Polynomially convex hulls and analyticity

J. Wermer

Introduction

We denote by z, w the coordinates in \mathbb{C}^2 and we write π for the projection which sends $(z, w) \rightarrow z$. Let Y be a compact subset of \mathbb{C}^2 with $\pi(Y)$ contained in the unit circle. We denote by \hat{Y} the polynomially convex hull of Y. For λ in \mathbb{C} we put

$$\pi^{-1}(\lambda) = \{(z, w) \in \widehat{Y} | \pi(z, w) = \lambda\}.$$

We assume that $\pi^{-1}(\lambda) \neq \emptyset$ for some λ with $|\lambda| < 1$. Then $\pi^{-1}(\lambda) \neq \emptyset$ for each λ in the open unit disk.

Under various conditions $\hat{Y} \setminus Y$ has been shown to possess analytic structure. In particular we have ([4], [5]):

Theorem. If $\pi^{-1}(\lambda)$ is finite or countably infinite for each λ in $|\lambda| < 1$, then $\hat{Y} \setminus Y$ contains an analytic variety of dimension 1.

The object of this note is to show that no such conclusion holds in general.

Theorem 1. There exists a compact subset Y of \mathbb{C}^2 with $\pi(Y) \subseteq \{|z|=1\}$ such that $\pi(\hat{Y}) = \{|z| \leq 1\}$ and $\hat{Y} \setminus Y$ contains no analytic variety of positive dimension.

Our construction proceeds by modifying the idea which was used by Brian Cole in [1] (see also [3], Theorem 20.1) to prove the infinite-dimensional analogue of Theorem 1.

In the famous example of a hull without analytic structure given by Stolzenberg in [2] the set whose hull is taken and the hull have the same coordinate projections. In our example the projection $\pi(Y)$ is a proper subset of the projection $\pi(\hat{Y})$.

Note. By a change of variable we may replace the unit circle and unit disk by the circle |z|=1/2 and the disk $|z| \le 1/2$, and we shall prove Theorem 1 for this case. The convenience that results is that for $|a|, |b| \le 1/2, |a-b| \le 1$.

J. Wermer

Notations. Let $a_1, a_2, ...$ denote the points in the disk |z| < 1/2 both of whose coordinates are rational numbers. Fix an *n*-tuple of positive constants $c_1, c_2, ..., c_n$. For each *j* we denote by B_j the algebraic function

$$B_{j}(z) = (z - a_{1})(z - a_{2}) \dots (z - a_{j-1}) \sqrt{(z - a_{j})}$$

and by g_n the algebraic function

$$g_n(z) = \sum_{j=1}^n c_j B_j(z).$$

We denote by $\sum (c_1, ..., c_n)$ the subset of the Riemann surface of g_n which lies in $|z| \leq 1/2$. In other words,

$$\sum (c_1, ..., c_n) = \{(z, w) | |z| \le 1/2, w = w_j, j = 1, 2, ..., 2^n\}$$

where w_j , $j=1, ..., 2^n$ are the values of g_n at z.

Lemma 1. There exists a sequence c_j , j=1, 2, ... of positive constants with $c_1=1/10$ and $c_{n+1} \leq (1/10)c_n$, n=1, 2, ... and there exists a sequence $\{\varepsilon_j | j=1, 2, ...\}$ of positive constants, and there exists a sequence of polynomials $\{P_n\}$ in z and w such that

(1)
$$\{P_n = 0, |z| \le 1/2\} = \sum (c_1, ..., c_n), n = 1, 2, ...$$

(2)
$$\{|P_{n+1}| \leq \varepsilon_{n+1}, |z| \leq 1/2\} \subseteq \{|P_n| < \varepsilon_n, |z| \leq 1/2\}, n = 1, 2, ...$$

(3) If $|a| \leq 1/2$ and $|P_n(a, w)| \leq \varepsilon_n$, then there exists w_n with $P_n(a, w_n) = 0$ and $|w - w_n| < 1/n$, n = 1, 2, ...

Proof. For j=1, we take $c_1=1/10$, $\varepsilon_1=1/4$, $P_1(z,w)=w^2-(1/100)(z-a_1)$. Then (1) and (3) hold. Suppose now that c_j , ε_j , P_j have been chosen for j=1, 2, ..., n in such a way that (1), (2), (3) are satisfied. We shall choose c_{n+1} , ε_{n+1} , P_{n+1} .

Denote by $w_j(z)$, $j=1, 2, ..., 2^n$, the roots of $P_n(z, \cdot)=0$. To each constant $c \ge 0$ we assign a polynomial P_c by putting

$$P_{c}(z, w) = \prod_{j=1}^{2^{n}} \left[(w - w_{j}(z))^{2} - c^{2} (B_{n+1}(z))^{2} \right].$$

Then $P_c(z, \cdot) = 0$ has the roots $w_j(z) \pm cB_{n+1}(z), j = 1, ..., 2^n$, and so $\{P_c(z, w) = 0\} \cap \{|z| \le 1/2\} = \sum (c_1, c_2, ..., c_n, c)$. Also,

$$P_c = P_n^2 + c^2 Q_1 + \ldots + (c^2)^{2^n} Q_{2^n},$$

where the Q_i are polynomials in z and w, not depending on c.

Claim: for sufficiently small positive c,

(4)
$$\left\{ |P_c| < \frac{\varepsilon_n^2}{2} \right\} \cap \left\{ |z| \le 1/2 \right\} \subset \left\{ |P_n| < \varepsilon_n \right\} \cap \left\{ |z| \le 1/2 \right\}.$$

130

Denote by Δ_M the bidisk: $|z| \le 1/2$, $|w| \le M$. For M sufficiently large, Δ_M contains

$$\left\{|P_c| < \frac{\varepsilon_n^2}{2}\right\} \cap \left\{|z| \le 1/2\right\}$$

for all c, $0 \le c \le 1$.

Suppose the Claim is false. Then for arbitrarily small $c \exists \zeta_c$ in Δ_M with $|P_c(\zeta_c)| < \frac{\varepsilon_n^2}{2}$ and $|P_n(\zeta_c)| \ge \varepsilon_n$. Since Δ_M is compact, ζ_c has an accumulation point ζ^* in Δ_M . Then $|P_n^2(\zeta^*)| \le \frac{\varepsilon_n^2}{2}$ and $|P_n(\zeta^*)| \ge \varepsilon_n$. This is impossible, and hence the Claim is true.

Fix c such that (4) holds and such that $c < (1/10)c_n$. Then choose ε_{n+1} such that $\varepsilon_{n+1} < \frac{\varepsilon_n^2}{2}$ and such that $|P_c(z, w)| < \varepsilon_{n+1}$ and $|z| \le 1/2$ implies that there exists w_{n+1} with $P_c(z, w_{n+1}) = 0$ and $|w - w_{n+1}| < 1/(n+1)$. Putting $c_{n+1} = c$, then, putting $P_{n+1} = P_c$, and choosing ε_{n+1} as above, we have that (1), (2), (3) hold for j=1, 2, ..., n+1. This completes the proof of Lemma 1 by induction.

Definition. With P_n , ε_n , n=1, 2, ... chosen as in Lemma 1, we put

$$X = \bigcap_{n=1}^{\infty} \left[\{ |P_n| \leq \varepsilon_n \} \cap \{ |z| \leq 1/2 \} \right].$$

It follows at once from this definition that X is a compact polynomially convex subset of the bidisk $\{|z| \le 1/2, |w| \le 1\}$. For each n we put

$$\Sigma_n = \{P_n = 0\} \cap \{|z| \le 1/2\} = \sum (c_1, ..., c_n)$$

where c_1, c_2, \ldots is the sequence obtained in Lemma 1.

Lemma 2. A point (z, w) belongs to X if and only if $|z| \le 1/2$ and there exists a sequence (z, w_n) with $(z, w_n) \in \sum_n$ and $w_n \to w$ as $n \to \infty$.

Proof. Consider (z, w) with $|z| \le 1/2$ and assume there exists such a sequence (z, w_n) . Fix n_0 . Because of (2), if $k > n_0$, then

$$\{|P_k| \leq \varepsilon_k, |z| \leq 1/2\} \subseteq \{|P_{n_0}| \leq \varepsilon_{n_0}\}$$

Since $P_k(z, w_k) = 0$ for each k, $(z, w_k) \in \{|P_{n_0}| \leq \varepsilon_{n_0}\}$ for each $k > n_0$. Hence $(z, w) \in \{|P_{n_0}| \leq \varepsilon_{n_0}\}$. This holds for all n_0 , and so $(z, w) \in X$.

Conversely, assume $(z, w) \in X$. Fix *n*. Then $|P_n(z, w)| \leq \varepsilon_n$. Hence by (3) there exists w_n with (z, w_n) in \sum_n and $|w - w_n| < 1/n$. Hence $\{(z, w_n)\}$ is a sequence as required. Lemma 2 is proved.

We now go on to show that X contains no analytic disk. Suppose first that D is an analytic disk contained in X with z non-constant on D. Assuming this, we shall arrive at a contradiction.

z is one-one on some subdisk of D and so it is no loss of generality to suppose that D is given by an equation: w=f(z), where f is a single-valued analytic function defined in some plane region contained in |z| < 1/2. In that region we choose a rectangle defined by inequalities: $S_1 \leq \operatorname{Re} z \leq S_2$, $t_1 \leq \operatorname{Im} z \leq t_2$, with S_1 , S_2 , t_1 , t_2 , irrational numbers. We denote the boundary of this rectangle by γ . Then γ is a simple closed curve such that none of the points a_i lies on γ . We note the following: (5) f is a continuous function defined on γ and $(z, f(z)) \in X$ for $z \in \gamma$.

We denote by z_1 the midpoint of the left-hand edge of γ and we denote by γ_1 the punctured curve $\gamma \setminus \{z_1\}$. For each $j \ B_j(z) = (z-a_1)(z-a_2) \dots (z-a_{j-1})\sqrt{(z-a_j)}$ has two single-valued continuous branches defined on γ_1 . If a_j lies outside γ , then each branch extends continuously to γ , while for a_j inside γ each branch has a jump-discontinuity at z_1 . We choose one of these branches, arbitrarily, and denote it β_j . Then $|\beta_j|$ is single-valued.

Let *n* be the smallest index such that a_n lies inside γ . The algebraic function $\sum_{i=1}^{n} c_i B_i$ has on γ_1 the 2^n branches

$$\sum_{j=1}^{n} c_j \varrho_j \beta_j$$

where each ρ_j is a constant = 1 or = -1. We denote by **A** the collection of these 2^n functions on γ_1 .

(6) Assertion 1: Fix z in γ_1 . There exists k in \Re , where k depends on z, such that $|f(z) - k(z)| < (1/4)|\beta_n(z)|c_n$.

In view of (5) and Lemma 2, we can find w_N such that (z, w_N) lies on Σ_N and $f(z) = w_N + R(z)$, where $|R(z)| \leq (1/10)|\beta_n(z)|c_n$.

Thus

$$f(z) = \sum_{\nu=1}^{N} c_{\nu} \varrho_{\nu}(z) \beta_{\nu}(z) + R(z) = k(z) + \sum_{\nu=n+1}^{N} c_{\nu} \varrho_{\nu}(z) \beta_{\nu}(z) + R(z)$$

where each $\varrho_{\nu}(z) = 1$ or -1 and

$$k = \sum_{\nu=1}^{n} c_{\nu} \varrho_{\nu}(z) \beta_{\nu} \in \mathbf{\mathfrak{R}}.$$

Then $|f(z) - k(z)| \leq \sum_{\nu=n+1}^{N} c_{\nu} |\beta_{\nu}(z)| + R(z)$. Note that for all j ,
 $|\beta_{j+1}(z)| = |(z-a_{1})...(z-a_{j})| \sqrt{|z-a_{j+1}|}$
 $\leq |(z-a_{1})...(z-a_{j})|$
 $\leq |z-a_{1}|...|z-a_{j-1}| \sqrt{|z-a_{j}|} = |\beta_{j}(z)|$
So $\sum_{\nu=n+1}^{N} c_{\nu} |\beta_{\nu}(z)| \leq \sum_{\nu=n+1}^{N} c_{\nu} |\beta_{n}(z)| \leq |\beta_{n}(z)| \left[\frac{c_{n}}{10} + \frac{c_{n}}{10^{2}} + ...\right] = \frac{1}{9} |\beta_{n}(z)| c_{n}.$

We thus get (6), as asserted.

Assertion 2. Let g, h be two distinct functions in \mathfrak{R} . Fix z in γ_1 . Then

(7)
$$|g(z)-h(z)| \ge (3/2)|\beta_n(z)|c_n.$$
$$g = \sum_{j=1}^n c_j \varrho_j \beta_j, \quad h = \sum_{j=1}^n c_j \varrho'_j \beta_j$$

where ϱ_j , ϱ'_j are constants = 1 or -1. For some j, $\varrho_j \neq \varrho'_j$. Let j_0 be the first such j. Then

$$g(z)-h(z) = \pm 2c_{j_0}\beta_{j_0}(z) + \sum_{j=j_0+1}^n c_j(\varrho_j - \varrho'_j)\beta_j(z).$$

So

$$\begin{aligned} |g(z) - h(z)| &\geq 2c_{j_0} |\beta_{j_0}(z)| - 2\sum_{j=j_0+1}^n c_j |\beta_j(z)| \\ &\geq 2c_{j_0} |\beta_{j_0}(z)| - 2|\beta_{j_0}(z)| \left[\sum_{j=j_0+1}^n c_j\right] \\ &\geq 2|\beta_{j_0}(z)| \left[c_{j_0} - \sum_{j=j_0+1}^n c_j\right] \geq \frac{16}{9} |\beta_{j_0}(z)| c_{j_0} \\ &\geq (3/2) |\beta_n(z)| c_n, \end{aligned}$$

proving (7).

Fix z_0 in γ_1 . By Assertion 1 there is some k_0 in $\mathbf{\mathfrak{R}}$ with

(8)
$$|f(z_0) - k_0(z_0)| \leq (1/4) |\beta_n(z_0)| c_n.$$

Assertion 3. Let k_0 satisfy (8). Then for all z in γ_1 :

(9)
$$|f(z) - k_0(z)| < (1/3) |\beta_n(z)| c_n.$$

 $\{z|(9) \text{ holds at } z\}$ is an open subset \mathcal{O} of γ_1 containing z_0 . If $\mathcal{O} \neq \gamma_1$, then there is a boundary point p of \mathcal{O} on γ_1 . Then

(10)
$$|f(p) - k_0(p)| = (1/3) |\beta_n(p)| c_n$$

By Assertion 1, there is some k_1 in **A** such that

(11)
$$|f(p) - k_1(p)| \le (1/4) |\beta_n(p)| c_n.$$

Thus $|k_0(p)-k_1(p)| \leq (7/12)|\beta_n(p)|c_n$. Also $k_0 \neq k_1$, in view of (10) and (11). This contradicts (7). Thus $\theta = \gamma_1$ and so Assertion 3 is true.

For each continuous function u defined on γ_1 which has a jump at z_1 let us write $L^+(u)$ and $L^-(u)$ for the two limits of u(z) as $z \rightarrow z_1$ along γ_1 . Then by (9)

$$|L^{+}(f) - L^{+}(k_{0})| \leq (1/3) |\beta_{n}(z_{1})| c_{n},$$

$$|L^{-}(f) - L^{-}(k_{0})| \leq (1/3) |\beta_{n}(z_{1})| c_{n},$$

$$|(L^{+}(f) - L^{+}(k_{0})) - (L^{-}(f) - L^{-}(k_{0}))| \leq (2/3) |\beta_{n}(z_{1})| c_{n}.$$

and so

and

Since f is continuous on
$$\gamma$$
, this gives that the jump of k_0 at z_1 is in modulus $\leq (2/3)|\beta_n(z_1)|c_n$. But k_0 is in \Re , so its jump at z_1 has modulus $2c_n|\beta_n(z_1)|$. This is a contradiction.

J. Wermer

The assumption that there is an analytic disk contained in X with z non-constant on it must therefore be rejected. The assumption that X contains an analytic disk on which z is constant must also be rejected, for the following reason:

Assertion 4. Fix z_0 with $|z_0| \le 1/2$. Put $F_{z_0} = \{z = z_0\} \cap X$. Each connected component of F_{z_0} is a single point. Assume first that $z_0 \ne a_j$ for all j. Fix an integer N. Consider the 2^N points

$$w_j = \sum_{\nu=1}^N c_{\nu} \varrho_{\nu}^{(j)} B_{\nu}(z_0), \quad j = 1, 2, ..., 2^N, \ \varrho_{\nu}^{(j)} = \pm 1,$$

where for each $v \ B_v(z_0)$ denotes one of the two values of B_v at z_0 , chosen arbitrarily. Then w_j , $j=1, ..., 2^N$, are the w-coordinates of the points on \sum_N lying over z_0 . By calculations like those in the proof of Assertion 2, we find that

(12)
$$|w_i - w_k| \ge (3/2) |B_N(z_0)| c_N.$$

By hypothesis, $B_N(z_0) \neq 0$.

Consider the closed disks with centers w_j , $j=1, 2, ..., 2^N$, and radius $(1/2)|B_N(z_0)|c_N$. Because of (12) these disks are disjoint.

Fix (z_0, b) in F_{z_0} . We claim that b belongs to the union of these 2^N disks. By Lemma 2 there exists M > N and there exists (z_0, w') in \sum_M such that

$$|b-w'| < (1/9)c_N |B_N(z_0)|.$$

Then

So

$$w' = \sum_{\nu=1}^{M} c_{\nu} \varrho_{\nu} B_{\nu}(z_0)$$

with $\varrho_v = \pm 1$.

Hence for some j, $1 \le j \le 2^N$,

$$w' = w_j + \sum_{\nu=N+1}^{M} c_{\nu} \varrho_{\nu} B_{\nu}(z_0).$$

$$|w'-w_j| \leq \sum_{\nu=N+1}^M c_{\nu}|B_{\nu}(z_0)| \leq \frac{1}{9} c_N|B_N(z_0)|.$$

Hence $|b-w_j| \leq (2/9) c_N |B_N(z_0)|$. Thus b belongs to the disk with center w_j and radius $(1/2) c_N |B_N(z_0)|$ and so to the union of the 2^N disks, as claimed. Since b was arbitrary with (z_0, b) in F_{z_0} , it follows that each connected component K of F_{z_0} is contained in a disk of radius $(1/2) c_N |B_N(z_0)|$ and hence has diameter $\leq c_N$. This holds for arbitrary N. Hence K is a single point. This proves our Assertion, in this case. If $z_0 = a_j$, then $B_N(z_0) = 0$ for N > j and so F_{z_0} is a finite set, hence totally disconnected.

We can thus conclude that X contains no analytic disk.

Lemma 3. Put $Y = X \cap \{|z| = 1/2\}$. Then $X = \hat{Y}$.

Proof. Since X is polynomially convex, $\hat{Y} \subseteq X$.

Fix now (z_0, w_0) in X. We shall show that (z_0, w_0) is in \hat{Y} . Let Q be a polynomial in z and w. By Lemma 2 we can find a sequence $\{(z_0, w_N)\}$ converging to (z_0, w_0) with (z_0, w_N) in Σ_N . Σ_N is a finite Riemann surface whose boundary lies on $\{|z|=1/2\}$. Hence $|Q(z_0, w_N)| \leq |Q(z'_N, w'_N)|$, where (z'_N, w'_N) is a point of $\Sigma_N \cap \{|z|=1/2\}$. Let (z', w') be an accumulation point of the sequence $\{(z'_N, w'_N)\}$. Arguing as in the proof of Lemma 2, we see that (z', w') is in X. Also |z'|=1/2. Then denoting by $\{n_j\}$ a sequence of integers such that (z'_{n_j}, w'_{n_j}) converges to (z', w'), we have

$$|Q(z_0, w_0)| = \lim_{j \to \infty} |Q(z_0, w_{n_j})| \le \lim_{j \to \infty} |Q(z'_{n_j}, w'_{n_j})| = |Q(z', w')|.$$

Since (z', w') is in Y, $|Q(z_0, w_0)| \le \max_Y |Q|$. Thus (z_0, w_0) is in \hat{Y} , as claimed. Thus $X \subseteq \hat{Y}$, and so $X = \hat{Y}$.

The set Y thus has the properties asserted in Theorem 1.

References

- 1. B. COLE, One point parts and the peak point conjecture, PhD dissertation, Yale University (1968).
- 2. G. STOLZENBERG, A hull with no analytic structure, Jour. of Math. and Mech. 12 (1963).
- 3. J. WERMER, Banach algebras and several complex variables, 2nd edition, Graduate Texts in Mathematics 35, Springer-Verlag (1976).
- 4. E. BISHOP, Holomorphic completions, analytic continuations and the interpolation of seminorms, *Ann. of Math.* **78** (1963).
- 5. R. BASENER, A condition for analytic structure, Proc. Amer. Math. Soc. 36 (1972).

Received August 4, 1980

John Wermer Department of Mathematics Brown University Providence 02912 Rhode Island USA