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Introduction 

We denote by z, w the coordinates in C ~ and we write ~ for the projection 
which sends (z, w)~z .  Let Y be a compact subset of  C 2 with ~(Y) contained in 
the unit circle. We denote by I y the polynomially convex hull of  I1. For  2 in C 
we put 

~-1(,~) = {(z, w)~ ~l~(z ,  w) = ;~}. 

We assume that n - 1 ( 2 ) ~  for some 2 with 121<1. Then ~r-1(2)r for each 2 
in the open unit disk. 

Under various conditions ~'-,,Y has been shown to possess analytic structure. 
In particular we have ([4], [5]): 

Theorem. I f  n-1(2) is finite or eountably infinite for each 2 in 12I<1, then 
Y \  Y" contains an analytic variety of dimension 1. 

The object of  this note is to show that no such conclusion holds in general. 

Theorem 1. There exists a compact subset Y of C 2 with rc(Y)c= {lzI=l} such 
that 7r(IY)={Iz[<=l} and Y ~  Y contains no analytic variety of  positive dimension. 

Our construction proceeds by modifying the idea which was used by Brian 
Cole in [1] (see also [3], Theorem 20.1) to prove the infinite-dimensional analogue 
of Theorem 1. 

In the famous example of  a hull without analytic structure given by Stolzen- 
berg in [2] the set whose hull is taken and the hull have the same coordinate projec- 
tions. In our example the projection It(Y) is a proper subset of  the projection 
,~(I~). 

Note. By a change of  variable we may replace the unit circle and unit disk 
by the circle 1z]=1/2 and the disk ]zl~l /2,  and we shall prove Theorem 1 for 
this case. The convenience that results is that for la], lbl~ 1/2, la-bl<= 1. 
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Notations. Let al,  as, ... denote the points in the disk [zl<I/2 both of  whose 
coordinates are rational numbers. Fix an n-tuple of  positive constants cl, c2 . . . . .  c,. 
For  each j we denote by Bj the algebraic function 

Bj(z) = (z - aa) ( z -  as)... ( z -  a]_ a) (zl/~-~- a]) 

and by g, the algebraic function 

g,(z) ~- ~ = l c j B j ( z ) .  

We denote by ~ (c~, ..., e,) the subset of  the Riemann surface of  g, which lies in 
[z I ~ 1/2. In other words, 

(Cl . . . .  , c,) = {(z, w)I]z ] ~ 1/2, w = wj, j -- I, 2 . . . .  ,2"}, 

where w j,  j =  1 . . . . .  2" are the values of  g, at z. 

Lemma 1. There exists a sequence ej, j = l , 2 ,  ... of positive constants with 
el = 1/10 and e,+ 1 ~ (1/10) e., n = 1, 2 . . . .  and there exists a sequence {~]1 J= 1, 2, ... } 
of positive constants, and there exists a sequence of polynomials {P,} in z and w 
such that 

(1) { P , = 0 ,  Iz{<= 1 / 2 } = ~ ( c l , . . . , c , ) ,  n =  1,2 . . . .  

(2) { IP ,+ l [~e ,+a ,  l z [ ~  1/2}c= { [ p , l < e , ,  I z [~  1/2}, n =  1,2 . . . .  

O) I f  [a[~l/2 and ]P,(a,w)}<=,., then there exists w, with P,(a,w,)=O and 
]w-w, l< l /n ,  n = l ,  2 . . . . .  

Proof. For  j = l ,  we take c1=1/10, e l= l / 4 ,  Px(z ,w)=w2-(1/ lOO)(z-al ) .  
Then (1) and (3) hold. Suppose now that c j ,  el, P~ have been chosen for j = 1, 2, ..., n 
in such a way that (l), (2), (3) are satisfied. We shall choose c.+1, an+a, Pn+x" 

Denote by wj(z), j = l ,  2 . . . .  ,2", the roots of  P,(z, - )=0 .  To each constant 
c ~ 0  we assign a polynomial Pc by putting 

2n ec(z, w) 

Then Pc(z, - ) = 0  has the roots wj(z)+_cB,+a(z),j=l, ..., 2", and so {Pc(z, w)=0}c~ 
{ l z l < = l / 2 } = Z  (el,  ..., e, ,  e). Also, 

Pc = P2,+c~QI +.. .  +(c2)~"Q~ . ,  

where the Qj are polynomials in z and w, not  depending on c. 

Claim: for sufficiently small positive c, 

(4) I'Pcl < ~ ' /~{ Iz l  ~ 1/2} = {[P,I < e.}n{[z[ ~ 1/2}. 
t z ~ j  
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Denote by A M the bidisk: [z[-<l/2, [wl<=M. For M sufficiently large, A M 
contains 

ecl < c~{Izl ~ 1/2} 

for all c, 0 -<c_  <- 1. 
Suppose the Claim is false. Then for arbitrarily small c 3(~ in A M with 

[P~((c)l< 5a and IP,((~)I>=5,. Since A M is compact, ~ has an accumulation point 
2 

{* in A M. Then IP~.(~*)l<~ and IP.(g*)l_->5.. This is impossible, and hence 
= 2  

the Claim is true. 
Fix c such that (4) holds and such that c<(1/lO)c,. Then choose 5.+~ such 

4 that 5 , + l < T  and such that IP~(z, w)l<5,+~ and izl<=l/2 implies that there 

exists w.+, with P~(z, w , + 0 = 0  and ]w-w,+xl<l/(n+l).  Putting c,H=c,  then, 
putting P,+a =P~, and choosing e,+~ as above, we have that (1), (2), (3) hold for 
j =  1, 2, ..., n + 1. This completes the proof  of Lemma 1 by induction. 

Definition. With P, ,  5,, n = 1, 2 . . . .  chosen as in Lemma 1, we put 

x =  [{jPoj _<- 5.} {jzl _<- 1/2}]. 

It follows at once from this definition that X is a compact polynomially con- 
vex subset of the bidisk {Izl<=l/2, [wl<=l}. For  each n we put 

27. = {P.  = 0}c~{Izl ~ 1 / 2 }  = Z (Cx . . . . .  c.) 

where cx, c2 . . . .  is the sequence obtained in Lemma I. 

Lemma 2. A point (z, w) belongs to X (f and only i f  IzI<= l/2 and there exists 
a sequence (z, w.) with (z, w . ) E ~  and w,,~w as n . . . .  

Proof. Consider (z, w) with Izi<= 1/2 and assume there exists such a sequence 
(z, w,). Fix no. Because of (2), if k > n  0, then 

{IP]-< ] ] < 1 / 2 } c  {]p ]-<e.0} k ~ 5 k , Z ~ ~ n o  ~ -  ' 

Since Pk(Z, Wk)=O for each k, (Z, Wk)C{IP, o]-~e.o} for each k>no. Hence 
(z, w)~ {IP,01 =<e,0}. This holds for all no, and so (z, w)CX. 

Conversely, assume (z, w)~X. Fix n. Then ]P,(z,w)l<=5,. Hence by (3) 
there exists w, with (z, w,) in ~ ,  and Iw-w,]<l/n.  Hence {(z, w.)} is a sequence 
as required. Lemma 2 is proved. 
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We now go on to show that  X contains no analytic disk. Suppose first that 

D is an analytic disk contained in X with z non-constant  on D. Assuming this, we 
shall arrive at a contradiction. 

z is one-one on some subdisk of  D and so it is no loss of  generality to suppose 
that D is given by an equation: w =f(z), where f is a single-valued analytic func- 
tion defined in some plane region contained in ]z[< 1/2. In that region we choose 
a rectangle defined by inequalities: S I ~ R e  z~=S~, q<=Im z<-t2, with $1, $2, q ,  t2, 
irrational numbers. We denote the boundary of  this rectangle by ?. Then 7 is a 
simple closed curve such that none of the points al lies on ?. We note the following: 
(5) f i s  a continuous function defined on ? and (z,f(z))CX for zCv. 

We denote by zl the midpoint  of  the left-hand edge of  ? and we denote by 71 the 

punctured curve 7\{zl}.  For  each j Bj(z)=(z-al)(z-a~). . . (z-a~_a)~(z-aj)  has 
two single-valued continuous branches defined on 71- I f  aj lies outside ?, then each 
branch extends continuously to ?, while for aj inside 7 each branch has a jump- 
discontinuity at zl. We choose one of  these branches, arbitrarily, and denote i t / / j .  
Then [flil is single-valued. 

Let n be the smallest index such that a.  lies inside ?. The algebraic function 

~'=1 ejBi has on 71 the 2" branches 

where each Oj is a constant = 1 or = - 1. We denote by ~ the collection of these 

2" functions on 71. 

Assertion 1 : Fix z in 71. There exists k in ~ ,  where k depends on z, such that 

(6) I f(z)-k(z)l  < (1/4)]fl,(z)]c,. 

In view of  (5) and Lemma 2, we can find w N such that  (z, wu) lies on ZN and 

f(z) : wN+R(z), where [R(z)r <= (1/lO)[fl,(z)[c,. 
Thus 

f(z) N N : 

where each 0v(Z)=l or - 1  and 

k " 

Then l f(z)-k(z)I<-Z~=.+l G]~v(Z)l +R(z). Note that  for all j ,  

[flj+l(Z)[ : [ ( z - -a1) . . .  (z-%)] VIz-a~+ll 
] (Z--a1) . . .  (Z--Ctj)[ 
[ Z - - a a [ . . . [ z - - a j _ l [  [ZJ/~--~aj] : [flj(Z)[ 

So N ] 1 < Zv~n+l  Cv < Z , = , + I  c~l/~(z)l = I/~,(z)l -- I/~.(z)l [5 -6 -+] -~  + . . . .  I/~.(z)lc,. 

We thus get (6), as asserted. 



Polynomially convex hulls and analyticity 133 

Assertion 2. Let  g, h be two distinct functions in ~1. Fix z in ?'1. Then 

(7) Ig ( z ) -h ( z ) l  >- (3/2)]fi.(z)l c.. 

n "~21 I1 C l g = ~ j = l c j o j f l j ,  h =  2,j=1 jOjPj 

where Q j ,  pj are c o n s t a n t s =  1 or - 1. Fo r  some./ ,  0j ~ ~o~.. 
j .  Then 

So 

proving  (7). 

(8) 

(9) 

Fix Zo in 71. 

Assertion 3. 

{zl(9 ) holds a t  z} 

Let  J0 be the first such 

g (z) -- h (z) = +_ 2Cjo ~Jo (z) + Z~= Jo +1 ej (o~j - ~j) ~ (z). 

n 
I g ( z ) - h ( z ) l  ~ 2Cjolfijo(z)1-2 Z i : j o + l  cj Ifii(z)l 

=> 2% I/3jo(z)1-2 IBjo(z)l [Z~=jo+l cj] 

2[/~jo(z)l [Cjo-Z~=jo+ 1 cj] ~ @ I~jo(z)l% 

>= (3/2)1~,,(z)1c., 

By Asser t ion 1 there is some k o in !it with 

If(zo)-ko(zo)l  <= (1/4)Ifl,(Zo)l c,. 

Let k o satisfy (8). Then for  all z in 7t: 

I f ( z ) - ko ( z ) l  < (1/3)lfl.(z)J c.. 

is an  open subset (9 of  71 containing Zo. I f  (9~71, then there 
is a bounda ry  point  p o f  (9 on 71. Then 

(10) I f ( P ) -  k0(P)l -- (1/3)[fiR(P)[ %. 

By Assert ion 1, there is some kl in !R such tha t  

(11) If(P) - kl(P)l ~ (1/4)]ft, (p)[ %. 

Thus  l ko(p) -k l (p) l~(7 /12) l f l , (p) lc , .  Also koCk l ,  in view o f  (10) and  (11). This 
contradicts  (7). Thus (9=7i and so Assert ion 3 is true. 

For  each cont inuous  funct ion u defined on 71 which has a j u m p  at  z 1 let us 
write L+(u) and L-(u)  for  the two limits o f  u(z) as z ~ z l  along 71. Then by (9) 

[ L + ( f ) - L + ( k o ) [  <= ( I /3) lfl.(zl)l c., 
and 

I L - ( f ) - L - ( k o ) l  <-- (1/3)I/~.(zl)l c~, 
and so 

[(L + ( f )  - L + (ko)) - ( C -  ( f )  - L -  (ko))] ~ (2/3) [fl,, (zl) 1%. 

Since f is cont inuous  on 7, this gives tha t  the j u m p  of  k0 at  z 1 is in modulus  
~(2/3)lfl ,(zOlc .. But/Co is in !R, so its j u m p  at Z 1 has modulus  2c, lfl,(zO]. This is 
a contradict ion.  
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The assumption that there is an analytic disk contained in X with z non-con- 
stant on it must therefore be rejected. The assumption that X contains an analytic 
disk on which z is constant must also be rejected, for the following reason: 

Assertion 4. Fix z0 with lz01 <= 1/2. Put F=0 = {z =zo} c~ X. Each connected com- 
ponent of  Fz0 is a single point. Assume first that zo~a  i for all j .  Fix an integer N. 
Consider the 2 N points 

N C Q ( J )  . . .  ~ _ w i =  ~ = 1  , B~(zo), j =  1,2, 2 N, ~(~J) = + l ,  

where for each v Bv(zo) denotes one of the two values of  Bv at z0, chosen arbitrarily. 
Then w j, j =  1 . . . .  , 2  N, are the w-coordinates of  the points on ~'N lying over z0. 
By calculations like those in the proof  of Assertion 2, we find that 

(12) Iwj--wkl >= (3/2)IBN(z0)[ cN. 

By hypothesis, BN (zo) ~0 .  
Consider the closed disks with centers w i, j = 1 , 2 , . . . , 2  N, and radius 

(1/2)lBN(zo)lC N. Because of  (12) these disks are disjoint. 
Fix (z0, b) in Fzo. We claim that b belongs to the union of these 2 N disks. 

By Lemma 2 there exists M > N  and there exists (z0, w') in ~'M such that 

[b-w ' [  < (1/9)c~ [B~(z0)l. 
Then 

w'= 2; =1 
with Qv = _ 1. 

Hence for some j, l<=j<-2 N, 

w' = wj+ ~ = N + I  c~ e~B~(z0). 

So }w' -wj l  M 1 <= ~v=N+l c~lB~(z0)l --<-- -~ c~ IBN(z0)I. 

Hence Ib-wjl<=(2/9)c~lBu(zo)l. Thus b belongs to the disk with center wj 
and radius (1/2)cN kBN(zo)l and so to the union of  the 2 N disks, as claimed. Since 
b was arbitrary with (z0, b) in F~o, it follows that each connected component K 
of  Fzo is contained in a disk of  radius (1/2)CN IBN(Zo)I and hence has diameter 
<=c N. This holds for arbitrary N. Hence K is a single point. This proves our Asser- 
tion, in this case. If  zo=aj,  then Bu(z0)=0 for N > j  and so F~0 is a finite set, 
hence totally disconnected. 

We can thus conclude that X contains no analytic disk. 

Lemma 3. Put Y=Xc~ {]z] = 1/2}. Then X=Y .  

Proof. Since X is polynomially convex, IT"~X. 
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Fix now (z0, w0) in X. We shall show tha t  (z0, w0) is in Y. Let Q be a poly- 
nomia l  in z and  w. By L e m m a  2 we can find a sequence {(z0, WN)} converging to 

(z0, %)  with (z0, wN) in 2; N. I; N is a finite R iemann  surface whose boundary  lies 
I z / t on { ]z l= l /2  }. Hence [Q(z0, ws) ]~ lQ(zN,  wN)[, where (z N, wN) is a point  o f  

~ ~ {Izl--1/2}. Let  (z', w') be an accumula t ion  point  o f  the sequence {(z~v, w~v)}. 
Arguing as in the p r o o f  o f  L e m m a  2, we see that  (z', w') is in X. Also [z ' [ -1 /2 .  
Then denoting by {nj.} a sequence of  integers such tha t  (z~j, w~j) converges to 
(z', w'), we have 

IQ(zo, wo)l = ~-~]im IQ(zo, w,)l  ~ l i ra  lQ(z',,~, w~,,)l = IQ(z', w')l. 

Since (z ' ,w ' )  is in Y, [Q(zo, Wo)[<=maxy [Q/. Thus (Zo, Wo) is in ~ as claimed. 
Thus X ~  Y, and  so X = Y .  

The set Y thus has the propert ies  asserted in Theorem 1. 
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