
Continuous manifolds in R n that are sets of 
interpolation for the Fourier algebra 

O. Carruth McGehee and Gordon S. Woodward* 

1. Introduction 

We are concerned with the question of when a continuous k-dimensional 
manifold ECR" is a Helson set. Therefore we are concerned also with how the 
transform /~ decays at infinity when # is a bounded Borel measure with support  
contained in a manifold E. The object is to understand the extent to which an E 
of  a given dimension, and perhaps a given smoothness, can "participate" in the 
arithmetic structure and the harmonic analysis of  Euclidean space. J.-P. Kahane 
and N. Th. Varopoulos have used Baire category arguments to produce examples 
of  interest; our productions are more nearly constructive but use similar ideas. 
Kahane has shown the existence of  Helson curves in R n for n=>2; we include con- 
structions of  such a curve, and of a Helson surface in R 6 as well. The latter con- 
struction is sufficiently general to allow us to outline the construction of  Helson 
k-manifolds in R nk for n=>k+ 1 and to give reasonable upper and lower bounds for 
their Helson constants. 

I t  is well-known that  sufficiently smooth manifolds E support  measures whose 
transforms decay at infinity at a rate which is related to the curvature of  E. The 
lemmas of  van der Corput  offer one such result. Bj6rk has shown that C 1 manifolds 
which have, in a general sense, no "flat spots" support  measures whose transforms 
tend to zero at infinity. Helson manifolds cannot  support  such measures. However, 
T. Hedberg constructed a continuous Helson graph Eo in R 2 which supports a measure 
#0 with transform tending to zero at infinity on the cone Co = {(x, y): ly/xl =>tan 0}, 
for each 0<0<~r/2 .  Katznelson and K6rner  have a more restrictive construction 
which improves this result. We show that  the decay phenomenon exhibited by Hed- 
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berg is common to all continuous graphs in R 2. Various extensions of this result 
and that of Bj6rk are also provided for k-dimensional manifolds in R". Those results 
yield a lower bound for the Helson constants of a k-manifold in R". 

We begin by explaining our conventions and terminology. Let M=M(R ~) 
be the Banach algebra under convolution whose dements are the bounded Borel 
measures # on R n, with the total-variation norm. The transform ~ is the function 
on R" given by 

/~ (Y) = fR-  e- 'Y'~ dp (x). 

For an element f of the subalgebra LI=L~(R"), 

f(Y) = f R, e- 'y~'f(x) dx. 

The transform maps L 1 one-to-one onto an algebra of continuous functions vanishing 
at infinity which we denote by A =A(R") and endow with pointwise operations 
and the norm IIfIJa=r]fltl. The transform is then an isometric isomorphism. The 
Banach space duals of Co=Co(R" ) and A are respectively M and PM=PM(R"). 
The elements v of PM, called pseudomeasures, are the distributions whose trans- 
forms are in L=(R"). For lEA and vEPM, 

(~, v) = f R, f(x)~(x)dx; 

llvllpM = 11911~. 

For a closed set E ~  R", let M(E) be the subspace of  M consisting of the measures 
with support contained in E. Let Mc(E) and Ma(E) be the subspaces of M(E) 
consisting of the measures that are continuous and discrete, respectively. Let PM(E) = 
{vEPM: E contains the support of v} and PF(E)= {vEPM(E): 9(y)~O as y - ~ } .  
The elements of PF(R ~) are called pseudofunctions. Let A (E) be the quotient algebra 
A/I(E), where I(E) is the ideal {fEA : f - l ( 0 ) 2 E } ,  and define Co(E) analogously. 
The natural norm-decreasing inclusion map: A (E)c= Co(E) has adjoint: M(E) 
A (E)*. A set E is a Helson set if it is a set of interpolation for the algebra A, that is 
if A(E)=Co(E), or equivalently if its Helson constant 

a(E) ----- sup {llflla(e~: fEA(E) and ]lfl[co(E) <= 1} 

= sup {l[/al[: /~EM(E) and II/~[[ = <_- 1} 
is finite. Let 

~c(E) = sup {I]/zJ/: ttEMc(E) and tJ/~JJ= ~ 1}, 

an(E) = sup {11/~11 : ItEMa(E) and [I/~ll= ~ 1}. 

A set E is a Sidon set if ~n(E), called the Sidon constant of E, is finite. 
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Most negative results, as to when a manifold E cannot be a Helson set or when 
the constants of  E must be large, are based on the connection between c~(E) and 
the behavior, for measures #EM(E) ,  of  fi near infinity. The term "Helson set" 
arose in honor of  the paper  [7], where it is shown that  if EC=R and M(E)c~PF(E)  
contains a nonzero element, then ~ ( E ) = ~ .  The same is true for R", and in fact 
the following stronger result is now well-known. 

1.1 Proposition. Let E ~ R ' ,  and let z be a unit vector in R". Suppose that 
there exists a nonzero measure I~E M ( E )  such that for every e > 0  there exists d 
such that I/~(y)l<e whenever Iz.yI>d. Then a ( E ) = ~ .  

We give but an indication of  a proof. I f  rt, ..., r, ER and 

d " g, irk ~" x X Yn(X)=X__ ke d~(), 

where ek=-- I  or +1 ,  then v,,EM(E) and 9 , ( y ) = ~ = l e k ~ ( y - - r k z ) .  Evidently 
if  Irk[ increases sufficiently fast with k, then [[v, llpM<(l+~.~=lk-Z)jll~jIpM. But 

for many choices of  the signs ek, [Iv, l[ > 1/n-~ ]l#[I - -  by an argument like that of  
[13, p. 143] or [15, p. 18]. The result follows. The method of [3] also works. 

On smooth  manifolds it is relatively easy to find cases of/~ such that/~ decays 
quickly at infinity. In particular many authors, with interests in harmonic synthesis 
and number  theory ([14], [15], [22], [8], [9], [2], to mention a few) have studied the 
decay at infinity of  # where a is the surface area form of a smooth manifold. Litt- 
man [17] showed that if  at each point  of  a smooth n-manifold EC=R "+1 (smooth 
depends on n but is at least C2), k of  its n principal curvature vectors are nonzero, 
then #(y)=O(ly] -k/2) as y ~ .  For  many Cl-manifolds E c R  "+~ the result 

of  Bj6rk [1, Prop. 1.2] gives #ECo(R"+~). Hence e(E)- - -~  for all such E's .  As we 
shall see, even for manifolds E that  are not very smooth, the behavior of/~ at infinity 
for I~EM(E) is an attractive condition from which to obtain lower bounds for 
~(E). 

Positive results began with Kahane's 1968 study of the still-unanswered rear- 
rangements problem of N. Lusin. He proved among other results that if fl-< l, and 
Hp is the metric space of nondecreasing Lip (fl) functions on [0, 1], then every 
pair ((Pl, (P2) in the metric space HpXHp, except for a set of first category, para- 
metrically defines a Helson curve in _R2; and similarly in R 3 (see [I I] or [12, Section 
VII.9]). In 1970 Varopoulos (see [27], [24], [25]) proved that Sidon manifolds of 
dimension n -  1 are abundant in R n. ]n fact, except for a set of first category, all 
real-valued functions in CS(R "-1) have Sidon graphs in R" (where C ~ is the space 
of  functions whose partials of  order [s] are continuous and in Lip ( s - [ s ] ) ) .  How- 
ever, for s ~ 1 none of those manifolds are Helson sets, as we shall show. 

In Section 2 we treat negative results in R 2, as to when a curve cannot be a 
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Helson set or when ~(E) must be large. In Section 3 we construct a Helson Lip (1) 
curve in R 2. In Section 4 we return to negative results, generalizing to R ". In Sec- 
tion 5 we construct a Hdson  surface in R n and show how to construct a Hdson  
k-manifold in R "k for n>=k + l. 

2. Negative results for plane curves 

Let G; be the graph in R 2 of  a real-valued measurable function defined on 
some set Y of  finite, positive Lebesgue measure. Let py denote the measure on 
G s obtained by lifting Lebesgue measure "dx" from Y to the graph; that is, let 

f �9 aus = f(x)) ax for OE C(Gjr) 
or equivalently 

/~s(U, v) = f re-~t"x+vs(X)) dx for (u, v)E R ~. 

For X ~  Y, let/zyl x denote the restriction of/~s to the set {(x,f(x)): x6X} .  
We are concerned with the behavior of/~s at infinity under various conditions 

on f .  Our treatment will progress from simple results with easy proofs toward 
more general and technical ones. As the remarks make clear, we are in some cases 
just refining or simplifying earlier work. 

2.1 Lemma. Let fECI(I) and gECI(J), where I and J are compact intervals. 
I f  f ' ( I )ng ' (J)= 0 ,  then # f .pg  is absolutely continuous. 

Proof. For (x, y)E I•  let (u, v)= T(x, y)=(x + y, f(x)§ We claim that 
T is one-to-one. If  it were not, then there would be points x, x'EI and y, y'EJ 
such that x+y=x '+y"  and f (x)+g(y)=f(x ')+g(y') .  I f  a = x + y ,  then f (x )+ 
g (a -x )=f (x ' )+g(a -x ' ) ,  and it would follow that f ' ( t ) - g ' ( a - t ) = O  for some 
tEJ, which cannot be. The claim is proved. The Jacobian of  T is F(x, y)=g'(y)-- 
if(x), which never vanishes on IXJ .  Thus by a change of  variables,/~IPg is the 
transform of  an dement  of LI(R2): 

~s(s, t)~,(s, t) = f I•  e-i(s")'tx+r's'x)+o(r)) dx dy 

= , ,  e- i(s, t). (u, v) F -a (u, v) du dv. 

The lemma is proved. 
The following result is in Bj6rk [1, Prop. 1.2]. Our 2-dimensional proof  is 

elementary. Let ]S] denote the Lebesgue measure of a set S. 

2.2 Theorem. I f  fECl[a, b] and I ( f ' ) - l ( y ) l = 0  for each y, then Iz~ is absolutely 
continuous. In particular, I~yE PF(G y) and ~(Gy)=oo. 
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Proof. The hypothesis implies that the distribution function y~l ( f ' ) - l [y ,  oo)t 
is continuous. Thus for each 5>0 there is a partition Yl . . . . .  Yn of the range of 
f '  such that for each j  from 1 to n - l ,  IBjI<e, where B j : ( f ' ) - l [ y j ,  Yj+I]. The 
set By is a union of disjoint closed intervals. Its interior contains a compact set 
Aj, a finite union of closed intervals, such that [Ajl>lnj]-(~/n). Let #j denote 

V n 2 2 ~gflAj and let ~-Zj=lPj" Then v :go-~-Zpj ,  where ~ is absolutely continuous 
by multiple applications of 2.1. Since IIZ ~ffll =<(max [I/z:-]l) ~ '  II~jli <~ Ill, t ,  it fol- 
lows that 11/~-o~11<3~ [l~fll. Since e was arbitrary, it follows that tt~ is absolutely 
continuous. The Theorem is proved. 

Remarks. Slightly modified arguments show that 2.1 and 2.2 hold equally 
well for functions f that are strictly convex on [a, b]; but we shall deal with that 
class by another approach, which yields a rate of decay for/~r 

One may study the behavior of Fty(r~) as [rI-~oo, a distinct question for each 
unit vector TER 2. It is useful to write /~y(rZ)=--f  e-*'td,~(t), where 2 ( t )=  
]{x: g(x)~t}l is the distribution function for g(x)=z.  (x,f(x)). Hedberg (see [6] 
and [16, p. 48]) presented cases in which/~y vanishes at infinity in certain cones, sets 
of the form {rz: rER, zEU} where Uis  a closed arc, and cases in which the func- 
tion r ~ : ( r z )  is in A(R) (d2 is absolutely continuous) for certain ~. Under the 
assumptions of 2.2, the latter condition holds for every ~. Information about the 
rate of decay of ~y(rz) as Irr-*~o can be obtained from an integrable Lipschitz 
condition on the Radon---Nikodym derivative of d~ (see [12, p. 14]). It is easy to 
obtain when f is strictly convex, as we are about to explain. 

When f is continuous and convex on [a, b], then f '  is defined and continuous 
except at worst on a countable set. Wherever '~f'(x)" is not defined in the usual 
sense, let it denotef ' (a  +) if x = a , f ' ( x - )  if x=b, and either one if a<x<b.  With 
that convention in force, f '  is defined and nondecreasing on [a, b]. 

2.3 Proposition. Let f be continuous and convex on [a, b]. Let z be a unit 
vector in R 2, and let g(x)=z.  (x,f(x)) and g'(x)=z.(1,f '(x)),  and choose c such 
that ]g'(c)[=min {[g'(x)]: a=<x=<b}. 

(i) For each t > 0  and r>0 ,  

(1) [/2:(r~)[ =<2(l+27r/t)inf{e> 0: ~ m i n  ([g'(c-~)[, lg'(c+~)l) >- -~r~} 
t 

where we interpret g'(x) as co if x ~ [a, hi. 
(ii) I f  z=(cos/g, sin/~) and [f'(x+h)-f'(x)[>=o]h[ on [a,b], then 

V all r 
2zc 

(2) I/~/(r~)[ <- 4 0Jr sinai for 0. 
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(iii) I f  [g'(c)l>:m>O, then 

I#r <- 2n/m lr[ for all r # 0. 

(iv) I f  f is strictly convex, then [ty(m)~O as tr[~oo. 

Proof. (i) Since the statement (1) is the same for - z  as for ~, we may suppose 
that the second coordinate of z is nonnegative and hence that g is convex and g" 
does not vanish identically on any open subinterval of [a, b]. We leave to the reader 
the cases c=a and c=b, and suppose that a<c<b. Using an estimate of van 
der Corput [28, V.4.3(i)], we find that 

Therefore 
If; I s b e - i r * ' ( x ' f ( x ) )  dx = b e - i re (x )  dx <_- 

+" +" [rg'(c+e) l 

I f :  e-i'~'(x,Y(~)) dxl <_ e-t 
2re 

I rg'( c + e) l ' 

[ 1+7-2") which is bounded by e provided I Irg'(c+e)>- t .  A similar estimate 

applies to the integral from a to c. The statement (1) follows. 

(ii) The choice of c and the hypothesis of (ii) applied to g'(x) = cos fl +if(x) sin fi 
yield that Ig'(e++_~)l>-e~ ]sin ill. By (1), with t=2z ,  

I~y(rz)l <: 4 inf {e > 0: Isin fl[ Qe2/2zr :> 1//rl} 

for r # 0 ,  and (2) follows. 
(iii) Apply (1), taking the limit as t~0 .  

(iv) In (1)set: for e > 0  set t = l / e  and let ]rl~o~. 

2.4 Theorem. Iffisstrictly convex on [a, b], then pyE PF and hence ~(Gs)=~o. 

Proof. Let n be an arbitrary positive integer. For l<=j~n, let [aj, bj]c 
(xj_l, xj), where x~=a+(j/n)(b-a),  such that ~(b j -a j ) [ t>(b-a) (1- (1 /n) ) .  
Let /tj=/zilr%b3. Then ][txj[J<(b-a)/n for each j,  and HtxI-~lXj[l<(b-a)/n. Let 

Uj = {z: T.(1,f ' (x))  = 0 for some xC(xj_l, xs) }. 

Since f "  is strictly increasing on [a, b], the sets U s are disjoint and the quantities 
mj=inf{[z.(1,f ' (x))[ :  aj<=x<:bj, z~[ Us} are positive. Let m be the smallest rnj. 
Then [Ftj(rz)l<:2zc/mlr] for every j and every unit vector zr U s, by 2.3 (iii). For 
each z the inequality fails for at most one j ;  hence [~y(rz)l<-2n(n-1)/mlrl+ 
2 (b -  a)/n. The theorem follows. 
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Remarks. Every convex curve ? has a well-defined arc length parametrization: 
? =  {p(s): O<=s~=L}. Let p~ be the measure in M(?) defined by: 

f ~o dp~ = f L  ~ q~(p(s)) ds for q~E C(V). 

If  ? is convex, the estimate (1) holds for ~(rz) when g ( s ) = z  .p(s). Thus the decay 
of  ft~(rz) as Ir[-*~ depends on the "curvature" of  ? at the points where z is the 
normal. For example, suppose that So is the only zero of g ' ( s )=cos  O(s), where 
O(s)=argp'(s)-arg z is increasing with s. Then, using the usual convention for 0', 

1 1 
[g'(so+_.e)l >= ~ (sin 0 (So))lO'(so)[ ~ = ~ 10'(s0)] 

for all e sufficiently small. I f  O'(so)~O , then by (1) (putting t=2 n )  

[Pr (rz) l <= 4 VI4n/rO'(so) l = 4 1/14ns'(Oo)/r 1, 

for all sufficiently large [r[ (depending on Oo=O(So) ). Assume now that 7 is strictly 
convex. Then s is a function of to=argp ' (s ) .  If  we also assume that s(co) is abso- 
lutely continuous, then we can use the maximal function for s', 

s(to) = sup i f  s'(u) au, 
x > O  X J I~ < x  

as follows: If  too=Oo+argz,  then 

ls(to0)-s(to)l/lto0-tol-<- S(o~0) for all to. 

Thus ] / ~ r ( r z ) l < = 4 f ~ ~ - I  for all r ~ 0 .  This is the basic ingredient in a result 
of Svensson [26, Lemma 2.1 and Theorem 5.1]. 

I f f  is convex but not strictly convex, then GI contains a linear segment L and 
I~1 will converge to py(L) along the line normal to L. One might hope that i f f  is 
C 1 and not  affine on the whole interval [a, b], there would still be some nonzero 
measure #EPF(Gy). According to 2.2, that is the case when the distribution a(y)= 
[ ( f , ) - l [y ,  ~o)l is continuous. The result in fact depends on the behavior of tr near 
its discontinuities and on the sets ( f ' ) - l ( y )  which have positive measure and give 
rise to those discontinuities. The next result suggests a sense in which 2.2 and 2.4 
are best possible. 

2.5 Proposition. Let Y be a perfect compact subset of [0, 1] such that PF(Y)= 
{0}. (For example, Y could be the Cantor set {2 ~T=I eJ 3-J:  ~i = 0  or 1}.) Let g 
be a continuous increasing function on [0, 1] with range [0, 1] that is constant on 
each interval contiguous to Y. Let f ( x )=fog( t )d t .  Then PF(GI)={O}. 

Proof. Let vEPF(GI). Let H={(x,f(x)):  xEY},  and set H ' = G I \ H .  I f  
zE H' ,  then z lies on the interior of  a linear segment L ~ H ' ;  if z belonged also to 
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the support of  v, then there would be a function gE A (R ~) such that 0 r gvE PF(L), 
which cannot be. Therefore supp vC=H. For  every tER, the element vt defined by: 
9t(s)=9(s, t) for sER, belongs to PF(Y) and hence is zero. Therefore v = 0  and 
the proposition is proved. 

So far we have discussed only graphs that are fairly smooth, but now we turn 
to cases when f is at best continuous. We shall show that whenever f is continuous 
and 0E[0, ~), there is a measure #EM(GI)  and an arc U of  length 0 on the unit 
circle such that/~ vanishes at infinity in the cone {rz: rER, zE U}. It  will follow 
that c~(Gi)=>2 whenever f is a continuous function of  bounded variation. Those 
results depend on a differentiability condition that is set forth in the next lemma. 

For  a set Q ~ R, considered as a subset of  the range of  the tangent function, 

let P(Q)denote the cone I(rcosO, rsinO,: rER and t a n [ 0 , - ~ ] ,  Q}. Thus for 

example, 

P({O})= rcosO, rsinO): rER and - - - ~ - < 0 <  , 

P ([0, 1]) = (r cos 0, r sin 0): r E R and - ~- < 0 <~ . 

2.6 Lemma. Let f be a real-valued measurable function defined on a set Y of 
finite, positive Lebeggue measure. Suppose that for some mE R and ~>0,  

(3) l imsup f(x)-f(xo) m < O for all x0EY. 
x E Y ,  x ~ x  o X - - X  0 

Choose 01 and 02 such that P ( [ m -  0, m + 0 ] ) =  {(r cos 0, r sin 0): rER and 01<0<02}. 
For 01-<0<0~, let [~o(r)=~y(r cos O, r sin 0). Then the mapping O~ho is a contin- 
uous mapping from (01, 0~) into L 1 (R). In particular, frye Co (P ( [ m -  ~ - e, m + 0 + e])) 
for each ~ 0 .  

Proof. Consider first the case m--0.  We may suppose that 01 lies between 
- n / 2  and 0, and of  course 01= -02 .  Since/~s is approached in norm by measures 
#six for compact sets X ~  Y that approach Y in Lebesgue measure, it suffices to 
prove the result for the case of  compact Y. When Y is compact (3) implies first 
t h a t f i s  uniformly continuous and bounded on Y and then t h a t f i s  Lip (1) on Y. 
In particular f extends to a Lip (1) function on R which is thus differentiable a.e. 
on Y in the usual sense. In any event, the sets 

Dn={xEY: f ( x ) - f ( y )  >0  f o r som e  yEY, O < [ x - y ] < n  -1} 
x - y  
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are open relative to Y and form a decreasing sequence that, in light of  (3), satisfies 
r i D , = 0 .  Let 0 < 6 < 1 .  Then there is some D,, such that ] Y \ D , , I > ( 1 - 6 ) I Y  1. 
Set Ya= Y \ D , , .  Decompose Y~ into subsets X~ . . . . .  X,, each with diameter < m  -a. 
Let X be any one of  the Xfs  with positive measure. 

Fix 0E(0~,0~), let z = ( c o s 0 ,  sin0), and let go(x)=z . (x , f (x ) )  for xEY. 
Since I f ' l < ~ ,  the restriction on 0 implies that g ; (x)- -cos  O+f'(x)sin 0 is posi- 
tive and bounded away from 0 on I1. Moreover golX is strictly increasing. Denote 
its inverse by u o. Then u o is Lip (1), and differentiable a.e., on its domain, and 
the distribution function 2o(t)={xEX: go(x)>-t} is absolutely continuous, with 
2 o equal to - U o =  - 1/g~(uo(t)) on go(X) and zero elsewhere. Let ho = - 2 ; .  Then 
hoELX(R) and 

~o(r) = f ~  e-" 'ho(t)dt  = - f = e - " '  d;,o(t) = f x e  -''~ dx = ;q(rO. 

for tE go (X) 

Let 

vo (t) = ~ g;(u~ (t)) = cos 0 +f ' (u  o (t)) sin 0 
l l  for t~go(X). 

Let Zo be the indicator of  go(X). Then 

dt = f ~  [ z~176 dt, )~o ( t) Z~(t) 
Ilho-hella 

which an exercise will show tends to zero as 0-+7. The lemma is proved in the 
case m = 0 .  A suitable rotation of  the coordinate system allows the reduction of 
the general case to that  one. 

Lemma 2.6 gives no information on the rate of  decay of /~I ,  that depends on 
the set Y. Rather it is an extension of  the earlier results concerning C 1 and convex 
functions and the result of  Hedberg [6]. We present some of  its implications in the 
next theorem. Since (3) is equivalent to "f=hlY (a.e.) for some h that is differentiable 

a.e. on Y," as noted, we will use the simpler terminology. 

2.7 Theorem. Let f be a real-valued function defined and differentiable a.e. on 
a set Y of  finite, positive Lebesgue measure. Let a be the digtribution function, 

~(t) = ]{x~Y: i f (x)  >= t}l. 

(i) I f  a is continuous at each point of  a closed set Q, then ~sECo(P(R\Q)) .  
(ii) I f  a is discontinuous at to and Yo=(f ')-a(to),  then 

o &lyo  Co(p([to- , 
for every ~ 0 .  

(iii) I f  a is discontinuous at each of  n distinct points tl . . . . .  tn, then c((Gf)~n. 
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Proof. Let e>0.  Choose an integer N > 0  such that 

a ( N - 1 ) < e  and I Y I - a < ~ ( - N + I ) .  

Choose an integer K >  0 such that 

I~(s)-~(t)l  < 5 whenever s~Qn[ -N ,  N] and Is-tl < 1/g. 

Let Qx . . . . .  QJ be a listing, from left to right, of  the intersections 

Q n [ - N + k / K ,  - N + ( k + I ) / K ]  (0 <= k <= 2 N K - 1 )  

that are non-empty. Choose r/such that 0 < r / < l  and 

J 
ltr(s)--tr(t)[ < 5/(J+ l) whenever sE U Qj and Is-tl < tl. 

j = l  

Let a j = m i n  {x: sCQj}, h i = m a x  {x: sEQj}, and I j=[aj+~/,  b j - t / ] .  Then if A j =  
{x~ Y: f'(x)EIj}, ~I1Aj~Co(P([aj, bj])) by Lemma 2.6. Let 

B -= xEY: f ' (x)E[-N+q,  a l - -q ]u  U [bj+rl, aj+l--tl]u[bJ+rl, N - q ]  , 
j = l  

noting that some or all of  the intervals in that union may be empty. Since f"  is 
bounded away from Q on B, PflBECo(P(R\Q)) by Lemma 2.6. If  C is the com- 
plement in Y o f  B u  wAj, then IC1<65 by the choices of  N and tl. 

Choose M so that 

I/~SlB(y)l<e whenever IIYll > M  and yEP(R\Q) and 

I~j'IAj(Y)I < 5/J whenever IlYll > M, yEP([aj, bj]), 

and 1 <=j =< J. 

Then for every yEP(R\Q)  such that ItYll > M ,  since y~P([aj, bj]) for at most 
one value of j, and since I{xE Y; f'(x)EQj}l-<e, 

I~j,(y)I = [,~=l~ylAj(Y)+~yls(Y)+ftflc(Y)l <= ((J--1)e/J)+2e+ ICl < 95. 

Part (i) is proved. 
(ii) Apply Lemma 2.6 with f t  Y0, Y0, and t o in the roles of f ,  Y, and m respec- 

tively. Part (ii) is proved. 
(iii) Let Yk=(f')-l(tk), and let Vk be the probability m e a s u r e  IYk[-lktflyk. 

By part (ii) we see that we may select symmetric closed cones (k (l<--k<--n) such 
that 9k~Co((k) and such that the complement of  (k is contained in {0}w~j for 
each j # k .  It follows that if v=n-l~_,~k=~Vk, then for I ly l l -~  l imsup 19(y)l<= 
1In. (In fact, equality holds, since for each k 19k(rtk, - - r ) ]~ l  as [ r [ - ~ .  ) For 
each 5>0  we may choose vectors YI . . . .  , y ,  such that if # is defined by: /2(y)= 
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n- l~=l~k (y - - yk ) ,  then 1/~(y)]~e+n -1 for all y, while of  course []#]l=l. The 
Theorem is proved. 

Remark. Let f be as in the theorem and let Yo=(f')-~(to). Let v be the 
unit vector orthogonal to (1, to). Then the distribution function for the derivative 
of  f I ( Y \ Y o )  is of  course continuous at to, so that the behavior of/2f (rv) as Irl~o~ 
depends entirely on f]  Y0. 

The next theorem organizes the results about continuous graphs. First, a 
lemma. 

2.8 Lemma. Let f be a continuous function with domain [a, b] and range [c, d]. 
Then there exists a strictly monotone function g defined on [e, d] such that ( g (y), y)E G y 
for c<=y<=d. 

Proof. Choose xl and x2 in [a, b] such that f(xO = c and f(x2)--d, and let 
x 0 be the smaller of  the two. Let 

g ( y ) = m i n { x :  x=>x0 a n d f ( x ) = y }  for yE[c,d]. 

It is easy to see that if Xo=Xc, then g is strictly decreasing and if x0=x2, then g 
is strictly increasing. In either case, the lemma is proved. 

2.9 Theorem. Let f be a continuous real-valued function defined on [a, b], where 
a~b.  

(i) There is a unit vector z and a positive measure vE M(Gf) such that 9EC0(~) 
for every closed cone ( not containing the directions +_-v. 

(ii) I f  f is of bounded variation, then ~c(Gy) >-2. 
(iii) I f  f is not of bounded variation, then ~(Gz)>-~/2. 

Proof. (i) I f  f is constant, then z = ( l ,  0) satisfies the statement. If  not, then 
Gf contains the graph of the function g provided by Lemma 2.8 and supports the 
measure #g (for g, the roles of the x and y axes are the reverse of the usual). Applying 
Theorem2.7 to g, we find that either the function t~l(g')-~[t,~o)[ is continuous 
and ~tgECo(R~), or else it has a discontinuity at some to and z = ( - 1 ,  g'(to)) sat- 
isfies the statement. 

(ii) I f  G I contains a straight line segment, then c~ c (Gy)=~o. If  there are dis- 
joint intervals Ij such that both Y~=(f')-l(l~) and Y2=(f')-a(I2) have positive 
measure, then 2.7, (i) and (ii), applied to f l  Yj, yields two probability measures 
/~j in M(Gy) such that /~jEC0((j), where (a and (2 are closed cones and (au~2=R 2, 
and it follows (as in the proof  of  2.7 (iii)) that ~(GI)>-2.  In all the remaining cases, 
f ' = r  a.e. for some r, but the complement D of f ( ( f ' ) - l ( r ) )  in the range of f has 
nonzero measure. Then /2yEC0(() for every closed cone not containing the direc- 
tion (r, - 1). Obtain g as in Lemma 2.8 and let h be the restriction o f g  to D. Apply 
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2.7 (i) or (ii) to h, obtaining a probability measure vE M(Gy) that is mutually sin- 
gular with try and such that (at worst) 9E C0((') where ( '  is a closed cone with (r, - 1) 
in its interior. It  follows that ~c(Gy)_~2. 

(iii) For each positive integer n, choose a sufficiently small h > 0  so that 
f(x+h) =f(x)  for at least 2n values of  x in [a, b - h i .  Choose n such points xl . . . . .  x, 
such that the 2n points xj, Xk+h (for l ~ j ,  k~_n) are all distinct. Let Pn be the 
measure that places mass n -1 at (xj,f(xj)) and mass n-le 2~'j/" at (xj+h,f(xj+h)) 
for eachj .  Then 1l~.ll=2 and 

l/~.(u ' v) I -< n _ l ~ .  ii_be2 iJ/neinUl f l  l / 2 + 2 c o s O d  0 4 
: j = l  7~ 

where the convergence is uniform for (u, v)ER 2. Note that the sum equals a Rie- 

mann sum for the function g ( x ) =  11 +e2"i~ I on [0, 1]. Therefore ][#,[I/llp,[IpM~=-f-e, 
7~ 

where en~O, and hence aa(Gf)>--~. 

Remark. We suspect, but  do not know, that every continuous curve ? in R z 
possesses (i) of  2.9. Indeed this is the case when one of  the coordinate functions is 
of  bounded variation for then 2.8 applied to the other coordinate function yields 
a Gfc~ where f is of  bounded variation (not necessarily continuous), hence dif- 
ferenfiable a.e. (see the argument in 4.4). There are continuous Helson graphs that 
support measures that decay more than is indicated in (i) of  2.9. In particular in 
[15, Section 5, Theorem 2] K6rner presents a construction, due to Katznelson, of  
a Kronecker set ~h in R 2 which is a (discontinuous) graph and which supports a 
measure # satisfying /~E C0({(x, y): l Yl ~ h  (!xl)}), where h is any prescribed increasing 
function on R. One can connect the "pieces" of their Yh using the methods we sum- 
marize in Section 3 to obtain a (continuous) Lip (1) Helson graph which con- 

tains ~h" 

3. A Lipschitz Helson curve in the plane 

The technique used to prove the following lemma is standard. For  Q>-0, let 

U(O)={zER": [IzI[ <_- 0}. Let T={zEC: Izl=l}. 

3.1 Lemma. Let F be a finite independent subset of R". Let 0 < 8 < 1  and 
0 < a .  Then there exist 6=6(F,e,a)>O and O = 0 ( F , e , a ) > 0  such that for every 
Junction f: F ~ T  there exists gEA(R ~) such that: 

(i) [f(x)-g(x+z)[<a for xEF and zEU(6); 
(ii) [argf(x)-argg(x+z)l<a for xEF and zEU(o); 

(iii) [g(y)l<-e ~ for y~F+U(Q); and 
(iv) Ilglla~-e -1. 
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Proof. Let F----- {xl . . . .  , Xm}. For  k=(k l ,  ..., km)EZ m, let 

p (k) = exp((log 5) ~,~=1 k~). 

Then p is positive-definite, pEA(Z") ,  and p(0)=l=t lp] ]A.  Let h be the charac- 
teristic function of the coset ~ k j--- 1 in Z m; it is the transform of  an idempotent 
measure on T"  with norm one. Then hp~A(Z") and [Ihpl[a<=l. Define q~ on R~d 
by letting ~0 ( ~ = 1  kjxj)-~(hp)(kl . . . .  , kin) and letting q~(x) vanish for x not in 
the span of  F. Then ~p~A(R~), J}~pIJa_<-l, and (p=e on F. For  f :  F ~ T ,  let T 

be an element of  (R~) ̂  ---K" (the Bohr compactification of R") such that  7 = f  
on F. Let ~=~-17~0. Then ~EA(R"d), ][~[]A~S -~, q/ vanishes off the span of 
F, and 

~9 ( ~  kj xj) = e-1 + 2k~ i [~  f(xi)kj 

whenever ~ ' k j = l .  Thus O = f  on F, and I~k[<=s ~ elsewhere. 
Let u be a nonnegative function in A(R"d) with finite support  and norm one 

such that 1-(o-/2)_<-u_<-I on F (e.g. a Bochner--Fej~r type kernel). I f  q=uO, 
then q may be regarded as a discrete measure on R" and ~ as a trigonometric poly- 
nomial on R". We now extend q as a function on supp u to an element of  A (R"), 
as follows. For  q > 0 ,  let k, be a multiple of  Z .  Z, where Z is the indicator function 
of  U(t/), chosen so that  []kq[la(R.)=l=k~(O). Then fc,=~0, and as ~-+0, sup ~,-*0 
and s u p p k ~ { 0 } .  Thus k,(y)dy converges weak �9 to Haar  measure on R". 

I t  follows that  

I lq*k,  llA = IIOk.JIL'(Ro~ -~ II~IIL'(~-) = IIqlIA(R~) --<-- s -a  

as r/~0. Therefore for r/sufficiently small, the norm [Iq* k~[la(n.) is at most  slightly 
greater than e -1 and for x t F  and z near zero, (q . k , ) ( x+z )=q(x )k , ( z ) .  There- 

fore if 6 and 0 are sufficiently small (depending only on F, s, and a), we may take 
g to be a multiple (at most  slightly different from one) of  q*  k n. The lemma is 

proved. 

3.2 Theorem. There exists a curve F c R  ~ which is the graph of  a Lip (1) 
function and such that ~ (F) <- 3 3/2 ~-- 5.196. 

Proof. Let n_-->2, and let D={da<d2<. . .<d,}  and E={ex<e2<. . .<e , }  be 
two independent subsets of  [0, 1]. Let r and ~/ be independent unit vectors in R 2, 
and let z" and ~/' be unit vectors perpendicular to z and r/ respectively. We define 
P=P(D,  E, v, q) to be the polygonal path whose 2 n - 1  vertices, in order, are 

dl z +elq, d~ z q-e2q, d2"~ +e2r 1 . . . .  , d,z +e,q. We shall call such a path an I-polygonal 
path. Let s(P) denote the largest distance between two consecutive vertices of  P. 

Fix 5>0.  Using repeatedly the case n = l  of  Lemma 3.1, we find that  for 
each a > 0  there exist ~ = ~ (P ,  a) and O=0(P ,  a) such that:  
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(I) for each function f :  D ~  T there exists gE A (R) such that 

(1) Ig(dz.r f )- f (d) l<a for each dED, 
(2) ]g(tz.rt')--f(d)lg(tz.tl')ll<a whenever dED and 1t-all<p, 
(3) [g(tT.t/')[_<-~ ~ whenever dist (t, D) => e, 

(4) [Iglla<_-~ -1, and 
(5) Ig(x)-g(y) l<a whenever Ix-y l<~;  

and such that 

(II) for every function f :  E--, T there exists gEA (R) such that conditions 
(1)--(5) hold with e, q, ~, and E taking the roles of  d, ~, t/, and D respectively. 

To construct a Helson curve, devise a sequence of  I-polygonal paths P , ,=  
P(Dm, Em, %, 11m) such that S(Pm)~O, that every point of  P~+~ lies within distance 
e(Pm, m -1) away from P~, and such that F =lira  Pm is a curve and not a singleton. 
One may make F the graph of  an increasing Lip (1) function by choosing z m and 

rc 
~]m SO that (say) arg % decreases to 0 and arg t/~ increases to - - .  

4 
Let pEM(F)  be a measure of  norm one. To prove t h a t / "  is a Helson set it 

suffices to find a positive lower bound for II~llp~. Let Q be a compact rectangle 
whose interior contains F. Let /~>0 and choose a continuous function h: Q ~  T 
such that [[hp-l#l][<fl. Pick e > 0  such that [h(u)-h(v)[<~ whenever u, vEQ 
and dist (u, v)-<e. Pick m large enough so that rn-1</3/2, e,,=e(Pm, rn-~) < e ,  
and s(Pm)<C~. Let {dl . . . .  , d~}=D,,, {e~ . . . . .  e,}=Em. Let 

t / SI = {a~l,. + btl,,,." bE R, l a -d j zm,  tlml ~ O~m}, 
j= l  

S~ = 0 {az , ,+bz ' :  aER, Ib-ejtlm. Z't < ~m}. 
j = l  

1 
Since F lies within distance em from Pm, F ~ S~u S~. Therefore either ]#l (Sa) ~ - -  

2 
1 

or I~l(s~)~-~; we shall assume the former, the other case being equivalent to 

deal with. Let g be a function in A(R) satisfying (1}--(5), with a = m  -1 and with 
f g i v e n  by: f(dj)=h(dj%+ejrlm). Define gl on R 2 by: g~(tq'+Sqm)=g(t). Then 
gl is the Fourier--Stieltjes transform of  a measure with norm bounded by e-L 
The ~/~, coordinate of  each point of  SxnF lies within distance e,, from that of  a 
vertex of  P~; hence Ig(z)-h(z)l<3fl for ZESlnF. The set F \ S I  is the union 
of the disjoint sets 

R~ : {zE/ '~S~: Ig(z)-h(z)Ig(z)t! < fl}, 

n.  = { z ~ / ~ ( s l u  R1): Ig(z)[ < ~}. 
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Then F=(Slc~F)wRlwR2 and 

[I~IIPM~-I~ frgd# >= fs gd#+f, gdll-le~ll~ll. 
Since 

f ~  gd#+fR gd~ = f~ hd#+f., lglh '#+L g--hd#+f, g--lg!h+ 

= Ilal(S1)+fll+ Igl~[(R1)-I-flz-t-3fiz I/tl(s1)+fla ikt[(R~), 

where I/~jl_<-/~ for 1 -<j<=4, it follows that 

1 1 
II#IIPM~ -x ~ ~ t1~11- 2/3--4/~1t~t11--T~mlI~II. 

Since fl>O was arbitrary and since [)~11= 1, 

1 II~ll~M ~ ~ (~-~), 

which is at its maximum 3 .3/2 when e2= 1/3. This proves the theorem. 

Remarks. The proof  above is a variant on that of  [18]. The Lemma 3.1 is 
related to the powerful separation results that emerged with the solution to the 
union problem for Helson sets (see [10], [24], [21]). For  those results we recommend 
[5, Chapter 2]. 

Varopoulos [27] showed the existence of convex Sidon curves in R 2. He showed 
that in fact there exist continuous and strictly convex functions f such that Gf is 
the union of  two independent sets E1 and/?2. One may show that for such graphs 

=---< 1 55/4 as follows. If  yi=(x;, f(xl)) for l=t=4<'-< are distinct points on aa(Gf) 2 

G I, then 71-72#7a-Ya,  by the strict convexity o f f  In particular, if Yl, Y2, ~3EE1, 
then Y1-72+y3~E2. Let p be a discrete measure in M(Gf) with norm one, and 

> 1  > 1  
with finite support. Then either I~l(E0= S or /~[(E2)=~; let us assume the 

former. The first paragraph in the proof  of 3.1 (see also, Theorem 2.1.3 of  [6]) 
implies that if e > 0  and fl > 1, there exists gEA (R~ such that f~l gd~ = I#[ (El), 

1 
[g[~_fle on Ez, and [[gl[A~fle -1/4. Then fl~-l/4[L#lLpM~_[f gdlzl~ig[(E~)-- ~ fie. 

1 (~/~_~/~), 
Therefore II#lleM ~=-~ which has its maximum 2(5 -5/4) when e=l/5. 
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4. Higher dimensions 

Lemma 2.8 does not generalize, and we do not know whether 2.9(i) does. 
But most parts of Section 2 have analogues in dimensions n>2 .  

Let E be a set of finite measure in R ~ and let f be a measurable function from 
E into R", where 1 <=l<n. Let i z iEM(f(E)  ) be the nonnegative measure of norm 
IE] given by: fR,  gd~s=fEg( f (x ) )dx .  Let u be a unit vector in R I. For a measur- 
able set F ~  E, we say that f is differentiable relative to F in the direction u if for 
each xEF, the limit 

D , , v f ( x ) =  lim f ( x + t u ) - f ( x )  
t ~ o  t 

x +tuE F 

exists. When u and F are understood, we denote that limit by f ' (x) .  

4.1 Lemma. Let 72 E~Rn be a measurable function, where E is a set of finite 
measure in R t. Let u be a unit vector in Rk Suppose that f '(x)=--D,,rf(x) exists 
for each xEE, and suppose that M=supxEE]lf'(x)]] is finite. Let ~>0,  and let 

U = {zER": ]lzl[ = 1 and [z-f'(x)] ~ 0 for all xEE}. 

Let h,(r)=/~s(r~). Then 
(i) h,EA(R) for each zEU, and 

(ii) the mapping z-* h, is continuous from U into L 1 (R). 

Proof. We may suppose that IE[ >0.  Sincef '(x) is the (a.e.) pointwise limit of 

fn (x )  = I f / r iCh_  1 t)~E(X 71- tu) dt] -1 (f(x + tu)-f(x))z .(x + tu) at, 

it is a measurable function. Therefore E can be partitioned into disjoint measurable 

sets Ei ( l < - - i ~ m + l ) s u c h  that IU,~=l E , I > ( 1 - - 2 )  IE I and [If '(x)-f '(y)l[<O/3 

o 

whenever x, yEE~ for some i<-m. For each i<=m, choose a closed set E~C=E~ 
and then F~C=E" such that IU,%l F~I > ( 1 - 6 ) I E I ,  and such that for some ,E(0, 1), 

Ilf(x +=u)- f (x ) -~ f ' (x ) l l  <- [~l 0/3 
whenever 

x,x+ uEr, and l<--i<=m. 

Let F be any of the sets F~ that has positive measure. Decompose F into sub- 
sets F~ (l <=j<=k), each with diameter less than e. Let P be any of the sets F; that 
has positive measure. Fix z in the orthogonal complement H of Ru, fix zE U, and 
let g~(~)=z.f(z+0~u). Now ff z+0%u and z+0cu belong to P, then 

[g=(~)--g=(~o)--(~--~ "f'(z+~oU)[ < I~--~o! e/3 < eQ/3. 
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Hence, assuming a > a  o and z . f ' > 0  (recall x . f '  is o n e o f  -<--O or -->0 o n P ) ,  

( ~ - a 0 ) ( M +  e) > gz(a) - gz(a0) > (a-a0)2r 

Thus gz is strictly monotone in a on the set {~: z+omEP}, and the measure dgz(~) 
is absolutely continuous. I f  z - f "  is suitably extended, then 

dgz (or) = Iv . f ' ( z  + au)[ Ze (z + au) dot. 

Define T: P--,-R z by: T(z+o:u)=z+g~(a)u-=z+flu. Then T is injective and both 
T and T -1 are continuous in measure when restricted to P and T(P) respectively 
and, for almost all zEH, 

dgzl(fl)  : "c . f ' ( T - l ( z  + flu))-lZp(T-X(z-l-flu)) dfl. 

If  2 is the distribution, 
2(c0 = I{xEP: z . f (x)  >= c~}l 

then 

= f,, fr215 to', x e ( T - l ( z  + flu))[z . f ' (T  -1 (z + flu))l-1 dfl dz  

where T -1 and z .  f ' ( T  -I) are suitably extended to all o f  [cq, ~]. It follows that 
d2 is absolutely continuous and that in fact 

h,(fl) dfl ~ d2(fl) = [ f  ,, z,,(Z-X(z + . f ' (T- ' (z  + dz ] 

We shall show now that the mapping z--,.h~ is continuous from U into L~(R) and 
leave it to the reader to replace P by E in the conclusions. Denote the dependence 
of  T a n d  H on zE U by writing T~, H~. Suppose that aE U and let z be an element 
of  U that is near a. Let Z~ be the characteristic function of T,~(P). The maps T~, 
T~ are "projections" of  f on P;  hence T~, T~ are related by a map which is bicontin- 
uous in measure, providing z is near m Since T,-~ T~ pointwise as z - ~ ,  this 
implies z ,  ( T~) -,. Z,, ( To) in LI(Rt). Thus [(T~(P)~T,(P))u(Ta(P)\T~(P))[--,-O and 
hence T~ -1 ~- T~ -~ pointwise a.e. It follows by the convergence theorems of  Lebesgue 
that [ I h , - h , [ ] ~ 0  as z-*o-. 

In the proof  of  Theorem 2.9, the part  of  a curve that at least behaves like a 
linear segment (i.e., constant slope) is separated from the rest. The situation for 
manifolds is analogous. Let E0 ~ R t, and suppose that f :  E0~  Rn is differentiable 
a.e. relative to the set E0 of  finite measure in the directions Ul . . . . .  u,,. Let A(x) 
be the n •  matrix whose jt~ column is D%e,f(x) .  Let H, be the collection of  
all subspaces of  R" with dimension s. For  each SEH~, the set 

Eo(S) = {xEE0: range A(x) c= S} 
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is measurable. Thus there is a countable collection {E0(Sj)} such that SjqHo and 
IEo(Sj)[>0 (at this zero-th stage the only Sj is {0}). Let EI=Eo\ujEo(Sj ) .  Repeat- 
ing, let E2=Ex\u{EI(Sj ) :  Sj~H1 and IE~(Sj)I>0}. Continuing, we obtain Eo2 
EI~...D=Ek~=Ek+I where k<-n, ]Ek+~[=0, and for each s from 1 to k, [E~(S)[=0 
forall S~H,_I and either E~+I=E, or E~\E~+I=u{E,(S):  SEH~ and [E,(S)[>0}. 
Thus there is a countable collection {Hj} of distinct subspaces of R n and a measurable 
decomposition {Fj} of Eo such that 

(1) range A(x)C=Hj for a.a. x~Fj, 
(2) IFjl>0, and 
(3) if H ~  Hj is a subspace, then 

I{xCFj: range A(x) c= H} I = 0. 

The one bad extreme case, when A(x)=0 a.e. (i.e., [EII=0) does not occur with 
graphs; we will deal with it in our extension of Theorem 2.9. 

4.2 Theorem. Let E c R  I, and suppose that f:  E-~R n is differentiable a.e. 
relative to the set E of finite measure in the directions u~ . . . . .  UmER t. Let A(x) be 
the n X m  matrix whose j th column, Aj(x), is D% F.f(x). Then there is a measurable 
decomposition {Fj} of E and corresponding subspaces t t j  of  R" satisfying (1), (2), 
(3) above. The pairs (Fj, Hi) are unique up to sets of measure zero, the directions 
ul . . . . .  Urn, and areordering of subscripts. Moreover, let ~rj: R"-~Hj be theprojec- 
tion map and let C(Hj, 6)={O9ER": II~j(o9)il_->61lo911} for any subspace Hj and 
6>0. Then: 

(i) For each 6>0, fiyiFjECo(C(ltg, 6)). 
(ii) Suppose that there are at least k distinct pairs (F~ , 1t~) . . . .  , (F~, Hk) among 

the {(Fj, Hi)}. For each nonzero vector o9 in the span H of  I-I~ .. . .  , H~ 
let r(og) be the number of nonzero projections among nj(og), l<=j<-k. Set 
s=min {r(og): ogEH}. Then v = ~  k [Fffl-1/ZflF~. satisfies 

limsup[9(@[ <_--Ilvll(1--s/k), for 6 >0 .  
~ EC(H,Q) 
II tall ~oo 

(iii) Suppose that there exist k distinct pairs (F~, Hi) . . . . .  (F/,, H~) among the 
{(Fj, Hj)} and l>=1 such that every choice of I distinct elements from 
{H~ .. . .  , H~} spans R ~. Then v= ~ k IFfl-a/~yir5 has norm k and lim sup lgl <-- 
l - 1 .  Thus ~(E)>-k/(t--1). 

Proof. The existence of the pairs (Fj, I-Ij) was established in the preceding 
paragraph, and the uniqueness follows from that discussion. 

To prove (i) set F=Fj ,  H = H j ,  and n = n j  for some fixedj. We may assume 
that H r  {0} and that A (x) exists everywhere on F. The subsets 

D M = {xEF: nA(x)l[ <= M} 
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tend t o ' F  in-measure 'as~M-~o.  Thus we may assume IIA(x)ll is bounded on F. 
L e t ! U =  {uER": Ilull--1, II~(u)ll-->4}, and fix e>0.  Condition (3) implies that for 
each uEU there exists 6 ( u ) > 0  satisfying I{xEF: I[uA(x)II~_6(u)}l<~. Since U is 
compact, [IA(x){[ is bounded, and u~uA(x) is continuous, we may choose 6(u)>= 
6 ' > 0  for some 6' and all luE U. In particular there exist 6>0 ,  a finite open cover 
Ux, ..., Uk of U, and measurable partitigns {P~,}~ of  F where O~_r~_rn for each 
l<=i<-k such that, for each i, [P~[<~ and l[uA~(x)[l>ci for all u~U~ and all 
xEPi, for each 1 ~_r~_m. Lemma 4.1 n~w yietds the existenze of  an N~, satisfying 
[fqle,,(su)l<~/m whenever uEU~, t~I>=N~,, r~O. Thus, setting N=m~xNi, ,  we 
have 

I/~flr(su)l <- 2',"=0 I~si~,.(su)l < e+(elrn)m = 2e, 

whenever uEU~ and Isl>-N for each l<=i<-k. Since e > 0  is arbitrary, ( i ) i s  
valid. 

To obtain (ii) we observe that for each O >0 ,  there exists 4" > 0  such that 
each coEC(H, Q) must lie in at least s of  the cones C(H i, Q'), l = j _ k ,  hence (ii) 
is an immediate corollary to (i). The hypothesis in (iii) implies s = k - ( l - 1 )  in 
(ii) and this yields the desired property of  v. Proposition 1.1 now implies ec(E) 
k / ( t -  I). 

The multiplicity properties of  a given manifold in R" can now be estimated 
quite easily providing a parametrization f :  E c R ~ R "  can be given which is suffi- 
ciently nice. That  is: IxyCCo(H ) for a subspace HC=R" if, for each nonzero uEH, 
I{xEE: [[uA(x)[l=O}[=O, in the notation of  4.2; just note that HnHJ-= {0} for 
each j, and apply part (i) of 4.2. Thus any manifold in Rn without "flat spots" o f  
positive measure (in particular, a strictly convex (n-1)-manifold)  supports a prob- 
ability measure in PF(R"). As we have seen (2.5), C 1 manifolds need not  support 
such a measure. Never-the-less they are never Helson sets. We need only verify 
this for C 1 curves in R", since subsets of Helson sets are Helson sets. Our proof  is 
basically a verification of  the conditions in 4.2 part (iii). 

4.3 Theorem. Suppose that 7 ~ R  n, n>:l, is a C 1 curve. Then ~c(7)= ~o. 

Proof. The set of all linear manifolds in R" that contain a segment of 7 con- 
tains a manifold of minimal dimension k, for some k~_n. Hence a translate of  7 
has a segment in R k. Let ~ be this segment. Since k is minimal, no segment of  
lies in a proper linear submanifold of  R k. Of course, ~c(7)=>~(a). If  k = l ,  a 
is a linear segment, and we are done. Thus we may assume k=n>=2 and a = ? .  
Let U={xER": Ilxll=l} and let f :  [a, b]~R" be a C 1 parametrization ofT.  

Suppose that we have chosen l points q . . . . .  tiE(a, b) such that the f ' ( t  i) are 
distinct and such that every subset of  the vectors { f ' (q )  . . . . .  f ' ( O }  of  cardinality 
rain (n, 1) is independent in R". Let S be the collection of  all r-dimensional sub- 
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spaces spanned by every choice of r = m i n  ( n -  1, l) of those vectors. Each distinct 
choice of r subscripts gives a distinct dement  of the finite set S. Let J c [ a ,  b] be 
any set with nonempty interior. I f  j=c u ( f ' ) - l ( H ) ,  HE S, then one of these dosed 
sets, say (f')-a(Ho), must contain an interval 1; hence f ( t ) .  v must be constant 
on I for each vEH~; hence the segment f ( I )  lies in a translate o f / /0 ,  contrary to 
our assumption. It follows that there exists a 6+IEJ such that f '(6+~)r 
HES. Therefore every subset of {f ' (6),  ..-,f'(6+x)} of cardinality min (n, 1+1) 
is independent. Thus for any positive integer l and any choice of  open sets J~ . . . . .  Jt c 
[a,b] there exist tjEJj such that {f '(6),  . . . ,f '(6)} satisfies our independence 
property. Fix such an l and choice of points. Note that every choice of  n vectors 
x~ . . . . .  x, from f ' ( t l )  , . . . , f ' ( 6 )  with distinct indices forms an independent set in R". 
Thus Uc~(n'{xj}• hence there exists c5>0 such that the set 

B~ = { x c R ~  llxll < ,~} 

satisfies U~({x~}•177 for all choices of the xx, . . . ,x , .  Let 
lj, 1 <=j<=l be disjoint intervals (need only sets of positive measure) contained in 
(f')-l[f'(tj)+B~/2], respectively, and choose 0 > 0  such that U \ C ( f ' ( t ) R ,  O)c 
({f'(ti)}-L+B~)nU for all tEIj and each l<=j<-l, where C(f ' ( t )R ,o)  is the 
cone defined in 4.2. Note t/rat /~sl,(rz)-~ 0 as [r I-~oo for each zE U\({ f ' ( t j )}  -L + B~) 
for 1 <=j<=l by 4.1. Our choice of  the tj's forces each zE U to lie in all but at most 
n -  1 of these sets. Hence the measure v = ~  Ilj[-lplll  j has norm 1 and lim sup ]9 i <- 
n -  1. Hence ec(~)>=l/(n - 1) by a variant of Proposition 1.1. Since I was arbitrary, 
the theorem is proved. 

The next two results are concerned with lower bounds for the Helson constants 
of  certain classes of  k-manifolds in R" that satisfy a property related to 4.2 (iii). 
These classes include all the continuous Helson manifolds known to us. 

4.4 Theorem. Suppose the curve 7 c R  ", n>=2, can be parametrized by con- 

tinuous coordinate functions f : ( f x ,  ...,f~) which are of bounded variation on [a, b]. 
n 

Then ~ (~) >= 
n - 1  

Proof. Since n/n-1 decreases, we may assume as before that  the smallest 
linear manifold 99/that contains ? is R ~. (If n = 1, then a ( ? )=~ . )  

Using Theorem 4.2, choose from the pairs (Fj,  Hj) a minimal collection 
(Ej, Kj), l<=j<=k, so that K=-Ka+. . .+Kk=~Hj .  Then k~_dim(K)<=n. If  
k=n, then K = R  and part (ii) of  that theorem implies this result. I f  k<n, then 
choose any orthonormal basis ~8= {ux . . . . .  u,} so that ul is orthogonal to K. The 
component functions f .  Ul . . . . .  f . u ,  are of  bounded variation and nonconstant 
since ~ = R " .  Lemma 2.8 applied to f .  ux therefore yields a monotone function g(y) 
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defined on an interval in the range of  f .  ul so that 

h(y) = (y, f(g(y))  . u2 . . . . .  f(g(y)) . u,,), 

relative to the basis/3, parametrizes a piece of 7- Since g is monotone and the f j 's  
are of  bounded variation, the components f (g ) .u j  are also of  bounded variation. 
Again let (Lx, $1) . . . .  , (Lt, St) be a minimal collection from the pairs (F ,  t t 3  
associated with h so that K + S I + . . . + S t = K + ~ H j .  Set S= SI +... + St and 
observe that l=>1 since h'~ K a.e. Part (ii) of  Theorem 4.2 yields probability meas- 
ures /z, vCM(y) so that l imsup l/~l<=l-1/k and lim sup 191<=1-1/I on C(K, ~) 
and C(S, ~), respectively, for Q>0. In particular og=ltk/(k+l)+vl/(k+l) is a 
probability measure on 7 with lim sup ]d~] ~ 1 - l/I+ k <- 1 - l/r, where r = dim (K+ S), 
on C(K+ S, ~). Continue in this manner until R" is exhausted. Call the resulting 
probability measure co. It  follows that lira sup I~1 -<- 1 - 1/n on R". This is sufficient 
to imply c~(?)~(l - l/n) -~. 

A subset TA ~= R ~ has projection property P(m, k) if there is an m_->k-dimen- 
sional subspace SC=Rn which contains a translate 9Jr' of  9Yt such that for each 
k-dimensional subspace K of S there is a set E c K  of  positive k-dimensional meas- 
ure and a function F: E ~ K  • such that (1) (z, F(z))~93t" for all z~E and (2) the 
directional derivatives of F relative to E exist a.e. in E for a fixed set of  k independent 
directions in K. The curve of  the previous theorem is a 1-manifold satisfying P(m, 1), 
for some m. Also, the Helson k-manifolds in R" which we construct later will sat- 
isfy P(n, k). 

4.5 Theorem. Suppose 9X~R" satisfies P(m,k).  Then ~(931)>=m/m-k~ 
n/n - k .  

Proof. It is sufficient to assume m=n since 9 ~ ' ~ R "  and ~(gX')--~(gX). 
We can also assume k <  n; otherwise c~(932) =~o  The partition P j--- { jk  + I: 1 <= 1<= k}, 
O<=j<n, of  the first nk positive integers will be used as an indexing aid in the finite 
induction process to follow. The partitions P~ which contain a multiple of  n will 
be called boundary partitions. Denote their subscripts by 0< j~< . . .  <jk=n-1  and 
set J0= - 1. The process to follow would be considerably simplified if k divides n, 
but  as given includes, for example, the possibility that (k, n )=  1. 

To begin, set B~j0= B~o=Hj0= {0}, set J=J0+ 1, let Kj be any k-dimensional 
subspace of B~. 0, and let E, F be the set and function corresponding to Kj which is 
guaranteed by (1) of  P(n, k). With g(z)=(z, F(z)) for z~E, Theorem 4.2 together 
with ( 2 ) o f  P(n,k) implies there is a subspace HsC=R", with dim(Hj)=>k, such 

that 9j-I~om,CCo(C(Hj, 0)) for any 0>0 ,  where E ' ~ E .  Note that H s. projects 
onto Kj, so we can (by picking a subspace if necessary) assume that this projec- 
tion is an isomorphism. Suppose Kj, Hi ,  vj have been defined for jo<j<l<j~. 
Choose for Kt any k-dimensional subspace of  (B~jo+Hjo+x+...+Ht_I) • and 
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obtain H~, v~ as above with l replacing j, again choosing Ht so its projection onto K~ is 
an isomorphism. Notice that dim (B,jo+Hio+X+...+Ht)=(l-jo)k+dim B2j o. For 
the boundary index one of two possible constructions is required. I f  P J1 ends with 
a multiple o f n  (i.e. n divides ( j~+l )k) ,  obtain Hj1 as above with l=j~, then set 
Baj=B2j= {0} and proceed as above with Jz, Jt+l replacing Jr-l, Jl. Otherwise 
pick any KjD(B~io+Hjo+I+...+Hjl_I)• of dimension k and obtain the 
corresponding Hja, via as before. Let BajICHj, be the subspace which projects 
isomorphically onto S, and let B2~I=B~c~H~. Now continue the construction by 
replacing Jl-l, Jl with Jr, Jt+l and repeating with J=Jt+ 1 and Kj=B~,, for 1 ~_l <- 
k - 1 .  One obtains n k-dimensional subspaces Hj and corresponding positive meas- 
ures vjEM(gJI) for O<=j<n. Notice also that Bzjo=B2jk={O}. We claim that 
any nonzero zER" satisfies nj(z)~O for at least k of  the projections hi: R"-'Hi, 
jo<j~_j~,. To see this fix any string J~<J<=Jl+x for some fixed O<:l<=k-1. If  
rrj(z)=O for each such j, then l > 0  and zCBaj, which is orthogonal to B~j,; hence 
z~(B%_+Hj,_~+x+...+Hj_O• hence rcj,(z)~O and ~c,(z)~O for some jz_l -<- 
r<j~. The claim follows by applying this to each string in order as O<=l~_k-1. 
In particular Theorem 4.2 (i) implies that for each nonzero zCR" the probability 
measure v=n-X~[lvjll-lvj, O<=j<=n-1, satisfies l imsup lg(rz)l<-(n-k)/n as 
Irl-+oo. 

To complete the argument note that the collection 

{z~R":llzl[ = 1, z6f(Hj,  e), Jt-l ~-J<=Yl} 

for fixed nonzero l<=k and any Q>0 is an open cover of  the unit sphere. Hence 
a compactness argument yields lim sup lg(x)l~_(n-k)/n as [[x[I-+~ on R". Since 
v6M(~) with norm 1, we can conclude ~(~)>=n/n-k. 

5. A Helson surface in R e 

Using Lemma 3.1, one may construct a Helson k-manifold in R" whenever 
n=lk where I is an integer no less than k + l .  We shall explain the procedure for 
the case k =  2, n = 6, carefully, and outline the rest. 

5.1 Theorem. There existg a surface ~OlC:R B such that ~ ( ~ ) : < 9 r  

Proof. Let us describe R e as the product of three planes: the X=(xx, x2)- 
plane, the Z=(zx, zz)-plane, and the W=(wl, w2)-plane, thus: 

Re = { (x l ,  x2, z2, wl ,  

Let ~x, Z~z, and nw be the canonical projections. We proceed by inductive steps; 
at the i th step we obtain a surface St made up of planar faces, on each of  which at 
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least one of  the three projections is constant-valued. As i-~o~, St approaches a 
2-manifold S0I, which will be a graph over the X-plane, and a Helson set. 

For the entire construction, fix an e>0,  to be prescribed later. 

Let V be a partition of [ - 2 ,  2] of mesh less than ~- .  Let {Rl,1} I be the collec- 
J . ,  

tion of  dosed rectangles, with nonoverlapping interiors R~ with the set of vertices 
V~ = VX V. Let % 1 be the center of  Rt,~, and let {Ck,a} be the like collection of  
closed rectangles with vertex set {et, a}. The union of  each collection certainly covers 

Given such a collection ~ =  {L~} of rectangles, denote by 3 (~) the set of  con- 
tinuous one-to-one mappings F: wkLk~R  2 that are affine on each L~ and such 
that the image of  the set of  vertices is independent. Thus each FE,~(~) preserves 
vertices, edges, and line segments contained within one Lk. Let s(E) denote the 
minimum distance between distinct points in a finite set E. 

Choose Fx,lE~({Rt,1} ) such that 

mesh Fx, i -- max I diam Fx,a (Rz, O <= mesh ({Rl,1}) 
and such that 

[L-JlFN, I(RI, I)] ~ ~ [ _ @ ,  @]2. 

Let O<~<ls(Fx,~(V~)) .  Let 
2 

6x, i = 6(Fx,a(VO, g, a), 
ex,1 = O(Fx,~(Vl), ~, o) 

as provided by Lemma 3.1. Choose t > 0  sufficiently small so that if *t is the vector 

(t,t), then {R,,,+~}, covers [ _ 3 ,  3 ] ~ a n  d 

IIFx,~(x--~ca)-- Fx, l(x)ll ~: 6 x y 2  
for all xE(w,(R, , t+h))c~(u  , R,,a). Then for each pair k , / ,  the two or fewer points 
of  the set OFx, i(Rt, i-zOc~OFx, l(Rk, 0 are contained in Fx, l(VO+U(fx,1/2). 

Let Fz, t and Fw, ~ belong to 3({Ck, t}). 
The surface Si is defined as follows. For xEFx, l(Ut Ri, a), define El(X) to be 

the set of  all points (z, w) such that for some pair k , / ,  

z = Fz, l(ct, O, w = Fw, i(et,,O, 
and 

Let 

where 

xE Fx,~ (R~,O c~ Fx,~(Rk,l-  ~O. 

Si = {(x, z, w)ER6: xEFx, l([..)iRl,1) and (z, w)EcoEi(x)}, 

coE  denotes the convex hull of  the set E. 
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Now we shall describe S 1 another way. Let Q~, Q~, Qa, and Qa denote the 
images under Fx,1 of a rectangle R~,t and its neighbors to the east, southeast, and 
south respectively. Denote the images of the translates by - z l  of those four 
rectangles by ~1, (~2, Qz, and 0~, respectively. Let el, e2, ca, and ea be the centers 
of Rt.~ and those neighbors, respectively, and let C be the rectangle that they det- 
ermine. Let 

(g l ,  if2) = r z ,  l(Ca), (~;, ~) =" rz.~(c~), 

(gl ,  Z~) = r z ,  1 (cO, (~1, z~) ---- r z ,  ~ (ca). 

Make the corresponding definitions with w and W in the roles of z and Z. At this 
point, the reader should draw a picture of the eight rectangles Q. The part of S1 
whose X projection is the union of Q~ with its northeast vertex and with the interior 
of its north and east edges consists of the following 16 planar faces, where we describe 
each according to the maximum number of intersections among the Q's and O's. 
Note that each of the two coordinate pairs Z and W is constant on 9 of the 16 faces; 
J( is constant on 4 of the 16 and on 5 more faces of S~ which are above the 
remainder of Q~. 

. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

1. {(x, z, 

Z. {(x, ~, 

3. {(~, ~, 

4. {(x, z, 

5. {ix, ~, 

(X, Z, 

{ix, ~, 

{(x, ~, 

{(x, ~, 

{(x, ~, 

(X, Z, 

{ix~ Z~ 

{(x,z, 

(X, Z, 

{i x,  Z, 

( X, Z, 

w): x ~ ' ~ ~  ' ~ ~  z 4 ,  z = (z l ,  z,), w = (Wl, w2)} 

w): xEO.~nO.,nQ ~ z = (z~, z2), wCco[(w~, w,), (oh, w;)]} 

o n 0 (Zl, z,), w (col, w~)} w): x ~ Q ,  0 8 ,  z = = 

w): x~Q, nQ~nO ~ zEco[(zl,  z2), (~1, z~)], w = (~o~, w;)} 

w): {x} = Q4nQ, nQ3n~2, zEco[(Zl, z2), ((1, z~)], 

w~co[(~o,, w~), (~o;, ~o~)]} 

w): x E ~ , n 0 ~ n Q  ~ z = (zl, z2), wCco[(o)l, w~), (~o;, ~o~)1} 

w): {x} = Q4nQzn0zn~lnQ ~ z = (zl, z2), wE Fw, t(C)} 

w): xE~,nOlnQ ~ z = ( ~ ,  ~2), wE~o[(w~, w,), ( %  ~o,)]} 

W): Xf['IOf') t'~0 (Zl,  Z2) , W (W1, (.02) } 

o -o (z~, z2), w (o~,  ~o;)} w): xEQ4nQ..,, z = -- " 

w): xEQ4nQanO. ~ zEco[(Zl, z2), (~1, z~)], w = (a~, col)} 
l P w): {x} ----- QlnQ2nQ3nQ4nQ ~ zEFz,I(C), w =(col, co~)} 

w): XEQlnQ~nO. ~ zEco[(z~, z~), (z~, (2)], w---(a~, o)~)} 

w): {x} --- Q4nQinQ~n02, zEco[(zl, z2), (z~, (~)], 

wEco[(wL o~), (~o~, o~)]} 
w): xEQ~nQ~nO. ~ zEco[(z~, z~), (z~, ~)], w = (w~, a~)}. 
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Note that the only points x above which both z and w are moving lie within 
~x,1/2 of  the northeast vertex. 

By describing how $2 is defined after $1, we shall make clear how the sequence 
of  surfaces {Si} is defined. 

Let {s~} and {ti} be increasing finite sequences such that {(si, tj)} is the set of  
vertices of  a collection ~ of  rectangles. Let g~=(s~+s~+l)/2, ~=( t j+ t j+O/2 .  Let 
be a similarly described collection of  rectangles, with vertex set {(p,,, q.)}, such 
that {p,,}n{s~}=0= {q.}n{tj}, such that each rectangle in ~ contains several in ~ ,  
and such that the union of  ~ contains the union of  ~. When those properties hold, 
we call ~ an overlay o f  P,. 

1 
Fix i. Let 0<]3<- - .  Identify m such that g~E(p,.,p,,+l). For each l such 

2 
that p~E(s i, s~+l), except the smallest and the largest such l, define 

p; = ~ + fl ( p , -  p~). 

For the value of  l such that ~'iE(Pt-1, Pt), define 

p; = sl § fl ( P t -  si). 

For the value of  I such that s~+~E(pt, P/+I), define 

p[ = Si+l--f l(Si+l--pl  ). 

Note that for all l except those two, 

P; + 1 -  P; = fl (P, + I -- P,). 

Obtain {q~} similarly. The collection of  rectangles ~ = q3(~B) with vertex set {(p;, qs 
is the fl-distortion o f  f8 relative to P~. The rectangles of ~3 are in one-to-one corre- 
spondence with those in ~3 (~3), by means of  the mapping 

qg: [Pt, P,+I]X[qk, qk+l] -~ [Pf, p[+t]X[q;,, q~+l]. 

Let E be the collection of  rectangles whose vertices are the centers of  rectangles 
in ~3. The mapping F defined on the centers of  ~ by: 

F(center B) = center ~o (B) for BE~B, 

extends to a continuous map F from the union of ~3 onto the union of  ~ which is 
affine on each rectangle in g. If  BE~3, LEs and BC=L ~ then 

F(center B) E fl (L-- center L) + center L. 

I f  on the other hand Bnc3L~O, then F(center B) lies on the Same side of  L as 
center B. 
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We obtain $2 as follows. Let 

0" 1 = mJn{s(Fx,  l(V1)), s(FT, l({ct,1}): T = Z  or W} 

~1 = min{6x,1/4, 6(Fr, x({C,,~}), ~, 0"1): T = Z or W}, 

01 = min{0x,~, 0(Fr,~({ct,~}), e, 0"~): T -- Z or W}. 

Choose /~1>0 and 0<~<l]zl lJ /10 so that on UkRk, l: 

LIx-yl l  < ~ =,  IIFx, x(x)-Fx,~(y)ll < ~ / 1 2 ,  
and 

Ilx-yl[ < Px mesh ({Rk.1}) =~ [[ Fr, l(x)-- Fr, I(Y)I[ < 61/12 

for T = Z  and W. 

Let ~B be a collection of  rectangles with mesh ~B < 6~ such that both ~B and ~B + zl 
are overlays of  {Rk,1}. Let ~ and ~" be respectively the/~l-distortions of  ~B and 
~ + ~ 1  relative to {Rk,1 }, and let F, q~; F ' ,  q~" be the corresponding maps. Let 
{Rk,2}=~B, ek,2=center Rk,3; and let ~ =  {Ck,3} be the collection of  rectangles with 
vertex set {ck 2}. Denote the vertices of  {Rk,3 } by V3. Choose Fz,2, Fw,3E~({Ck,2 }) 
so that on Uk Rk, 3: 

1 
HFz,2(x)- Fz, I ( F(x))II ~ -~ s( Fz,I (F(V2))) 

and 

! Fw,2(X)--Fw, I(F (X +'q))l[ < s(Fw, I(F"(V2§ 

Were it not for the requirement that {Fz,2(Ck,3)} be an independent set, Fz, lOF 
would serve as Fz,2; as it is, we must choose a slight perturbation. Then we choose 
Fx,2E~({Rk,2}) such that on V2 

Il F x , 2 ( x ) -  Fx, l (x)ll < l s( Fx, l (V3)). 

Finally, we carry out the selection of  z2, 6~,3, Q~,3, E3, and the definition of the 
surface $3 following the procedures described above for when the subscript has 
value 1. 

We claim that 
$2 c= $1 + U(61/2) 

and 
3 

mesh $2---max {diamP: P is a planar face of $2} < ~-mesh $1. 

To verify the latter note that if Rt3nCk~O, then F(c~3)ECk~. Moreover, if clz, 

c j3 are adjacent centers, then ][ F(ct3)- F(c~3)ll < 1  mesh (nl (c~x})) or 2 mesh (n3({Ctl})) 
2 
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depending on whether c~2, c j2 lie on a horizontal or vertical segment (rcj denotes 
1 

projection onto jth coordinate). It follows that diam F(Ckz)<-~ mesh {Ckx}; hence 

mesh F({Ck2})<---19 mesh {Ckl}. But each F(Ck2)cCjl for some j  and Fz,1 is affine 

1 
on Cjt. Hence mesh Fz, l(F({Ck2}))<-~mesh Fz, l({Cka}). Since Fz,2 is only a 

slight perturbation of Fz, I (F  ) (they differ by less than 6t/16), mesh Fz,2({Ck2})< 
5 
- - m e s h  Fzx({Ckx}). A similar argument applied to F" and Rl2+v 1 yields the 
8 
same result for Fw,2. That, together with mesh Fx,2({Rt2})<<mesh Fx, l({Rtl}) and 

3 
the manner in which $2 is constructed yields mesh ($2)<--  mesh ($1). 

4 
To show that S2cS~+U(6J2), we must be more careful. Let x~rcxS 2 and 

x~=F~,~ (x). Recall that for any Rk,2, the image Fx, l(Rk,2) is contained in a disc of 
radius cq=61/12 (by our choice of mesh ({Rk,2})), Fx,1 and Fx,2 differ by at most 
~1/4 on the vertices of Rk, 2, and Fx, 2 is affine on Rk,2. Hence ]]Fx,2(u)--Fx, l(v)] [ < 
3~1/2 for any u, vE Rk, ~. Let ~0j be the maps given by ~0~.(Rk, j) = center Rk, j for j =  1, 2. 
We will say that u, v are linked if there are three or less distinct rectangles Rx, R2, R3C 
{R~,2} satisfying vCRx, R~c~R2r eR2nR3, and uER~. To establish our claim we 
consider whether or not x2 is "close" to the boundary of some Rk, x, Rk, 1--TI, or not, 
where close is defined as linked. In particular, each v that is linked to x2 satisfies 
either (1) vCV1-T~wV~, or (2) vEw[{OR~,~}w{OR~,~-v~}], or (3) all other cases. 
Pick a v whose case number is minimum. Suppose it is (1) and v~ Vx. Then x2 is not 
linked to any v'~{0R~,~-z~}; otherwise lie'-vii<=6 mesh ({R~,2})<6]I~II[/10, but 

Ilu-v-~xll-->ll~dl/~ for any u~ [._Jk ORk,~ since t1~1[ <<S(gx) and zt=( t ,  t), some t. 
Let x2+'c~6R~,~ and x~+%~R4~{Rk,2}. It follows that F'(~p2(R4)+'q)~oa(R,,O+ 
U(e2), where e2<fl~mesh ({R~,I}); hence Fw,~[F'(ep2(R4)+z~)]~Fw,~(~Pl(R,,1))+ 
U(~x); hence Fw,~(~p2(R,))6 Fw, x((px(R~,O)+ U(3~t/2). Since W2=rcw[gxt(X)CaS2]= 
co {Fw, 2 (~o~ (Ra)): R, ~ {R~, 2}, x2 + v~ Ra} and W~ = zc w [TZx t (v)c~ S~I = {Fw, l(q~l(Rt, ~))}, 
we conclude that W ~  W~+ U(3~/2). For the z-projections observe that v--cen- 
ter C~,1, some k; hence Rz~ C~,~ (mesh ({Rk,~})<<s(VO); hence F(Ra)~C~,~; hence 
Fz, x[F(ep2(R3))]EFz,~(C~,O; hence Fz,2(~oz(R~))~Fz,~(C~,t)+U(3e~/2). Thus, as 
before for Z2=~z[r~x~(x)~S2] and Zl=rcz[rCxa(v)~Sd we have Z2~Z~+ 
U(3eJ2). Since 

ll Fx, l ( v ) -  gx,~(x2)ll ~ Il gx,~ (v)-- F~,~ (u)ll + ll Fx,l (U) -  xll < 5~  

uER3, we conclude I-IxI(x)~S2c[[][xlFx,!I(v)~S1]'-[-U(6~I). If  vCVI--~x for 
similar argument gives the same conclusion. 
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Next suppose (2) is the minimum case number. Observe that if x~ is linked 
to vCORk,1 and to v'CORl, l - Z l ,  then x~ is linked (possibly thru corners) to a 
vEORt, l-ZlnORk,1; when that happens, pick such a common v. Using the nota- 
tion and estimates of  the preceding paragraph, we conclude that at least one of  Z1 or 
W1 is a segment with the other possibly a singleton, that Fz, I[F(q~3(Ra))]EZI+ 
U((~I) , and that Fw,I[F'(cp~(R,)-q-T1)]EWlq-U(cq); hence 

Fz,I(q~3(Rz))~ZI + V(3~I/2), Fx,~(~o2(Ra))EWI-b U(3~1/2), 

and [[Fx,l(v)-xlI<5~l. Thus rCxa(X)C~S~=[rcxl Fx, l(v)c~S1]+ U(6~zO. 
Finally, if (3) is the minimum case number, then x2~R~,l--~lC~R~ for some 

k, l, F(q~(R~))~q~(Rk, O+ U(~), and F'(q~(R4)+ Xl)~q~(Rt,1)I+ U(~); hence 
Fz,2(cP~(R3))C Fz,1(q91(Rk;1))+ U(3oq/2), Fw,2(q92(R4))E Fw, l(q~l(Rt,1))-k U(3~i/2), 
and IlFx, x(x~)-xll<3~l/2. Thus nx~(x)nS3c [rcxl(Fx, a(x))c~S,] + U(3~1). 

At the itn step we obtain {Rkik, {Cu},, Vi, {Ckt}k , 6x, i, ~x,~, % Ei, S~, 6~, ~ 
with S~+xcS~+ U(6J2). Since 6~+~<6J2, it follows that {S~} must approach some 
set ~J/', contained in S~+ U(6i) for each i. Set ~/=gJ/'nZCxl([0, 113). We claim 
that 931 is the graph of  some continuous H:  [0, 1]~>R 4 and that ~IR is Helson. 
At least ~0l is the graph of  some H, since mesh (S~)--,0. I f  H is not continuous, 
then there is an x~[0, 1] 3, i0, and a 6 > 0  so that for all ~ > 0  and all i>=io we 
have (7~xX(X)('~Si)"~U((~)~z~xX(XdI-U(e)). But fix i>=io so that mesh (S~)<c5/2, 
set ~ =zJ2 ,  and let y~x+ U(e). Then E~(y)wE~(x)= Fz, ~(Cu) • Fw, ~(Cu) for some 

/, a set whose diameter <-1/2 mesh (St)<6. It  follows that H must be continouus. 
Finally, we verify that 9J/ is Helson and give an upper bound for its Helson 

constant. Let /t be a regular Borel measure supported on ~ with II~ll = 1. Let 
~ > 0  and choose f~c(gJl) so that I f [ ~ l  and I I - f fd l t l< ~. E x t e n d f  to a uni- 
formly continuous function on R n of  norm 1. Denote that extension byfa l so .  Choose 
0 < 6 < ~  so that [[f-f~l]=<O/4 whenever [lYll<& Fix i so that mesh(S~)<6. 
Then 6~<<~i<_- 0x,~mesh (Si) and ~tl= S~+ U(6i). Set Hx(~)=nxl(Fx,~(Vi)+ U(o~)) 
for ~=6x,, and Ox,, and HT(~)=rCT~(FT,,({C~,})+U(o0) for ~=6,  and 0, and 
T=Z and W. Let (xk, Zk, COk)ErCz'(Fz, i(Ckt))oSi where (of course) zk=Fz.i(ckt ) 
and let (x,z, co)~Tz,~(~)=_z~zl(Fz,,(c~,)+U(~))c~(S~+U(6~)) where ~=6,  and ~,. 
For  now, consider only ~ = 0i. Then z~zk+ U(O~) and there must be an (x' z', co')~ St 
such that Z'~Zk+ U(ot+6~) and such that (x, z, co)E(x', z', ~')+ U(6~). Since 
[Fz, t (c~t) + U(O, + 6,)] n Fz,, ({c~,}j) = {Fz, ~ (Ck~)} , it follows that xk, x'~ Fx,, (Rk~) where 
center Rt,,~=ck~; hence co~, co'EFw,~(Cu) where C u has c~ for a vertex. That is, 

II(x~, z~, ~o~)- (x, z, ~o)11 ~_ll(x~, zk, ~o~)-(x', z', o~')11 +aS= [l(x~, ~o~)- (x', ~o')11 + 
+ Iz,,-zq+a,~- t/~ mesh (S~)+ ~ + 2 6 t <  46. 
It follows that [f(y)--f(Xk, Zk, CO~)[< 0 for Y~Tz,~(0~), that the {T~,~(e3k are 
disjoint, and that Hz(~)o[S~+U(ai)]=~kTz,~,(O~). Since 6~<~, the same is true 
when 6, replaces ~ ;  since Z, W are sYmmetric cases, the same is true for Trv, t(c~) 
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where ~=6~ or ~t. The argument for X is slightly different. Let  xtiE Vi, let 
(xz, zt, wl)Ezrxl(Fx, i(Xu))C~S~ where xl=Fx, l(xu), and let (x, z, co)ETx, t(oO-~ 
ZCxl(Fx, t(xu)+U(~))n(Si+U(J~)) where c~=~5x, , and Qx,,. Again set ot=Ox,~. 
Then there must be some (x', z', co')ESi such that x'Exl+U(Ox,~+6t) and such 
that (x, z, co)E (x', z', co')+ U (6i). Thus zt, z'E Fz, i( Ckh and co t, co" E Fw, i(Ck3 where 
xuECkt. As before, it follows that [l(xt, zl, cot)-(x, z, co)1[<46 and hence that 

]f(y)--f(xl, zl, cot)[<O for yETx, z(cO, where ot=fx, t and Ox, i. Now recall that 
the only planar sections in St on which both z and co vary lie in Hi(fix, J2 ). Thus 
if (x,z, co)ESi+U(6i) and if neither [z--Fz, i(cki)[<6 i nor [o)--Fw, t(cki)[<6i for 
some k, then ]x-xtl<6x, J2+6i<33x, i/4. Thus Si+U(fi)c:Zttx(fx,~)WHz(6i)u 
Hw(6i). Indeed each of  those three sets contains at least 9116 of St+ U(fii) in 
the sense that each contains a fit-band about 9 of  the 16 planar sections of  
ZCxl(Fx, t(R;,,t))nSt, where R~,t is the union of  R~,t with its nor th  vertex and the 
interior of  its north and east edges. I f  Px, #z, and #w denote the restrictions of # to the 
sets Hx (fix, ~), Hz (6i), and Hrv (6i), respectively, then at least one of them, say/~r, must 

satisfy II#rll=>l/3. Of course [ffdlzr-Ill~w[l[<o. I f  T = X ,  let 6r=6x, i, Or=Ox, t, 
and let FT be the finite set Fx, t(Vi); otherwise, let 6r=6t, Or=e. FT=Fr.t({%~}). 
Let tr=s(Fx, t(Vt) ). Then th<-a<6<O. Applying Lemma 3.1 with 6r,  0r ,  F r  
in the roles of  6, 0, F, we obtain a certain gEA (R2). (Note that the presentfrestr icted 
to the finite F r is a convex combination of  functions of  modulus 1 on F t . )  Hence 
there exists hEA(R 6) such that: [f(y)-h(y)I<20 on Hr(fr)n[S~+U(6i)]; 
largf(y)-argh(y)l<2~o on Hr(Qr)n[Si+U(ft)]; lh(y)[<=~ ~ elsewhere; and 
Ilhlla-<_~ -1. By denoting the characteristic functions of  H r ( f r )  and Hr(or)\Hr(6r) 
by Z1 and Z2, wecan therefore write If hd [= If hx a + f hz2d#+ f h(1-Zl-xz)dp[= 
]f fZld~+ f [hlfz2dI~[+A>-f zldII~I+ f z2d]N-o+A>-I /3 -o+A,  where [h[~-20+ 
e22/3. It  follows that [1/~11~->~(1/3-3~-~22/3). Letting 0-~0 yields II/~11~ 
e(1-2e2)/3. That expression is maximized when e~= 1/6. With that value of  e 

in use throughout the construction we obtain ~(~0/)<9 3 t ~ .  The theorem is proved. 
Evidently a similar construction using n +  1 copies of  R ~ instead of  3 and 

n - 1  distinct translation v e c t o r s  z i j = ( t i j  , tij ) for  l<-j<=n-1 at the i tla stage of  
the construction yields the following situation. The surface St above Fx, t(R~,~) 
has n~+2n~+n ~ planar faces (not counting those on the south or west edges of 
Fx, t(R~,~); they are counted for a different k). The first n ~ are X-planar faces; 
the 2n ~ occur over edges but not the intersection of  edges; the last n 2 occur over the 
intersections of  edges. Form the n +  1 corresponding Hi (e ) ,  Hz(e),  Hw(e), .... Each 
point in S t lies in at least n -  1 of  these sets since at most two variable pairs are non- 
constant on each planar section of  St. In particular if  I~EM(Si) and if  #1, ...,/t,+~ 
denotes the restrictions of  # to Hi ,  Hz . . . .  , then ~ [[#j][ -->(n- 1)[Igll; hence 
][/~[I >=[(n-1)/(n+l)]l[#[I for somej .  It follows that [I/~[l=_->~(n-l-2ez)/(n+ 1) for 
all 0 < e < l .  Thus e(ggl)<=2(n+l)[3/2(n-1)] 3/2 for n<-7 and e(~Yt)<=(n+l)/(n-3) 
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for n->7. In terms of  the even dimension d of  the space containing the 2-manifold 
9Jl, that becomes ~ ( ~ ) ~ d [ 3 / ( d - 4 ) ]  3/2 for d<-16 and ~ ( ~ ) ~ d / d - 8  for d~16.  

The construction of  a Helson k-manifold using n +  1 copies of  R k for n>-k 
can be carried out in a similar manner that we briefly describe using the obvious 

extensions in notation. Denote the n +  1 copies of  R k as Xo, X1 . . . .  , Xn (pre- 

viously, X=Xo,  Z = X I ,  W = X z )  and the n - 1  translation vectors at the ith stage 

by zi,j=(ttj . . . .  , ttj) for l<=j<-n-1. Define the k-dimensional faces of  St in a 
manner analogous to k = 2 and observe that each of  those faces occurs either above the 

interior of  at least one of Fxo, i(Rt, i), Fxo, i(Rl, i-'ci,1) . . . . .  Fxo, i(.Rl, i--'Ci, n_l) or 
otherwise lies above the intersection of  the boundaries of  k-distinct choices of  these 

k-rectangles. This latter case can only occur close to the vertices of Fxo, i(Rt, i), where 
"close" is determined completely by the selection of  the translation vectors. Thus 

on each face of  St either at least one of the Xj coordinates is a vertex of  Fxj,,({Cl, t}) 
for l<=j<=n or the X 0 coordinate is essentially in Fxo, t(Vi). The remainder of  
the construction offers no surprises. For  n--k ,  this yields the optional e2=l/3k 

and the corresponding ~(~)<]/3"-k3(k+l) /2 .  For n>k ,  one obtains ~ l l # j l l _  -> 

(nq- 1-k)[l~[I; hence II~jll > ( 1 - k / n +  1)11~11, hence II~ll~ >~(n+ 1 - k - e 2 k ) / n - b  1; 

hence the optimal e2 = min ((n + 1 - k)/3k, 1); hence c~(~g/) < �89 (n + 1) 1/27k/(n + 1 - k) 3 

if n+l<_-4k and ~ ( ~ ) < = ( n + l ) / ( n + l - 2 k )  if n+l=>4k.  

In terms of  the dimension d, our efforts yield a Helson k-manifold ~ in R d 
where d = l k  and l>-4k with d/(d-k)<=d/(d-2k2).  For k + l < - l < 4 k ,  the upper 

bound is somewhat worse. The spread between the lower and upper bounds obtained 

may well reflect our lack of  attention to the wealth of  arithmetical relationships 
which exist on these highly nonconvex manifolds. The right analysis there would 

presumably raise the lower bound, but it eluded us. Those same relationships may 
prevent the occurrence of Helson k-manifolds in _R d for d too close to k. For example, 

it seems quite likely that a Helson 2-manifold cannot exist in R 3 but can in R 4. The 
best we can do is R e . 
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