for all q 

0 
Ot---~cti ..... r ( t )  = 0 if (l[ . . . . .  l~) ~( (l~, ..., l,) 

(induction hypothesis). 
a. Assume 1 -<_ q ~p.  
By taking j = n - i + l ,  vq=l,  vi=O if  l<-i<-p, iCq  and v i= l i+2  if i>=p+l 
(5.3) becomes 

0 
Ot----q Co ..... o,,,+x ..... t.(t) = O. 

b. Assume q->p + 1. 
By taking j = n - q ,  vi=O if l<--_i<=p, vi=li if p+l<=i<-q--1, vq=l~+l  and 
v ,= l i+2  if i>=q+l (5.3)becomes 

0 
Otq co ..... o, lp+l ..... 1.(t) = O, 

where we have used the induction hypothesis. 

So it is proved that (5.3) implies (5.4). Hence cvl ...... . ( t )=constant  for ally, 
so the lemma is proved. [] 

Theorem4. Let DEDW(G). Then 
a. D can be written as a polynomial in the Aj; 
b. this expression is unique, that is iJ' PI(A1 . . . .  , A,)=P2(A1, ..., A,), then PLOP2. 
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Proof. a. Let DEDW(G), and suppose D cannot be written as a polynomial 
in the Aj. Let d:=degree D, and assume that d is minimal. According to lemma 
5.5 we can write 

" =  Z , ,  ~"tot~)- " [ ~ J  +; .o .  Z.i=d 

Since D satisfies the symmetry relations of  lemma 5.4, the d-th order part  
02 02 

of  D has to be a symmetric polynomial in Ot---~ ' "'" -0-~,~' and hence a polynomial 

02 02 
in $1, ..., S,,  where Sj is thej - th  elementary symmetric polynomial in Ot--~ . . . .  , -~2. 

Thus we have 
P(S  S,)+D" D = 1, ..., , 

where D '  is an operator o f  degree <d .  We also have Aj=Sj+I .o . ,  so S~=Aj+I.o. 
Hence 

(5.5) D = P ( A  1 . . . .  , A . ) + D " ,  

where D" is an operator of  degree d;'<d. 
Since DEDW(G) and pcDW(G) (because all Aj~DW(G))we have D';cDW(G). 

Because d"<d,  D'; can be written as a polynomial in A1, ..., An, and because of 
(5.5) this implies that D can be written as a polynomial in A1, ..., An. This con- 

tradiction proves a. 
b. I t  is sufficient to show: Q(A1, ..., An)=0=~Q--0,  if  Q is a polynomial. 

So, suppose Q(AI, ..., An)=0, and Q ~ 0 .  So for some e~Z + 

Q(u) = Z ,  k ..m.."~ , .  .u~l ~2 ""  Un 
2 . 1 +  4/~2+... + 2n.n~e 

where not for all # with 2 p l + 4 # ~ + . . . + 2 n p n = e  we have k , = 0 .  Taking ui=Ai, 

and using the fact that A j = S j  Ot~ ' """ Ot, ~ +1.o. we obtain 

0 = Q(AI . . . .  , An) : Z . u  k . ( S l - ~ -  1 . 0 . ) " 1 ( 3 2 +  l o ) g ~  (sn-]-  l 'o ' )"n  
2 . 1 +  ... q- 2n.Un~e 

= Z , ,  k ,  s~ Ot~ . . . . .  Ot~. ... s .  Ot~ . . . .  ' 
2.u I + ... + 2npn = e 

Hence, the e-th order term of  the above expression must  be 0. But this is a com- 
bination of  elementary symmetric polynomials, and this combination can only be 0 
if all coefficients are 0, hence 

k,  = 0 V/t: 2p1+4#2+. . .+2n/~  n = e, 

which is a contradiction, so Q--O. [] 
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Because o f  theorem 4 we have p roved  the second  theorem o f  B E R E Z I N  a n d  

K A R P E L E V I C  [1]. 

Theorem 5. Le t  G = S U  (n, n + k ;  C). The operators A j : f o - I  Sj(La . . . . .  L,)oco 

03 
( l ~ j < = n ) ,  where Sy=j - th  elementary symmetr ic  polynomial  and L ~ = - - ~ F +  

0 
2(k  coth  h W c o t h  2 t i ) - ~ ,  f o r m  a sys tem o f  generators f o r  6(Do(G)).  
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