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The familiar Fuglede—Putnam theorem asserts that AX=XB implies 4*X=
XB* when 4 and B are normal. We prove that let 4 and B* be hyponormal operators
and let C be hyponormal commuting with 4* and also let D* be a hyponormal
operator commuting with B respectively, then for every Hilbert—Schmidt operator
X, the Hilbert—Schmidt norm of AXD+CXB is greater than or equal to the
Hilbert—Schmidt norm of A*XD*+C*XB*. In particular, AXD=CXB implies
A*XD*=C*XB*. If we strengthen the hyponormality conditions on 4, B*, C
and D* to quasinormality, we can relax Hilbert—Schmidt operator of the hypothesis
on X to be every operator in B(H) and still retain the inequality under hypotheses
that C commutes with 4 and satisfies an operator equation and also D* commutes
withB* and satisfies another similar operator equation respectively.

An operator means a bounded linear operator on a separable infinite dimen-
sional Hilbert space H. Let B(H) and C, denote the class of all bounded linear
operators acting on H and the Hilbert—Schmidt class in B(H) respectively. C,
forms a two-sided ideal in the algebra B(H) and C, is itself a Hilbert space for the
inner product

(X,Y) = Z(Xe;,Ye)) =Tr(Y*X) = Tr(XY™)

where {e;} is any orthonormal basis of H and Tr(T) denotes the trace. In what
follows, || T'|l, denotes the Hilbert—Schmidt norm.

An operator T is called quasinormal if T commutes with T*T, subnormal if
T has a normal extension and hyponormal if [T*, T1=0 where [S, T]=ST-TS.
The inclusion relation of the classes of non-normal operator listed above is as
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follows:
Normal & Quasinormal & Subnormal & Hyponormal

the above inclusions are all proper [6, Problem 160, p. 101].
In [2], Berberian shows the following result.

Theorem A [2). If A and B* are hyponormal, then AX=XB implies A*X=
XB* for an operator X in the Hilbert—Schmidt class.

On the other hand, in [3] we have shown Theorem B which is an extension of
the Fuglede—Putnam theorem.

Theorem B [3). If A and B* are subnormal and if X is an operator such that
AX=XB, then A*X=XB*.

Recently Weiss has obtained the following result.

Theorem C [11]. Let {4y, A,} and {B,, B,} denote commuting pairs of normal
operators and let X€ B(H). Then ’

”Al XBI "‘AzXanz = ”AIXB; +A;XB;F”2-

In this paper we prove Theorem 1 which is an extension of Theorem A and also
we prove a slightly stronger Theorem 2 by integrating Theorem B and Theorem C.

2.

First of all we show the following theorem.

Theorem 1. Let A and B* be hyponormal on H. Let C be hyponormal com-
muting with A* and also let D* be hyponormal commuting with B respectively. Then

0 (%) |AXD+CXD|, = | A*XD*+C*XB*|,

holds for every X in Hilbers—Schmidt class. Equality in (%) holds for every X
in Hilbert—Schmidt class when A, B, C and D are all normal.

(i) If X is an operator in Hilbert—Schmidt class such that AXD=CXB, then
A*XD*=C*XB*.

Proof. Define an operator £ on C, as follows:

JX = AXD+CXB.
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Then, if we view C, as an underlying Hilbert space, then #* exists and #™* is given
by the formula S*X=A*XD*+C*XB* which we easily see from

(F*X,Y) = (X, FY) = (X, AYD+CYB) = Tr(XD*Y* A*)+Tr(XB*Y* C%)
= Tr(4*XD*Y*)+Tr(C*XB*Y*) = Tr((4*XD*+ C*XB*)Y¥)
= (4*XD*+C*XB*,Y).

Also
(S*F—IINNX = A*(AXD+CXB)D*+C*(AXD+ CXB)B*

—A(A*XD*+C*XB*)D—C(4*XD*+C*XB*)B

= (A4* AXDD*— AA*XD*D)+(C* CXBB*—CC*XB*B)
+A*CXBD*—AC*XB*D+C* AXDB*—CA*XD*B

= (4*A— AA™)XDD* - AA* X(DD*—D* D)
+(C*C—CC*XBB*+ CC*X (BB* — B*B)
+(A* CXBD*— CA*XD*B)+(C* AXDB*— AC*XB* D)

and fifth and sixth terms in the above formula are both zero since the hypotheses
CA*=A*C and D*B=BD* hold, so that

Q) (S*F —IINX =(A*A—AA*)XDD*+ AA* X(DD* —D* D)
+(C*C—-CC*XBB*+CC*X(BB*—B*B).
Left and right multiplication acting on C, as the Hilbert space by a positive operator

is itself a positive operator. Since S*# —FF* is the sum of four positive opera-
tors by the hyponormality of 4, B* C and D*, . is hyponormal. Therefore

[£X], = | £* X,
that is,

) |AXD+ CXB|j, = | 4* XD*+ C* XB*|,

and the proof of equality easily follows by (1) and (2). If an operator T is hypo-
normal, then —7 is also hyponormal, so the proof of (ii) easily follows by (%)
in (i).

Corollary 1. Let A and B* be hyponormal on H. Let C be normal commuting
with A and also let D be normal commuting with B respectively. Then

(i) (#) |AXD+CXB|, = |A*XD*+C*XB*|,

holds for every X in Hilbert—Schmidt class. Equality in (%) holds for every
X in Hilbert—Schmidt class when A and B are both normal.

(i) If X is an operator in Hilbert—Schmidt class such that AXD=CXB, then
A*XD*=C*XB*.
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Proof. The hypotheses CA=AC and DB=BD imply CA*=A"C and
DB*=B*D, that is, D*B=BD* by the original Fuglede—Putnam theorem [1],
(6], [71, [8], so the proof follows by Theorem 1.

Remark 1. We remark that Weiss [10, Theorem 3} shows the case of the equality
in (i) of Corollary 1 when 4=2B8 is normal and C=D=I the identity operator
on H, by a different method and also Corollary 1 is an extension of Theorem A.

If we strengthen the hyponormality conditions to quasinormality, then we can
relax Hilbert—Schmidt operator of the hypothesis on X to be every operator in
B(H) in Theorem 1 and still retain the inequality under suitable hypotheses

Definition 1. Let Ny denote a normal extension on HHH of a subnormal
operator " on H. In fact, for every subnormal operator 7, there exists a normal
extension Ny on H@H whose restriction to H® {0} is T [5].

Lemma. Let A and B* be subnormal on H. Let C be subnormal such that N
commutes with N4 and also D* be subnormal such that Ny« commutes with Ng. respec-
tively. Then

® (**) || AXD+CXB|, = |A*XD*+C*XB*|,
holds for every X in B(H). Equality in (% %) holds for every X in B(H) when

A, B, C and D are all normal.
(iiy If X is an operator such that AXD=CXB, then A*XD*=C*XB*.

Proof. By Definition 1, N4 and N are given by

N (A Am] 4N (C Cm]
1700 4,) 0 7o oy

acting on H@H whose restrictions to H@ {0} are 4 and C respectively and also
Ny« and N, are given by the same reason as follows on HPH

N (B* B12] PR (D* -D12)
B* = 0 B22 an D = 0 D22 .

For X acting on H, we consider (OX g) actingon HPH. {N,4, N¢} and {Nj., Np}
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are commuting pairs of normal operators on H@ H. Then by Theorem C, we have

16296 G 26 a6 oG 2
0 Azz b5, b)) Tlo ¢ lo olisy Bl

0 %6 6 2e &6 D )
4 a0 oo by Tles cxJlo oo B,

that is,
H(AXD+CXB 0] “(A*XD*JrC XB* A*XD,,+C*XBy, )
0 XD*+ CHXB* A%LXDy,+Clh XB,,

so that
3) |AXD+ CXB|2 = | A* XD*+ C* XB*||2+| A* XDy5+ C* XBy| 3

+ 1| 472 XD* + C, XB* |3+ | A2 XDy + Cia X Byo|
whence we have
AXD+ CXB|, = | A* XD*+ C* XB*|j,

which is the desired norm inequality (% *). When 4, B, C and D are all normal,
then A4,,=0, B;,=0, C;,=0 and D;, =0 in (3), so that equality in (* %) holds
and the proof is complete. ‘

We remark that sum of second, third and fourth terms of the right hand in
(3) can be considered as a “perturbed terms” measures the deviation of subnormality
from normality.

Definition 2. Let [S, T], denote the following ‘*-commutator”:
[S,T1, = ST-TS~
this *-commutator is completely different from usual commutator [S, T].

Theorem 2. Let A and B* be quasinormal on H. Let C be quasinormal such
that it commutes with A and satisfies [A, Scl,=I[C, S4l, and also let D* be quasi-
normal such that it commutes with B* and satisfies [B*, Sp,=[D*, Sg:l, respec-
tively, where Sy denotes the positive square root of [T*, T] for a quasinormal T.
Then '

@) (% %) |AXD+CXB|, = |4* XD*+C*XB*|,

holds for every X in B(H) when A, B, C and D are all normal.

(i) If X is an operator such that AXD=CXB, then A*XD*=C*XB*.

Proof. Let A=UP be the polar decomposition of 4, where U is a partial
isometry and P is a positive operator such that P?=4%*A4. A normal extension
N, of A can be written as follows [6, p. 308]:

el
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acting on HPHH, where S(4)=(/—UU*)P. Since A is quasinormal, then A=
UP=PU {6, Problem 108). As UU™ is projection and P commutes with U and
U*, then
@ S(4) = (I—-UU* P = [(I-UU*) P2

= (P2~ UPU*P)\? = (4* A— A4 W2 = S,.

Similarly normal extensions of C, B* and D* are also given as follows:

C Sc B* SB* D* SD*
NC:[O c*] NB*:[O B] and N”*:(o D )

Hypotheses imply that {N,, N¢} and {Np., Nj } are pairs of commuting normal
operators, so that the desired relations follow by Lemma.

Corollary 2. Let A and B* be quasinormal on H. Let C be normal commuting
with A and also D be normal commuting with B respectively. Then

(@) (% %) |AXD+CXB|, = | A*XD*+C*XB*|,

holds for every X in B{H). Eguality in (* %) holds for every X in B(H) when
A, B, C and D are all normal.
(i) If X is an operator such that AXD=CXB, then A*XD*=C*XB*

Cc o ‘
Proof. Take N,= (0 C) in the proof of Theorem 2 since C is normal. Then

the hypothesis CA=A4C implies CA*=A*C by the original Fuglede—Putnam
theorem [1], [6], [7], [8], so that we have CS%=S%C since (4) holds, that is, CS, =
co .. " D* 0
0 CJ‘ Similarly Nj.= [0 D*)
commutes with N, so that the proof is complete by Lemma.

S,C holds, whence N, commutes with Ncr-(

Remark 2. If we strengthen on X to be in Hilbert—Schmidt class in Corollary 2,
then we can relax quasinormality of the hypotheses on 4 and B* to hyponormality
and still retain the inequality, this is just Corollary 1.

Corollary 3. Let A and B* be hyponormal satisfying [A*, S40,=0 and
[B, Sp =0 respectively. Let C be hyponormal which commutes with A and satisfies
[C*, Scl,=0 and [A, S),=IC, S, and also let D* be hyponormal which com-
mutes with B* and satisfies [D, Sp1,=0 and [B*, Sp),=[D*, Spl, respectively.
Then
) (% %) |[|[AXD+CXB|, = |A*XD*+C*XB*|,

holds for every X in B(H). Equality in (% %) holds for every X in B(H) when

A, B, C and D are all normal.
(il) If X is an operator such that AXD=CXB, then A*XD*=C*XB*.
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Proof. The hypotheses imply that 4, B*, C and D* are all subnormal and

N,= [61 jﬁ) and similarly Ng., Nc and N, are also given in the similar forms

[4, Theorem 1]. As stated in the proof of Theorem 2, the hypotheses imply that
{N4, N¢} and {Nj., N;} are pairs of commuting normal operators, so that the
proof is complete by Lemma.

Can quasinormality be replaced by subnormality (or further hyponormality)
in Theorem 2 and Corollary 2? Partial and modest answers to this question are
cited in [2], [3], [9]. Theorem 1 is a modest result and Corollary 3 is in this direction.
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