Polynomially convex hulls and analyticity

J. Wermer

Introduction

We denote by z, w the coordinates in \mathbf{C}^{2} and we write π for the projection which sends $(z, w) \rightarrow z$. Let Y be a compact subset of \mathbf{C}^{2} with $\pi(Y)$ contained in the unit circle. We denote by \hat{Y} the polynomially convex hull of Y. For λ in \mathbf{C} we put

$$
\pi^{-1}(\lambda)=\{(z, w) \in \hat{Y} \mid \pi(z, w)=\lambda\} .
$$

We assume that $\pi^{-1}(\lambda) \neq \emptyset$ for some λ with $|\lambda|<1$. Then $\pi^{-1}(\lambda) \neq \emptyset$ for each λ in the open unit disk.

Under various conditions $\hat{Y} Y$ has been shown to possess analytic structure. In particular we have ([4], [5]):

Theorem. If $\pi^{-1}(\lambda)$ is finite or countably infinite for each λ in $|\lambda|<1$, then $\hat{Y} \backslash Y$ contains an analytic variety of dimension 1.

The object of this note is to show that no such conclusion holds in general.
Theorem 1. There exists a compact subset Y of \mathbf{C}^{2} with $\pi(Y) \subseteq\{|z|=1\}$ such that $\pi(\hat{Y})=\{|z| \leqq 1\}$ and $\hat{Y} \backslash Y$ contains no analytic variety of positive dimension.

Our construction proceeds by modifying the idea which was used by Brian Cole in [1] (see also [3], Theorem 20.1) to prove the infinite-dimensional analogue of Theorem 1 .

In the famous example of a hull without analytic structure given by Stolzenberg in [2] the set whose hull is taken and the hull have the same coordinate projections. In our example the projection $\pi(Y)$ is a proper subset of the projection $\pi(\hat{Y})$.

Note. By a change of variable we may replace the unit circle and unit disk by the circle $|z|=1 / 2$ and the disk $|z| \leqq 1 / 2$, and we shall prove Theorem 1 for this case. The convenience that results is that for $|a|,|b| \leqq 1 / 2,|a-b| \leqq 1$.

Notations. Let a_{1}, a_{2}, \ldots denote the points in the disk $|z|<1 / 2$ both of whose coordinates are rational numbers. Fix an n-tuple of positive constants $c_{1}, c_{2}, \ldots, c_{n}$. For each j we denote by B_{j} the algebraic function

$$
B_{j}(z)=\left(z-a_{1}\right)\left(z-a_{2}\right) \ldots\left(z-a_{j-1}\right) \sqrt{\left(z-a_{j}\right)}
$$

and by g_{n} the algebraic function

$$
g_{n}(z)=\sum_{j=1}^{n} c_{j} B_{j}(z)
$$

We denote by $\sum\left(c_{1}, \ldots, c_{n}\right)$ the subset of the Riemann surface of g_{n} which lies in $|z| \leqq 1 / 2$. In other words,

$$
\sum\left(c_{1}, \ldots, c_{n}\right)=\left\{(z, w)| | z \mid \leqq 1 / 2, w=w_{j}, j=1,2, \ldots, 2^{n}\right\}
$$

where $w_{j}, j=1, \ldots, 2^{n}$ are the values of g_{n} at z.
Lemma 1. There exists a sequence $c_{j}, j=1,2, \ldots$ of positive constants with $c_{1}=1 / 10$ and $c_{n+1} \leqq(1 / 10) c_{n}, n=1,2, \ldots$ and there exists a sequence $\left\{\varepsilon_{j} \mid j=1,2, \ldots\right\}$ of positive constants, and there exists a sequence of polynomials $\left\{P_{n}\right\}$ in z and w such that

$$
\begin{gather*}
\left\{P_{n}=0,|z| \leqq 1 / 2\right\}=\sum\left(c_{1}, \ldots, c_{n}\right), \quad n=1,2, \ldots \tag{1}\\
\left\{\left|P_{n+1}\right| \leqq s_{n+1},|z| \leqq 1 / 2\right\} \leqq\left\{\left|P_{n}\right|<\varepsilon_{n},|z| \leqq 1 / 2\right\}, \quad n=1,2, \ldots \tag{2}
\end{gather*}
$$

(3) If $|a| \leqq 1 / 2$ and $\left|P_{n}(a, w)\right| \leqq \varepsilon_{n}$, then there exists w_{n} with $P_{n}\left(a, w_{n}\right)=0$ and $\left|w-w_{n}\right|<1 / n, n=1,2, \ldots$.

Proof. For $j=1$, we take $c_{1}=1 / 10, \varepsilon_{1}=1 / 4, P_{1}(z, w)=w^{2}-(1 / 100)\left(z-a_{1}\right)$. Then (1) and (3) hold. Suppose now that $c_{j}, \varepsilon_{j}, P_{j}$ have been chosen for $j=1,2, \ldots, n$ in such a way that (1), (2), (3) are satisfied. We shall choose $c_{n+1}, \varepsilon_{n+1}, P_{n+1}$.

Denote by $w_{j}(z), j=1,2, \ldots, 2^{n}$, the roots of $P_{n}(z, \cdot)=0$. To each constant $c \geqq 0$ we assign a polynomial P_{c} by putting

$$
P_{c}(z, w)=\prod_{j=1}^{2^{n}}\left[\left(w-w_{j}(z)\right)^{2}-c^{2}\left(B_{n+1}(z)\right)^{2}\right]
$$

Then $P_{c}(z, \cdot)=0$ has the roots $w_{j}(z) \pm c B_{n+1}(z), j=1, \ldots, 2^{n}$, and so $\left\{P_{c}(z, w)=0\right\} \cap$ $\{|z| \leqq 1 / 2\}=\sum\left(c_{1}, c_{2}, \ldots, c_{n}, c\right)$. Also,

$$
P_{c}=P_{n}^{2}+c^{2} Q_{1}+\ldots+\left(c^{2}\right)^{2 n} Q_{2^{n}}
$$

where the Q_{j} are polynomials in z and w, not depending on c.
Claim: for sufficiently small positive c,

$$
\begin{equation*}
\left\{\left|P_{c}\right|<\frac{\varepsilon_{n}^{2}}{2}\right\} \cap\{|z| \leqq 1 / 2\} \subset\left\{\left|P_{n}\right|<\varepsilon_{n}\right\} \cap\{|z| \leqq 1 / 2\} . \tag{4}
\end{equation*}
$$

Denote by Δ_{M} the bidisk: $|z| \leqq 1 / 2,|w| \leqq M$. For M sufficiently large, Δ_{M} contains

$$
\left\{\left|P_{c}\right|<\frac{\varepsilon_{n}^{2}}{2}\right\} \cap\{|z| \leqq 1 / 2\}
$$

for all $c, 0 \leqq c \leqq 1$.
Suppose the Claim is false. Then for arbitrarily small $c \exists \zeta_{c}$ in Δ_{M} with $\left|P_{c}\left(\zeta_{c}\right)\right|<\frac{\varepsilon_{n}^{2}}{2}$ and $\left|P_{n}\left(\zeta_{c}\right)\right| \geqq \varepsilon_{n}$. Since Δ_{M} is compact, ζ_{c} has an accumulation point ζ^{*} in Δ_{M}. Then $\left|P_{n}^{2}\left(\zeta^{*}\right)\right| \leqq \frac{\varepsilon_{n}^{2}}{2}$ and $\left|P_{n}\left(\zeta^{*}\right)\right| \geqq \varepsilon_{n}$. This is impossible, and hence the Claim is true.

Fix c such that (4) holds and such that $c<(1 / 10) c_{n}$. Then choose ε_{n+1} such that $\varepsilon_{n+1}<\frac{\varepsilon_{n}^{2}}{2}$ and such that $\left|P_{c}(z, w)\right|<\varepsilon_{n+1}$ and $|z| \leqq 1 / 2$ implies that there exists w_{n+1} with $P_{c}\left(z, w_{n+1}\right)=0$ and $\left|w-w_{n+1}\right|<1 /(n+1)$. Putting $c_{n+1}=c$, then, putting $P_{n+1}=P_{c}$, and choosing ε_{n+1} as above, we have that (1), (2), (3) hold for $j=1,2, \ldots, n+1$. This completes the proof of Lemma 1 by induction.

Definition. With $P_{n}, \varepsilon_{n}, n=1,2, \ldots$ chosen as in Lemma 1, we put

$$
X=\bigcap_{n=1}^{\infty}\left[\left\{\left|P_{n}\right| \leqq \varepsilon_{n}\right\} \cap\{|z| \leqq 1 / 2\}\right]
$$

It follows at once from this definition that X is a compact polynomially convex subset of the bidisk $\{|z| \leqq 1 / 2,|w| \leqq 1\}$. For each n we put

$$
\Sigma_{n}=\left\{P_{n}=0\right\} \cap\{|z| \leqq 1 / 2\}=\sum\left(c_{1}, \ldots, c_{n}\right)
$$

where c_{1}, c_{2}, \ldots is the sequence obtained in Lemma 1.
Lemma 2. A point (z, w) belongs to X if and only if $|z| \leqq 1 / 2$ and there exists a sequence $\left(z, w_{n}\right)$ with $\left(z, w_{n}\right) \in \sum_{n}$ and $w_{n} \rightarrow w$ as $n \rightarrow \infty$.

Proof. Consider (z, w) with $|z| \leqq 1 / 2$ and assume there exists such a sequence $\left(z, w_{n}\right)$. Fix n_{0}. Because of (2), if $k>n_{0}$, then

$$
\left\{\left|P_{k}\right| \leqq \varepsilon_{k},|z| \leqq 1 / 2\right\} \leqq\left\{\left|P_{n_{0}}\right| \leqq \varepsilon_{n_{0}}\right\}
$$

Since $P_{k}\left(z, w_{k}\right)=0$ for each $k, \quad\left(z, w_{k}\right) \in\left\{\left|P_{n_{0}}\right| \leqq \varepsilon_{n_{0}}\right\}$ for each $k>n_{0}$. Hence $(z, w) \in\left\{\left|P_{n_{0}}\right| \leqq \varepsilon_{n_{0}}\right\}$. This holds for all n_{0}, and so $(z, w) \in X$.

Conversely, assume $(z, w) \in X$. Fix n. Then $\left|P_{n}(z, w)\right| \equiv \varepsilon_{n}$. Hence by (3) there exists w_{n} with $\left(z, w_{n}\right)$ in \sum_{n} and $\left|w-w_{n}\right|<1 / n$. Hence $\left\{\left(z, w_{n}\right)\right\}$ is a sequence as required. Lemma 2 is proved.

We now go on to show that X contains no analytic disk. Suppose first that D is an analytic disk contained in X with z non-constant on D. Assuming this, we shall arrive at a contradiction.
z is one-one on some subdisk of D and so it is no loss of generality to suppose that D is given by an equation: $w=f(z)$, where f is a single-valued analytic function defined in some plane region contained in $|z|<1 / 2$. In that region we choose a rectangle defined by inequalities: $S_{1} \leqq \operatorname{Re} z \leqq S_{2}, t_{1} \leqq \operatorname{Im} z \leqq t_{2}$, with $S_{1}, S_{2}, t_{1}, t_{2}$, irrational numbers. We denote the boundary of this rectangle by γ. Then γ is a simple closed curve such that none of the points a_{i} lies on γ. We note the following: (5) f is a continuous function defined on γ and $(z, f(z)) \in X$ for $z \in \gamma$.

We denote by z_{1} the midpoint of the left-hand edge of γ and we denote by γ_{1} the punctured curve $\gamma \backslash\left\{z_{1}\right\}$. For each $j B_{j}(z)=\left(z-a_{1}\right)\left(z-a_{2}\right) \ldots\left(z-a_{j-1}\right) \sqrt{\left(z-a_{j}\right)}$ has two single-valued continuous branches defined on γ_{1}. If a_{j} lies outside γ, then each branch extends continuously to γ, while for a_{j} inside γ each branch has a jumpdiscontinuity at z_{1}. We choose one of these branches, arbitrarily, and denote it β_{j}. Then $\left|\beta_{j}\right|$ is single-valued.

Let n be the smallest index such that a_{n} lies inside γ. The algebraic function $\sum_{j=1}^{n} c_{j} B_{j}$ has on γ_{1} the 2^{n} branches

$$
\sum_{j=1}^{n} c_{j} \varrho_{j} \beta_{j}
$$

where each ϱ_{j} is a constant $=1$ or $=-1$. We denote by $\boldsymbol{\Omega}$ the collection of these 2^{n} functions on γ_{1}.

Assertion 1: Fix z in γ_{1}. There exists k in $\boldsymbol{\Omega}$, where k depends on z, such that

$$
|f(z)-k(z)|<(1 / 4)\left|\beta_{n}(z)\right| c_{n}
$$

In view of (5) and Lemma 2, we can find w_{N} such that $\left(z, w_{N}\right)$ lies on Σ_{N} and

$$
f(z)=w_{N}+R(z), \quad \text { where } \quad|R(z)| \leqq(1 / 10)\left|\beta_{n}(z)\right| c_{n}
$$

Thus

$$
f(z)=\sum_{v=1}^{N} c_{v} \varrho_{v}(z) \beta_{v}(z)+R(z)=k(z)+\sum_{v=n+1}^{N} c_{v} \varrho_{v}(z) \beta_{v}(z)+R(z)
$$

where each $\varrho_{v}(z)=1$ or -1 and

$$
k=\sum_{v=1}^{n} c_{v} \varrho_{v}(z) \beta_{v} \in \boldsymbol{\Omega}
$$

Then $|f(z)-k(z)| \leqq \sum_{v=n+1}^{N} c_{v}\left|\beta_{v}(z)\right|+R(z)$. Note that for all j,

$$
\begin{aligned}
\left|\beta_{j+1}(z)\right| & =\left|\left(z-a_{1}\right) \ldots\left(z-a_{j}\right)\right| \sqrt{\left|z-a_{j+1}\right|} \\
& \leqq\left|\left(z-a_{1}\right) \ldots\left(z-a_{j}\right)\right| \\
& \leqq\left|z-a_{1}\right| \ldots\left|z-a_{j-1}\right| \sqrt{\left|z-a_{j}\right|}=\left|\beta_{j}(z)\right|
\end{aligned}
$$

So $\quad \sum_{v=n+1}^{N} c_{v}\left|\beta_{v}(z)\right| \leqq \sum_{v=n+1}^{N} c_{v}\left|\beta_{n}(z)\right| \leqq\left|\beta_{n}(z)\right|\left[\frac{c_{n}}{10}+\frac{c_{n}}{10^{2}}+\ldots\right]=\frac{1}{9}\left|\beta_{n}(z)\right| c_{n}$.
We thus get (6), as asserted.

Assertion 2. Let g, h be two distinct functions in $\boldsymbol{\Omega}$. Fix z in γ_{1}. Then

$$
\begin{gather*}
|g(z)-h(z)| \geqq(3 / 2)\left|\beta_{n}(z)\right| c_{n} . \tag{7}\\
g=\sum_{j=1}^{n} c_{j} \varrho_{j} \beta_{j}, \quad h=\sum_{j=1}^{n} c_{j} \varrho_{j}^{\prime} \beta_{j}
\end{gather*}
$$

where $\varrho_{j}, \varrho_{j}^{\prime}$ are constants $=1$ or -1 . For some $j, \varrho_{j} \neq \varrho_{j}^{\prime}$. Let j_{0} be the first such j. Then

So

$$
g(z)-h(z)= \pm 2 c_{j_{0}} \beta_{j_{0}}(z)+\sum_{j=j_{0}+1}^{n} c_{j}\left(\varrho_{j}-\varrho_{j}^{\prime}\right) \beta_{j}(z)
$$

$$
\begin{aligned}
|g(z)-h(z)| & \geqq 2 c_{j_{0}}\left|\beta_{j_{0}}(z)\right|-2 \sum_{j=j_{0}+1}^{n} c_{j}\left|\beta_{j}(z)\right| \\
& \geqq 2 c_{j_{0}}\left|\beta_{j_{0}}(z)\right|-2\left|\beta_{j_{0}}(z)\right|\left[\sum_{j=j_{0}+1}^{n} c_{j}\right] \\
& \geqq 2\left|\beta_{j_{0}}(z)\right|\left[c_{j_{0}}-\sum_{j=j_{0}+1}^{n} c_{j}\right] \geqq \frac{16}{9}\left|\beta_{j_{0}}(z)\right| c_{j_{0}} \\
& \geqq(3 / 2)\left|\beta_{n}(z)\right| c_{n},
\end{aligned}
$$

proving (7).
Fix z_{0} in γ_{1}. By Assertion 1 there is some k_{0} in $\boldsymbol{\Omega}$ with

$$
\begin{equation*}
\left|f\left(z_{0}\right)-k_{0}\left(z_{0}\right)\right| \leqq(1 / 4)\left|\beta_{n}\left(z_{0}\right)\right| c_{n} \tag{8}
\end{equation*}
$$

Assertion 3. Let k_{0} satisfy (8). Then for all z in γ_{1} :

$$
\begin{equation*}
\left|f(z)-k_{0}(z)\right|<(1 / 3)\left|\beta_{n}(z)\right| c_{n} \tag{9}
\end{equation*}
$$

$\{z \mid(9)$ holds at $z\}$ is an open subset \mathcal{O} of γ_{1} containing z_{0}. If $\mathcal{O} \neq \gamma_{1}$, then there is a boundary point p of \mathcal{O} on γ_{1}. Then

$$
\begin{equation*}
\left|f(p)-k_{0}(p)\right|=(1 / 3)\left|\beta_{n}(p)\right| c_{n} \tag{10}
\end{equation*}
$$

By Assertion 1, there is some k_{1} in $\boldsymbol{\Omega}$ such that

$$
\begin{equation*}
\left|f(p)-k_{1}(p)\right| \leqq(1 / 4)\left|\beta_{n}(p)\right| c_{n} \tag{11}
\end{equation*}
$$

Thus $\left|k_{0}(p)-k_{1}(p)\right| \leqq(7 / 12)\left|\beta_{n}(p)\right| c_{n}$. Also $k_{0} \neq k_{1}$, in view of (10) and (11). This contradicts (7). Thus $\mathcal{O}=\gamma_{1}$ and so Assertion 3 is true.

For each continuous function u defined on γ_{1} which has a jump at z_{1} let us write $L^{+}(u)$ and $L^{-}(u)$ for the two limits of $u(z)$ as $z \rightarrow z_{1}$ along γ_{1}. Then by (9)
and

$$
\left|L^{+}(f)-L^{+}\left(k_{0}\right)\right| \leqq(1 / 3)\left|\beta_{n}\left(z_{1}\right)\right| c_{n}
$$

and so

$$
\left|L^{-}(f)-L^{-}\left(k_{0}\right)\right| \leqq(1 / 3)\left|\beta_{n}\left(z_{1}\right)\right| c_{n}
$$

$$
\left|\left(L^{+}(f)-L^{+}\left(k_{0}\right)\right)-\left(L^{-}(f)-L^{-}\left(k_{0}\right)\right)\right| \leqq(2 / 3)\left|\beta_{n}\left(z_{1}\right)\right| c_{n}
$$

Since f is continuous on γ, this gives that the jump of k_{0} at z_{1} is in modulus $\equiv(2 / 3)\left|\beta_{n}\left(z_{1}\right)\right| c_{n}$. But k_{0} is in $\boldsymbol{\Omega}$, so its jump at z_{1} has modulus $2 c_{n}\left|\beta_{n}\left(z_{1}\right)\right|$. This is a contradiction.

The assumption that there is an analytic disk contained in X with z non-constant on it must therefore be rejected. The assumption that X contains an analytic disk on which z is constant must also be rejected, for the following reason:

Assertion 4. Fix z_{0} with $\left|z_{0}\right| \leqq 1 / 2$. Put $F_{z_{0}}=\left\{z=z_{0}\right\} \cap X$. Each connected component of $F_{z_{0}}$ is a single point. Assume first that $z_{0} \neq a_{j}$ for all j. Fix an integer N. Consider the 2^{N} points

$$
w_{j}=\sum_{v=1}^{N} c_{v} \varrho_{v}^{(j)} B_{v}\left(z_{0}\right), \quad j=1,2, \ldots, 2^{N}, \varrho_{v}^{(j)}= \pm 1
$$

where for each $v B_{v}\left(z_{0}\right)$ denotes one of the two values of B_{v} at z_{0}, chosen arbitrarily. Then $w_{j}, j=1, \ldots, 2^{N}$, are the w-coordinates of the points on \sum_{N} lying over z_{0}. By calculations like those in the proof of Assertion 2, we find that

$$
\begin{equation*}
\left|w_{j}-w_{k}\right| \geqq(3 / 2)\left|B_{N}\left(z_{0}\right)\right| c_{N} . \tag{12}
\end{equation*}
$$

By hypothesis, $B_{N}\left(z_{0}\right) \neq 0$.
Consider the closed disks with centers $w_{j}, j=1,2, \ldots, 2^{N}$, and radius $(1 / 2)\left|B_{N}\left(z_{0}\right)\right| c_{N}$. Because of (12) these disks are disjoint.

Fix $\left(z_{0}, b\right)$ in $F_{z_{0}}$. We claim that b belongs to the union of these 2^{N} disks. By Lemma 2 there exists $M>N$ and there exists $\left(z_{0}, w^{\prime}\right)$ in \sum_{M} such that

$$
\left|b-w^{\prime}\right|<(1 / 9) c_{N}\left|B_{N}\left(z_{0}\right)\right|
$$

Then

$$
w^{\prime}=\sum_{v=1}^{M} c_{v} \varrho_{v} B_{v}\left(z_{0}\right)
$$

with $\varrho_{v}= \pm 1$.
Hence for some $j, 1 \leqq j \leqq 2^{N}$,

$$
w^{\prime}=w_{j}+\sum_{v=N+1}^{M} c_{v} \varrho_{v} B_{v}\left(z_{0}\right)
$$

So

$$
\left|w^{\prime}-w_{j}\right| \leqq \sum_{v=N+1}^{M} c_{v}\left|B_{v}\left(z_{0}\right)\right| \leqq \frac{1}{9} c_{N}\left|B_{N}\left(z_{0}\right)\right|
$$

Hence $\left|b-w_{j}\right| \leqq(2 / 9) c_{N}\left|B_{N}\left(z_{0}\right)\right|$. Thus b belongs to the disk with center w_{j} and radius $(1 / 2) c_{N}\left|B_{N}\left(z_{0}\right)\right|$ and so to the union of the 2^{N} disks, as claimed. Since b was arbitrary with $\left(z_{0}, b\right)$ in $F_{z_{0}}$, it follows that each connected component K of $F_{z_{0}}$ is contained in a disk of radius (1/2) $c_{N}\left|B_{N}\left(z_{0}\right)\right|$ and hence has diameter $\leqq c_{N}$. This holds for arbitrary N. Hence K is a single point. This proves our Assertion, in this case. If $z_{0}=a_{j}$, then $B_{N}\left(z_{0}\right)=0$ for $N>j$ and so $F_{z_{0}}$ is a finite set, hence totally disconnected.

We can thus conclude that X contains no analytic disk.
Lemma 3. Put $Y=X \cap\{|z|=1 / 2\}$. Then $X=\hat{Y}$.
Proof. Since X is polynomially convex, $\hat{Y} \subseteq X$.

Fix now $\left(z_{0}, w_{0}\right)$ in X. We shall show that $\left(z_{0}, w_{0}\right)$ is in \hat{Y}. Let Q be a polynomial in z and w. By Lemma 2 we can find a sequence $\left\{\left(z_{0}, w_{N}\right)\right\}$ converging to $\left(z_{0}, w_{0}\right)$ with $\left(z_{0}, w_{N}\right)$ in $\Sigma_{N} . \Sigma_{N}$ is a finite Riemann surface whose boundary lies on $\{|z|=1 / 2\}$. Hence $\left|Q\left(z_{0}, w_{N}\right)\right| \leqq\left|Q\left(z_{N}^{\prime}, w_{N}^{\prime}\right)\right|$, where $\left(z_{N}^{\prime}, w_{N}^{\prime}\right)$ is a point of $\Sigma_{N} \cap\{|z|=1 / 2\}$. Let $\left(z^{\prime}, w^{\prime}\right)$ be an accumulation point of the sequence $\left\{\left(z_{N}^{\prime}, w_{N}^{\prime}\right)\right\}$. Arguing as in the proof of Lemma 2, we see that $\left(z^{\prime}, w^{\prime}\right)$ is in X. Also $\left|z^{\prime}\right|=1 / 2$. Then denoting by $\left\{n_{j}\right\}$ a sequence of integers such that $\left(z_{n_{j}}^{\prime}, w_{n_{j}}^{\prime}\right)$ converges to (z^{\prime}, w^{\prime}), we have

$$
\left|Q\left(z_{0}, w_{0}\right)\right|=\lim _{j \rightarrow \infty}\left|Q\left(z_{0}, w_{n_{j}}\right)\right| \leqq \lim _{j \rightarrow \infty}\left|Q\left(z_{n_{j}}^{\prime}, w_{n_{j}}^{\prime}\right)\right|=\left|Q\left(z^{\prime}, w^{\prime}\right)\right| .
$$

Since $\left(z^{\prime}, w^{\prime}\right)$ is in $Y,\left|Q\left(z_{0}, w_{0}\right)\right| \leqq \max _{Y}|Q|$. Thus $\left(z_{0}, w_{0}\right)$ is in \hat{Y}, as claimed. Thus $X \subseteq \hat{Y}$, and so $X=\hat{Y}$.

The set Y thus has the properties asserted in Theorem 1.

References

1. B. Cole, One point parts and the peak point conjecture, PhD dissertation, Yale University (1968).
2. G. Stolzenberg, A hull with no analytic structure, Jour. of Math. and Mech. 12 (1963).
3. J. Wermer, Banach algebras and several complex variables, 2nd edition, Graduate Texts in Mathematics 35, Springer-Verlag (1976).
4. E. Bishop, Holomorphic completions, analytic continuations and the interpolation of seminorms, Ann. of Math. 78 (1963).
5. R. Basener, A condition for analytic structure, Proc. Amer. Math. Soc. 36 (1972).

Received August 4, 1980

John Wermer
Department of Mathematics
Brown University
Providence
02912 Rhode Island
USA

