On the remainder term in the CLT
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1. Introduction and results

Let {X,} be a sequence of iid random variables with distribution function F
and such that EX;=0 and EX]=1. Let S,=23}_,X,, and define

A, = sup |P[S, = xVu]—2(x)|-

Where &(-) is the distribution function of the standard normal variable.

The well-known Berry—Esséen theorem states that if E|X;[*=f;<oc, then
4,=CBsn~ Y2 where C is a generic constant. Among the many extensions and
generalizations, Esséen (1969) proved that if

— 3 2 o
@ = sup {lfxléz x dF(x)!+zf|x‘>zx dF(x)} < oo,

z>0

then 4,=Cgn "2 This result extends the Berry—Esséen theorem by relaxing the
condition of finite third moment,

On the other hand, Paulauskas (1969) showed that if
vs = [ X PlA(Fx)— 8 (%)) <<,

then A,=C max (y, y/*)n~"%, while later on, Zolotorov (1971), obtains an exten-
sion of Paulauskas’ theorem assuming the finiteness of the third absolute difference
moment. Precisely, if s;= [ [x|*|F(x)— @(x)|dx<oo, then 4,=C max (xg, 23 )n~"72,
see Zolotorov (1971). Since x;=y;, Paulauskas’ result foliows from that of Zoloto-
rov. Then the natural question to ask is whether we can extend the result of Zoloto-
rov (1971) by assuming the finiteness of the truncated absolute moments. This, in
fact, is the main goal of this note. Let

1Ly  y= sup {SfleézxﬂF(x) —®(x) dx+22flx[>z x| F(x) — @ (x)] dx} .

Then the following result is the main theorem of this note.
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Theorem 1. If y<oo, then
4, = Cmax (y, pH)n~12

Note that since y<g, then Esséen’s result follows from the theorem, also
note that if »3<oo then y<oo and thus Zolotorov’s result follows from the theorem.

2. Proof of Theorem 1

We distinguish between two cases; y=1 and y<1. First assume that y=1.
By Esséen inequality (see Feller (1966), p. 512),

@1 = T T et e nzv G

where T'=0, is an arbitrary constant and f_,,(t)z[ f (—;—]] with f(¢) the charac-

teristic function of X;. From now on we shall denote all generic constants (which
may be different) by C. The following lemmas are necessary for the proof.

Lemma 2.1. For all real t and C=0,
(2.2) LS —e=" = Clt*y.
Proof. Note that -
3 f(H)—e*2
= [T ¢ d[F(x)—-o()
= 7o i -2 arr - o

=@ [ 1 [¢ —1—itx][F(x) — ® (x)] dx

=@ {f fxl=r-1 [Ol(it; )2] [F() =@ ()] dx
+ [ g [ i3 = 05X [F () — & ()] dx}

= (it)% X [F(x)—D(x)] dx(1—6,)

Ixj=|f-t

(=it f s XIFG)—@(x)] dx) (1+6),



On the remainder term in the CLT 167

by application of Taylor expansion and integration by parts with |6,] and |6,|<1.
Thus

(2.4) | f(©)—e=""% = Oyt (3 f

[xl=je-1 X2 F(x)— @ (x) dx

+0,222f e M F@ =8 () dx) = 65|y

Lemma 2.2. Let y<eoo. Then for all [t|=(1/2Cy) and for some constant C=0,

2.5 |f(5)] = Ce-*/1.
Proof. By Lemma 2.1 and the assumption we have
(2.6) LD = 1 f{t)—e "1 e

= CltPy+e~"1R = e~ 121 4P2C -|t2y)
= e~ (1 4 CeM [t35) = e=2(1 4 C -y - 1)

= e_tz/zeclltlsv — e—(t2/2)(1-2C|t]-7) = e—t2/4'

Lemma 2.3. For some C=0, and all ]tl§Vﬁ/2Cy, we have

7= )
(2 ().

Thus by Lemma 2.1, ' f ] o—t2n

2.7 = Cy|tPPn—12e- 15,

Proof. Note that

=C-y-tfn~* while by Lemma 2.2 for

lt|=Vn/2Cy, I f [——VIL) =e ™ Hence using these results,
n
t A 1, B =)
2.8) I [—V?{) —etE = Coyen il W w

=y (y;) Ze )

= Ceye|tPPn12e- 108,

Now, choosing T'= ]/;1_/203) in (2.1) we get using Lemma 2.3,

(2.9) A, = e~ dt+ Coy/Yn=C-y.-n712

C.y anl2Cv
—~¥nj2Cy
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Next assume that y<1, thus pY*=y and it follows from Lemma 2.1 that
| f(t)—e~"2|=Cy"* |t . If we put the assumption that |¢t|=1/2Cy"* in Lemma 2.2
we get that for this choice |f(r)|=e~**. Thus for |t|=Vn/2Cy"* we get the fol-
lowing modification of Lemma 2.3,
(2.10) fr [t_;:) et

= Cy4|3n~V2e~ 18,
n

Hence in (2.1) let T,=n/2Cy and T,=nr/2Cy"*(T,=T;) and thus

Q.11 A,,g%—ff‘r f"(#]—e"m |~ dt
t
+ ml | —e- B2t~ 1dt4+- C-yn 112
fT1<t§TU f [Vn] ‘ I y

= Cy1/4n —1/2 + Cyn —-1/2+ Cyn”z = Cy‘/“n —-1/2

Thus the theorem is completely proved.
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