A Hilbert—Schmidt norm inequality associated with the Fuglede—Putnam theorem

Takayuki Furuta

The familiar Fuglede—Putnam theorem asserts that AX=XB implies $A^*X=XB^*$ when A and B are normal. We prove that let A and B^* be hyponormal operators and let C be hyponormal commuting with A^* and also let D^* be a hyponormal operator commuting with B respectively, then for every Hilbert—Schmidt operator X, the Hilbert—Schmidt norm of AXD+CXB is greater than or equal to the Hilbert—Schmidt norm of $A^*XD^*+C^*XB^*$. In particular, AXD=CXB implies $A^*XD^*=C^*XB^*$. If we strengthen the hyponormality conditions on A, B^* , C and D^* to quasinormality, we can relax Hilbert—Schmidt operator of the hypothesis on X to be every operator in B(H) and still retain the inequality under hypotheses that C commutes with A and satisfies an operator equation and also D^* commutes with B^* and satisfies another similar operator equation respectively.

1.

An operator means a bounded linear operator on a separable infinite dimensional Hilbert space H. Let B(H) and C_2 denote the class of all bounded linear operators acting on H and the Hilbert-Schmidt class in B(H) respectively. C_2 forms a two-sided ideal in the algebra B(H) and C_2 is itself a Hilbert space for the inner product

$$(X, Y) = \Sigma(Xe_i, Ye_i) = Tr(Y^*X) = Tr(XY^*)$$

where $\{e_j\}$ is any orthonormal basis of H and Tr(T) denotes the trace. In what follows, $||T||_2$ denotes the Hilbert—Schmidt norm.

An operator T is called *quasinormal* if T commutes with T^*T , subnormal if T has a normal extension and hyponormal if $[T^*, T] \ge 0$ where [S, T] = ST - TS. The inclusion relation of the classes of non-normal operator listed above is as

follows:

Normal
$$\subseteq$$
 Quasinormal \subseteq Subnormal \subseteq Hyponormal

the above inclusions are all proper [6, Problem 160, p. 101]. In [2], Berberian shows the following result.

Theorem A [2]. If A and B^* are hyponormal, then AX = XB implies $A^*X = XB^*$ for an operator X in the Hilbert—Schmidt class.

On the other hand, in [3] we have shown Theorem B which is an extension of the Fuglede—Putnam theorem.

Theorem B [3]. If A and B^* are subnormal and if X is an operator such that AX = XB, then $A^*X = XB^*$.

Recently Weiss has obtained the following result.

Theorem C [11]. Let $\{A_1, A_2\}$ and $\{B_1, B_2\}$ denote commuting pairs of normal operators and let $X \in B(H)$. Then

$$\|A_1 X B_1 + A_2 X B_2\|_2 = \|A_1^* X B_2^* + A_2^* X B_2^*\|_2.$$

In this paper we prove Theorem 1 which is an extension of Theorem A and also we prove a slightly stronger Theorem 2 by integrating Theorem B and Theorem C.

2.

First of all we show the following theorem.

Theorem 1. Let A and B^* be hyponormal on H. Let C be hyponormal commuting with A^* and also let D^* be hyponormal commuting with B respectively. Then

(i)
$$(*) ||AXD + CXD||_2 \ge ||A^*XD^* + C^*XB^*||_2$$

holds for every X in Hilbert—Schmidt class. Equality in (*) holds for every X in Hilbert—Schmidt class when A, B, C and D are all normal.

(ii) If X is an operator in Hilbert—Schmidt class such that AXD = CXB, then $A^*XD^* = C^*XB^*$.

Proof. Define an operator \mathscr{I} on C_2 as follows:

$$\mathscr{I}X = AXD + CXB.$$

158

Then, if we view C_2 as an underlying Hilbert space, then \mathscr{I}^* exists and \mathscr{I}^* is given by the formula $\mathscr{I}^*X = A^*XD^* + C^*XB^*$ which we easily see from

$$(\mathscr{I}^*X, Y) = (X, \mathscr{I}Y) = (X, AYD + CYB) = Tr(XD^*Y^*A^*) + Tr(XB^*Y^*C^*)$$

= $Tr(A^*XD^*Y^*) + Tr(C^*XB^*Y^*) = Tr((A^*XD^* + C^*XB^*)Y^*)$
= $(A^*XD^* + C^*XB^*, Y).$

Also

$$(\mathscr{I}^*\mathscr{I} - \mathscr{I}\mathscr{I}^*)X = A^*(AXD + CXB)D^* + C^*(AXD + CXB)B^* -A(A^*XD^* + C^*XB^*)D - C(A^*XD^* + C^*XB^*)B = (A^*AXDD^* - AA^*XD^*D) + (C^*CXBB^* - CC^*XB^*B) +A^*CXBD^* - AC^*XB^*D + C^*AXDB^* - CA^*XD^*B = (A^*A - AA^*)XDD^* + AA^*X(DD^* - D^*D) + (C^*C - CC^*)XBB^* + CC^*X(BB^* - B^*B) + (A^*CXBD^* - CA^*XD^*B) + (C^*AXDB^* - AC^*XB^*D)$$

and fifth and sixth terms in the above formula are both zero since the hypotheses $CA^* = A^*C$ and $D^*B = BD^*$ hold, so that

(1)
$$(\mathscr{I}^*\mathscr{I} - \mathscr{I}\mathscr{I}^*)X = (A^*A - AA^*)XDD^* + AA^*X(DD^* - D^*D) + (C^*C - CC^*)XBB^* + CC^*X(BB^* - B^*B).$$

Left and right multiplication acting on C_2 as the Hilbert space by a positive operator is itself a positive operator. Since $\mathscr{I}^*\mathscr{I} - \mathscr{I}\mathscr{I}^*$ is the sum of four positive operators by the hyponormality of $A, B^* C$ and D^*, \mathscr{I} is hyponormal. Therefore

 $\|\mathscr{I}X\|_2 \ge \|\mathscr{I}^*X\|_2$

that is,

(2)
$$\|AXD + CXB\|_{2} \ge \|A^{*}XD^{*} + C^{*}XB^{*}\|_{2}$$

and the proof of equality easily follows by (1) and (2). If an operator T is hyponormal, then -T is also hyponormal, so the proof of (ii) easily follows by (*) in (i).

Corollary 1. Let A and B^* be hyponormal on H. Let C be normal commuting with A and also let D be normal commuting with B respectively. Then

(i)
$$(*) ||AXD + CXB||_2 \ge ||A^*XD^* + C^*XB^*||_2$$

holds for every X in Hilbert—Schmidt class. Equality in (*) holds for every X in Hilbert—Schmidt class when A and B are both normal.

(ii) If X is an operator in Hilbert—Schmidt class such that AXD = CXB, then $A^*XD^* = C^*XB^*$.

Takayuki Furuta

Proof. The hypotheses CA = AC and DB = BD imply $CA^* = A^*C$ and $DB^* = B^*D$, that is, $D^*B = BD^*$ by the original Fuglede—Putnam theorem [1], [6], [7], [8], so the proof follows by Theorem 1.

Remark 1. We remark that Weiss [10, Theorem 3] shows the case of the equality in (i) of Corollary 1 when A=B is normal and C=D=I the identity operator on H, by a different method and also Corollary 1 is an extension of Theorem A.

3.

If we strengthen the hyponormality conditions to quasinormality, then we can relax Hilbert—Schmidt operator of the hypothesis on X to be every operator in B(H) in Theorem 1 and still retain the inequality under suitable hypotheses.

Definition 1. Let N_T denote a normal extension on $H \oplus H$ of a subnormal operator T on H. In fact, for every subnormal operator T, there exists a normal extension N_T on $H \oplus H$ whose restriction to $H \oplus \{0\}$ is T [5].

Lemma. Let A and B^* be subnormal on H. Let C be subnormal such that N_C commutes with N_A and also D^* be subnormal such that N_{D^*} commutes with N_{B^*} respectively. Then

(i)
$$(**) ||AXD + CXB||_2 \ge ||A^*XD^* + C^*XB^*||_2$$

holds for every X in B(H). Equality in (* *) holds for every X in B(H) when A, B, C and D are all normal.

(ii) If X is an operator such that AXD = CXB, then $A^*XD^* = C^*XB^*$.

Proof. By Definition 1, N_A and N_C are given by

$$N_A = \begin{pmatrix} A & A_{12} \\ 0 & A_{22} \end{pmatrix} \text{ and } N_C = \begin{pmatrix} C & C_{12} \\ 0 & C_{22} \end{pmatrix}$$

acting on $H \oplus H$ whose restrictions to $H \oplus \{0\}$ are A and C respectively and also N_{B^*} and N_{D^*} are given by the same reason as follows on $H \oplus H$

$$N_{B^*} = \begin{pmatrix} B^* & B_{12} \\ 0 & B_{22} \end{pmatrix} \text{ and } N_{D^*} = \begin{pmatrix} D^* & D_{12} \\ 0 & D_{22} \end{pmatrix}$$

For X acting on H, we consider $\begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix}$ acting on $H \oplus H$. $\{N_A, N_C\}$ and $\{N_{D^*}^*, N_{B^*}^*\}$

are commuting pairs of normal operators on $H \oplus H$. Then by Theorem C, we have

$$\begin{split} & \left\| \begin{pmatrix} A & A_{12} \\ 0 & A_{22} \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} D & 0 \\ D_{12}^* & D_{22}^* \end{pmatrix} + \begin{pmatrix} C & C_{12} \\ 0 & C_{22} \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} B & 0 \\ B_{12}^* & B_{22}^* \end{pmatrix} \right\|_{2} \\ & = \left\| \begin{pmatrix} A^* & 0 \\ A_{12}^* & A_{22}^* \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} D^* & D_{12} \\ 0 & D_{22} \end{pmatrix} + \begin{pmatrix} C^* & 0 \\ C_{12}^* & C_{22}^* \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} B^* & B_{12} \\ 0 & B_{22} \end{pmatrix} \right\|_{2} \end{split}$$

that is,

$$\begin{pmatrix} AXD + CXB & 0 \\ 0 & 0 \end{pmatrix} \Big\|_{2} = \left\| \begin{pmatrix} A^{*}XD^{*} + C^{*}XB^{*} & A^{*}XD_{12} + C^{*}XB_{12} \\ A_{12}^{*}XD^{*} + C_{12}^{*}XB^{*} & A_{12}^{*}XD_{12} + C_{12}^{*}XB_{12} \end{pmatrix} \Big\|_{2} \right\|_{2}$$

so that

(3)
$$\|AXD + CXB\|_{2}^{2} = \|A^{*}XD^{*} + C^{*}XB^{*}\|_{2}^{2} + \|A^{*}XD_{12} + C^{*}XB_{12}\|_{2}^{2}$$

 $+ \|A_{12}^* X D^* + C_{12}^* X B^*\|_2^2 + \|A_{12}^* X D_{12} + C_{12}^* X B_{12}\|_2^2$

whence we have

$$||AXD + CXB||_2 \ge ||A^*XD^* + C^*XB^*||_2$$

which is the desired norm inequality (* *). When A, B, C and D are all normal, then $A_{12}=0$, $B_{12}=0$, $C_{12}=0$ and $D_{12}=0$ in (3), so that equality in (* *) holds and the proof is complete.

We remark that sum of second, third and fourth terms of the right hand in (3) can be considered as a "*perturbed terms*" measures the deviation of subnormality from normality.

Definition 2. Let $[S, T]_*$ denote the following "*-commutator":

$$[S,T]_* = ST - TS^*$$

this *-commutator is completely different from usual commutator [S, T].

Theorem 2. Let A and B^* be quasinormal on H. Let C be quasinormal such that it commutes with A and satisfies $[A, S_C]_* = [C, S_A]_*$ and also let D^* be quasinormal such that it commutes with B^* and satisfies $[B^*, S_{D^*}]_* = [D^*, S_{B^*}]_*$ respectively, where S_T denotes the positive square root of $[T^*, T]$ for a quasinormal T. Then

(i)
$$(**) ||AXD + CXB||_2 \ge ||A^*XD^* + C^*XB^*||_2$$

holds for every X in B(H) when A, B, C and D are all normal. (ii) If X is an operator such that AXD = CXB, then $A^*XD^* = C^*XB^*$.

Proof. Let A = UP be the polar decomposition of A, where U is a partial isometry and P is a positive operator such that $P^2 = A^*A$. A normal extension N_A of A can be written as follows [6, p. 308]:

$$N_A = \begin{pmatrix} A & S(A) \\ 0 & A^* \end{pmatrix}$$

Takayuki Furuta

acting on $H \oplus H$, where $S(A) = (I - UU^*)P$. Since A is quasinormal, then A = UP = PU [6, Problem 108]. As UU^* is projection and P commutes with U and U^* , then

(4)
$$S(A) = (I - UU^*)P = [(I - UU^*)P^2]^{1/2}$$
$$= (P^2 - UPU^*P)^{1/2} = (A^*A - AA^*)^{1/2} = S_A.$$

Similarly normal extensions of C, B^* and D^* are also given as follows:

$$N_{C} = \begin{pmatrix} C & S_{C} \\ 0 & C^{*} \end{pmatrix} \quad N_{B^{*}} = \begin{pmatrix} B^{*} & S_{B^{*}} \\ 0 & B \end{pmatrix} \quad \text{and} \quad N_{D^{*}} = \begin{pmatrix} D^{*} & S_{D^{*}} \\ 0 & D \end{pmatrix}.$$

Hypotheses imply that $\{N_A, N_C\}$ and $\{N_{D^*}^*, N_{B_*}^*\}$ are pairs of commuting normal operators, so that the desired relations follow by Lemma.

Corollary 2. Let A and B^* be quasinormal on H. Let C be normal commuting with A and also D be normal commuting with B respectively. Then

(i)
$$(**) ||AXD + CXB||_2 \ge ||A^*XD^* + C^*XB^*||_2$$

holds for every X in B(H). Equality in (**) holds for every X in B(H) when A, B, C and D are all normal.

(ii) If X is an operator such that AXD = CXB, then $A^*XD^* = C^*XB^*$

Proof. Take $N_C = \begin{pmatrix} C & 0 \\ 0 & C \end{pmatrix}$ in the proof of Theorem 2 since C is normal. Then the hypothesis CA = AC implies $CA^* = A^*C$ by the original Fuglede—Putnam theorem [1], [6], [7], [8], so that we have $CS_A^2 = S_A^2C$ since (4) holds, that is, $CS_A =$ S_AC holds, whence N_A commutes with $N_C = \begin{pmatrix} C & 0 \\ 0 & C \end{pmatrix}$. Similarly $N_{D^*}^* = \begin{pmatrix} D^* & 0 \\ 0 & D^* \end{pmatrix}$ commutes with $N_{B^*}^*$, so that the proof is complete by Lemma.

Remark 2. If we strengthen on X to be in Hilbert—Schmidt class in Corollary 2, then we can relax quasinormality of the hypotheses on A and B^* to hyponormality and still retain the inequality, this is just Corollary 1.

Corollary 3. Let A and B^* be hyponormal satisfying $[A^*, S_A]_*=0$ and $[B, S_{B^*}]_*=0$ respectively. Let C be hyponormal which commutes with A and satisfies $[C^*, S_C]_*=0$ and $[A, S_C]_*=[C, S_A]_*$ and also let D^* be hyponormal which commutes with B^* and satisfies $[D, S_{D^*}]_*=0$ and $[B^*, S_{D^*}]_*=[D^*, S_{B^*}]_*$ respectively. Then

(i) $(**) ||AXD + CXB||_2 \ge ||A^*XD^* + C^*XB^*||_2$

holds for every X in B(H). Equality in (**) holds for every X in B(H) when A, B, C and D are all normal.

(ii) If X is an operator such that AXD = CXB, then $A^*XD^* = C^*XB^*$.

Proof. The hypotheses imply that A, B^* , C and D^* are all subnormal and $N_A = \begin{pmatrix} A & S_A \\ 0 & A^* \end{pmatrix}$ and similarly N_{B^*} , N_C and N_{D^*} are also given in the similar forms [4, Theorem 1]. As stated in the proof of Theorem 2, the hypotheses imply that $\{N_A, N_C\}$ and $\{N_{D^*}^*, N_{B^*}^*\}$ are pairs of commuting normal operators, so that the proof is complete by Lemma.

Can quasinormality be replaced by subnormality (or further hyponormality) in Theorem 2 and Corollary 2? Partial and modest answers to this question are cited in [2], [3], [9]. Theorem 1 is a modest result and Corollary 3 is in this direction.

References

- 1. BERBERIAN, S. K., Note on a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc., 10 (1959), 175-182.
- BERBERIAN, S. K., Extensions of a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc., 71 (1978), 113-114.
- 3. FURUTA, T., Relaxation of normality in the Fuglede—Putnam theorem, Proc. Amer. Math. Soc., 77 (1979), 324-328.
- 4. FURUTA, T., MATSUMOTO K. and MORIYA, N. A simple condition on hyponormal operators implying subnormality, *Math. Japonica*, **21** (1976), 399-400.
- 5. HALMOS, P. R., Shifts on Hilbert spaces, J. Reine Angew. Math., 208 (1961), 102-112.
- 6. HALMOS, P. R., A Hilbert Space Problem Book, Van Nostrand, Princeton, N. J., 1967.
- 7. PUTNAM, C. R., On normal operators in Hilbert space, Amer. J. Math., 73 (1951), 357-362.
- 8. ROSENBLUM, M., On a theorem of Fuglede and Putnam, J. London Math. Soc., 33 (1958), 376-377.
- 9. STAMPFLI, J. G., and WADHWA, B., An asymmetric Putnam—Fuglede theorem for dominant operators, *Indiana Univ. Math. J.*, **25** (1976), 359—365.
- 10. WEISS, G., The Fuglede commutativity theorem modulo operator ideals, to appear.
- 11. WEISS, G., Fuglede's commutativity theorem modulo the Hilbert—Schmidt class and generating functions for matrix operators II, to appear.

Received 7-20-1980

Takayuki Furuta Department of Mathematics Faculty of Science Hirosaki University Bunkyo-cho 3 036 Aomori Japan