On polyharmonic continuation by reflection formulas

Lars Nystedt

1. Introduction and summary*

Let Ω be an open connected set in \mathbf{R}^{n}, which is contained in the half space $\mathbf{R}_{+}^{n}=\left\{x: x_{1} \geqq 0\right\}$, and let an open connected subset ω of the boundary of Ω be situated in the hyperplane $x_{1}=0$. Then $\Omega \cup \omega$ is open in \mathbf{R}_{+}^{n}. A p-harmonic function in Ω is a $2 p$ times differentiable solution of the equation

$$
\begin{equation*}
\Delta^{p} u=0, \quad u \in C^{2 p}(\Omega) \tag{1.1}
\end{equation*}
$$

where $\Delta=\sum_{l=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ is the Laplace operator. We denote the set of all such functions by $H^{p}(\Omega)$. It will be seen that if $u \in H^{p}(\Omega), u$ is in fact analytic in Ω. We shall consider functions $u \in H^{p}(\Omega)$ which also satisfy a set of p boundary conditions

$$
\begin{equation*}
\lim _{x_{1} \rightarrow+0} q_{i}\left(D_{1}\right) u\left(x_{1}, x^{\prime}\right)=0,\left(0, x^{\prime}\right) \in \omega, \quad i=1, \ldots, p \tag{1.2}
\end{equation*}
$$

where $q_{i}\left(D_{1}\right)$ are linearly independent polynomials in $D_{1}=\frac{\partial}{\partial x_{1}}$, with constant coefficients and x^{\prime} denotes $\left(x_{2}, \ldots, x_{n}\right)$. In (1.2) we do not suppose x^{\prime} to be fixed as $x_{1} \rightarrow+0$. We shall also use the notation $q_{i}\left(D_{1}\right) u(x)=o(1)$ as $x_{1} \rightarrow+0$. It will be shown that these functions can be continued as polyharmonic functions across ω into the half space $\mathbf{R}_{-}^{n}=\left\{x: x_{1}<0\right\}$. Very general theorems of this type have been given by Hörmander in [7], where he considers solutions of general elliptic and hypoelliptic differential equations with constant coefficients.

[^0]His results, however, do not tell anything about the extent of the domain into which the continuation is possible. An example of the type of theorems we are aiming at, is the Schwarz' reflection principle, stating that a harmonic function defined in Ω, satisfying the single condition

$$
\lim _{x_{1} \rightarrow+0} u(x)=0, \quad x \in \Omega
$$

can be analytically continued by the formula

$$
u\left(-x_{1}, x^{\prime}\right)=-u\left(x_{1}, x^{\prime}\right) \quad\left(x_{1}, x^{\prime}\right) \in \Omega
$$

into the whole of the domain $\Omega_{1}=\Omega \cup \omega \cup \Omega$, where $\underline{\Omega}$ is obtained by reflecting Ω geometrically in the plane $x_{1}=0$, (fig. 1).

Fig. 1
It was proved by Almansi [1] that, under certain conditions on Ω, a function $u \in H^{p}(\Omega)$ can be represented by p functions $v_{j}, j=0,1, \ldots, p-1$, each of which is simply harmonic in Ω, in the following way (Theorem 2.2)

$$
\begin{equation*}
u(x)=\sum_{j=0}^{p-1} \frac{x_{1}^{j}}{j!} v_{j}(x) \tag{1.3}
\end{equation*}
$$

In a closed sphere $S_{R}\left(x_{0}\right) \subset \Omega$ with center x_{0} and radius R, we can also represent u as (Theorem 2.4)

$$
\begin{equation*}
u(x)=\sum_{j=0}^{p-1} r^{2 j} w_{j}(x) \quad r \leqq R \tag{1.4}
\end{equation*}
$$

where $w_{j}, j=0,1, \ldots, p-1$ also are harmonic and r denotes the distance from x to x_{0}. Formulas (1.3) and (1.4) are usually called Almansi representations.

The representation (1.4) can be used to prove a mean value theorem for polyharmonic functions. Let $M_{R}\left(f, x_{0}\right)$ denote the arithmetical mean value of f over the boundary of the sphere $S_{R}\left(x_{0}\right)$.

Then we get (Theorem 2.4)

$$
M_{r}\left(u, x_{0}\right)=\sum_{j=0}^{p-1} A_{n, j} r^{2 j} \Delta^{j} u\left(x_{0}\right) \quad r \leqq R
$$

where $A_{n, j}$ are constants which depend only on j and the dimension n. We use this to show that if u, given by (1.3), has the property

$$
u\left(x_{1}, x^{\prime}\right)=o(1) \quad \text { as } \quad x_{1} \rightarrow+0 \quad x^{\prime} \in \omega
$$

then

$$
v_{0}\left(x_{1}, x^{\prime}\right)=o(1) \quad \text { as } \quad x_{1} \rightarrow+0 \quad x^{\prime} \in \omega \quad \text { (Theorem 2.5) }
$$

This was proved in the biharmonic case by Duffin [5].
With help of these theorems, we shall prove in section 3 (Theorem 3.1), that a p-harmonic function satisfying the p conditions (1.2) can be analytically continued into the domain Ω_{2}, defined as follows. Let $\Omega^{\prime} \subset \Omega$ have the property

$$
\begin{equation*}
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Omega^{\prime} \Rightarrow\left(t_{1}, x_{2}, \ldots, x_{n}\right) \in \Omega \text { all } t_{1} \text { such that } 0<t_{1} \leqq x_{1} \tag{1.5}
\end{equation*}
$$

Then $\Omega_{2}=\Omega \cup \omega \cup \underline{\Omega}^{\prime}$, where $\underline{\Omega}^{\prime}$ is obtained by reflecting Ω^{\prime} geometrically in $x_{1}=0$, (fig. 2).

Fig. 2

Such theorems have already been given when the boundary conditions (1.2) are those of Dirichlet:

$$
q_{v}\left(D_{1}\right) \equiv D_{1}^{v-1}, \quad v=1, \ldots, p
$$

namely for $p=2$ by Poritsky [13] and Duffin [5], and for general p by Huber [6]. Huber proved that the continuation in this case is given by the formula

$$
\begin{equation*}
u\left(-x_{1}, x^{\prime}\right)=(-1)^{p} \sum_{i=0}^{p-1}(-1)^{i}(i!)^{-2} x_{1}^{p+i} \Delta^{i}\left(\frac{u\left(x_{1}, x^{\prime}\right)}{x_{1}^{p-i}}\right) \tag{1.6}
\end{equation*}
$$

Here the continuation is possible into Ω_{1}.
Some authors have also studied the problem of the continuation of the solutions of other partial differential equations than (1.1), when the boundary conditions are those of Dirichlet. See Canavan [2], John [9] and Lewy [11].

In the sequel $Q(D)$ (and $Q(x, D)$) denotes a differential polynomial in all $D_{\imath}=\frac{\partial}{\partial x_{\imath}}, l=1,2, \ldots, n$. We shall also use the notation $Q\left(D^{\prime}\right)$ for a differential polynomial in the "boundary" differentials $D_{i}, l=2,3, \ldots, n$, only.

In section 4-7, we study such boundary conditions (1.2), for which a reflection formula of the form

$$
\begin{equation*}
u\left(-x_{1}, x^{\prime}\right)=Q(x, D) u\left(x_{1}, x^{\prime}\right), \quad x \in \Omega \tag{1.7}
\end{equation*}
$$

exists, where Q is some differential operator, and we also study the form of the corresponding operator $Q(x, D)$. In doing so, we assume that the p polynomials q_{v} are homogeneous, that is of the simple form

$$
\begin{equation*}
q_{i}\left(D_{1}\right) u\left(0, x^{\prime}\right) \equiv D_{1}^{v_{i}} u\left(0, x^{\prime}\right)=0 \quad 0 \leqq v_{1}<v_{2}<\ldots<v_{p} \tag{1.8}
\end{equation*}
$$

rirst, in section 4, we prove two auxiliary theorems which are, however, interesting in themselves. Let $H^{p}\left(\mathbf{R}^{n}\right)$ denote the set of all functions which are p-harmonic in the whole of \mathbf{R}^{n}. Let $Q(D)$ be a differential operator with constant coefficients and such that for a certain point $y=\left(y_{1}, y^{\prime}\right)$,

$$
[Q(D) u(x)]_{x=y}=0
$$

for all $u \in H^{p}\left(\mathbf{R}^{n}\right)$ satisfying (1.8). If $y_{1} \neq 0$, then $Q(D)$ contains the factor Δ^{p}, that is:

$$
Q(D)=P(D) \Delta^{p}, \quad(\text { Theorem 4.1) }
$$

If $y_{1}=0$, then

$$
Q(D)=\sum_{i=1}^{\dot{p}} P_{v_{i}}\left(D^{\prime}\right) D_{1}^{v_{i}}+P(D) \Delta^{p}
$$

where the $P_{v_{i}}\left(D^{\prime}\right)$ are operators in the boundary differentials only, (Theorem 4.2 and Corollary 4.1). Both theorems are stated for more general boundary conditions than (1.8).

In section 5 we first prove that if there is a differential operator $Q(D)$ with constant coefficients and such that (1.7) is valid for a single point $x=y$ with $y_{1} \neq 0$ and all u satisfying (1.8) which are p-harmonic in R^{n}, then there is an operator $Q_{1}(x, D)$ of the form

$$
\begin{equation*}
Q_{1}(x, D) \equiv \sum_{\alpha} \sum_{\beta<p} A_{\alpha, \beta} x_{1}^{\alpha+2 \beta} D_{1}^{\alpha} \Delta^{\beta} \tag{1.9}
\end{equation*}
$$

such that (1.7) is valid with $Q=Q_{1}$ and for every x (Lemma 5.1). Since

$$
\left(Q(D)-Q_{1}(x, D)\right) u(y)=0
$$

for all $u \in H^{p}\left(R^{n}\right)$ it follows that $Q(D)=Q_{1}(y, D)+p(y, D) \Delta^{p}$. Hence Q and Q_{1} differ only by terms containing the factor Δ^{p}. After proving that Q (or equivalently Q_{1}) must map the set H^{p} of all p-harmonic functions in itself we prove that the set of operators of the form (1.9) mapping H^{p} into itself is p-dimensional. Because of this, we can prove (Lemma 5.3), that such a Q_{1} can be brought into the form

$$
\begin{equation*}
Q_{1}(x, D) u \equiv \sum_{i=0}^{p-1} B_{i} x_{1}^{p+i} \Delta^{i}\left(\frac{u}{x_{1}^{p-i}}\right) \tag{1.10}
\end{equation*}
$$

Since $Q_{1}(x, D)$ in (1.10) is invariant if we replace x_{1} by $-x_{1}$ we get using (1.7) twice that

$$
\begin{equation*}
Q_{1}^{2} u-u=0 \tag{1.11}
\end{equation*}
$$

for all $u \in H^{p}$ satisfying (1.8). Having proved in section 4 that (1.11) must in fact be valid for all $u \in H^{p}$, if it is valid for all $u \in H^{p}$ satisfying (1.8), we prove (Theorem 5.2), that precisely 2^{p} of the operators $Q_{1}(x, D)$ of the form (1.10) have the property (1.11), and denote this last set of operators by T^{p}.

Hitherto we have supposed that a set of boundary conditions (1.8) is given, and have obtained necessary conditions on the operator Q_{1} in order that Q_{1} be a reflection operator in the sense that (1.7) holds for all u satisfying (1.8). These conditions may be summarized: Q_{1} must belong to T^{p}.

In order to obtain sufficient conditions, we reverse the reasoning in the following way. Let Ω be as defined above and let Q be an arbitrary operator such that $Q u \in H^{p}(\Omega)$ if $u \in H^{p}(\Omega)$. For a given $u \in H^{p}(\Omega)$, define a continuation of u into $\underline{\Omega}$ by means of (1.7). A necessary and sufficient condition for u thus defined in $\Omega \cup \underline{\Omega}$ to be p-harmonic in $\Omega_{1}=\Omega \cup \omega \cup \underline{\Omega}$ is that u is continuous over ω together with its $2 p-1$ first derivatives. This furnishes $2 p$ boundary conditions on the function u to be continued by Q. Analytically expressed, these conditions are

$$
\begin{equation*}
q_{j}(D) u\left(0, x^{\prime}\right)=0, \quad j=0,1, \ldots, 2 p-1 \tag{1.12}
\end{equation*}
$$

where $q_{j}(D)$ is defined by

$$
q_{j}(D) u\left(0, x^{\prime}\right)=\lim _{x_{1} \rightarrow 0}\left[D_{1}^{j} u\left(x_{1}, x^{\prime}\right)-(-1)^{j} D_{1}^{j} Q u\left(x_{1}, x^{\prime}\right)\right] .
$$

We shall call them the boundary conditions corresponding to Q.
For some operators Q, the corresponding boundary conditions may be reduced in number. We define two sets of operators, S^{p} and $M^{p} . Q \in T^{p}$ is said to belong to S^{p} if out of the $2 p$ corresponding boundary conditions (1.12) we can find p conditions such that if they are satisfied by u, then the remaining p conditions are automatically satisfied.
$Q \in T^{p}$ is said to be in M^{p}, if there is a set of p boundary conditions of the special type (1.8), such that if they are satisfied, then the $2 p$ boundary conditions corresponding to Q are also satisfied.

The first main result of section 7 is that M^{p} contains $p+1$ elements. All operators Q in M^{p} and their corresponding boundary conditions are listed, (Theorem 7.1). The second main result is that S^{p} and T^{p} are equal, (Theorem 7.3). The vital idea in the proofs of sections 6 and 7 is to proceed by induction in the order of harmonicity. To each operator $Q \in T^{p}$ written in the form (1.10) we define an operator Q^{*} by (Definition 6.3).

$$
Q^{*}(x, D) u=-\sum_{i=0}^{p-2} B_{i} x_{1}^{p-1+i} \Delta^{i}\left(\frac{u}{x_{1}^{p}-1-i}\right)
$$

It is shown that $Q^{*} \in T^{p-1}$. We then define the boundary conditions $q_{*}^{j}(D)$ corresponding to Q^{*} by

$$
q_{j}^{*}(D) v=\lim _{x_{1} \rightarrow 0}\left[D_{1}^{j} v\left(x_{1}, x^{\prime}\right)-(-1)^{j} Q^{*} v\left(x_{1}, x^{\prime}\right)\right]
$$

It turns out that, apart from a term containing Δ^{p-1},

$$
q_{j}^{\prime}(D)=j \cdot q_{j-1}^{*}(D), \quad j=1, \ldots, 2 p-1
$$

where $q_{j}^{\prime}(\xi)$ denotes $\partial q_{j} / \partial \xi_{1}$ (Lemma 6.8). This observation is the main point in the induction step.

In the final section 8 we deal with sets of boundary conditions (1.8) for which there do not exist reflection operators Q of purely differential type. A p-harmonic function satisfying such boundary conditions is continued by an operator containing integrations, and the continuation is therefore only proved up to Ω_{2} (fig. 2).

Acknowledgement

I wish to convey my sincere thanks to Professor Lars Hörmander who suggested this problem to me and gave me invaluable guidance during my work. I also want to thank the late Professor Otto Frostman for his interest and encouragement in my work. Finally my sincere thanks to collegues and many others who have helped me to complete this study.

2. Integration and representation of polyharmonic functions

Let Ω be an open set defined as in the introduction and let u be harmonic in Ω. Since a harmonic function u in Ω is analytic, see Courant-Hilbert [3] p. 269, it is clear that any derivative of u is harmonic in the whole of Ω. We shall now study the existence of a harmonic primitive function to u. Such a function does not necessarily exist in the whole of Ω for all Ω, and we must therefore impose some restriction on Ω. With future application in mind, we choose to assume that u is defined in an open set $\Omega_{\varepsilon} \subset \Omega$ with the property (see fig. 3)

Fig. 3

$$
\begin{equation*}
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Omega_{\varepsilon} \Rightarrow\left(t_{1}, x_{2}, \ldots, x_{n}\right) \in \Omega \quad \text { all } t_{1}, \quad 0<t_{1} \leqq T_{1} \tag{2.1}
\end{equation*}
$$

where ε is a positive number sufficiently small so that Ω_{ε} is not void, and $T_{1}=\max \left(\varepsilon, x_{1}\right)$. Later, in section 3, we shall let $\varepsilon \rightarrow 0$. It is seen from (1.5) that
$\lim _{\varepsilon \rightarrow 0} \Omega_{\varepsilon}=\Omega^{\prime}$. The intersection of Ω_{ε} and the hyperplane $x_{1}=\varepsilon$ is called ω_{ε}. Since $\Omega_{\varepsilon} \subset \Omega$, it is clear that any u harmonic in Ω is also harmonic in Ω_{ε}.

Theorem 2.1. Let u be a harmonic function in Ω_{ε}, where Ω_{ε} has the properties (2.1). Then there is a harmonic function U in Ω_{ε} such that

$$
\begin{equation*}
D_{1} U=u \tag{2.2}
\end{equation*}
$$

See Duffin [5].
Proof. We shall prove that there is a function $g\left(x^{\prime}\right), x^{\prime}=\left(x_{2}, \ldots, x_{n}\right)$ in the hyperplane $x_{1}=\varepsilon$ such that

$$
\begin{equation*}
U\left(x_{1}, x^{\prime}\right)=\int_{z}^{x_{1}} u\left(t, x^{\prime}\right) d t+g\left(x^{\prime}\right), \quad x=\left(x_{1}, x^{\prime}\right) \in \Omega_{a} \tag{2.3}
\end{equation*}
$$

has the required properties. That (2.2) is fulfilled is obvious. Furthermore,

$$
\begin{equation*}
\Delta U\left(x_{1}, x^{\prime}\right)=D_{1} u\left(x_{1}, x^{\prime}\right)+\int_{\varepsilon}^{x_{1}} \Delta^{\prime} u\left(t, x^{\prime}\right) d t+\Delta^{\prime} g\left(x^{\prime}\right) \tag{2.4}
\end{equation*}
$$

where Δ^{\prime} is the Laplace operator in the boundary variables x^{\prime}. Since u is harmonic, we have $\Delta^{\prime} u=-D_{1}^{2} u$. Hence (2.4) becomes if we write $D_{1} u=u_{1}$

$$
\Delta U\left(x_{1}, x^{\prime}\right)=u_{1}\left(\varepsilon, x^{\prime}\right)+\Delta^{\prime} g\left(x^{\prime}\right)
$$

Since $u_{1}\left(\varepsilon, x^{\prime}\right)$ is in $C^{\infty}\left(\omega_{\varepsilon}\right)$, there is a solution g in $C^{2}\left(\omega_{\varepsilon}\right)$ of the Poisson equation $\Delta^{\prime} g\left(x^{\prime}\right)=-u_{1}\left(\varepsilon, x^{\prime}\right)$. See Courant-Hilbert [3] p. 246. This completes the proof.

Remark. In special cases the result may be valid under much weaker hypothesis concerning Ω_{ε}. When $n=2$ in particular, the result holds for any simply connected Ω_{ε}. To see this, we note that there is an analytic function $f(z), z=x_{1}+i x_{2}$ in Ω_{ε} such that $u\left(x_{1}, x_{2}\right)=\operatorname{Re} f(z)$. Since there exists a primitive analytic function $F(z)$ to $f(z)$ in the whole of Ω_{ε} for any simply connected Ω_{ε}, it follows that $U\left(x_{1}, x_{2}\right)=$ $\operatorname{Re} F(z)$ satisfies (2.2) in the whole of such a Ω_{e}.

That the restriction (2.1) is rather natural when $n>2$, is seen by considering the harmonic function $u(x)=\left|x-y_{0}\right|^{2-n}$. For $n=3, u(x)$ has the only singularity $x=y_{0}$. Hence $\Omega=\mathbf{R}^{3} \backslash y_{0}$. Choose y_{0} to be origo. Then a primitive function U will be

$$
U(x)=-\log \left|x_{1}-\sqrt{x_{1}^{2}+x_{2}^{2}}+x_{3}^{2}\right|+g\left(x_{2}, x_{3}\right)
$$

If we choose $g\left(x_{2}, x_{3}\right) \equiv 0$, then $U(x)$ will be defined for $x_{1}<0$, all x_{2} and x_{3}. On the other hand $U(x)$ will not exist on the half line $x_{2}=x_{3}=0, x_{1} \geqq 0$. See also Diaz and Ludford [4].

This remark also applies to the next theorem.

Theorem 2.2. (Almansi Representation Theorem). Lẹt Ω_{ε} be the same set as in Theorem 2.1. Then every p-harmonic function u in Ω_{ε} can be written

$$
\begin{equation*}
u=\sum_{j=0}^{p-1} \frac{x_{1}^{j}}{j!} v_{j}, \quad x \in \Omega_{\varepsilon} \tag{2.5}
\end{equation*}
$$

where each v_{j} is harmonic in Ω_{ε}. Conversely, every such function is p-harmonic, and

$$
\begin{equation*}
\Delta^{p-1} u=2^{p-1} D_{1}^{p-1} v_{p-1} \tag{2.6}
\end{equation*}
$$

Proof. We shall make a proof by induction over p. Assume the theorem to be true when p is replaced by $1,2, \ldots, p-1$. We start by proving that u defined by (2.5) is p-harmonic.

Since each v_{j} is analytic in Ω_{ε}, it is clear that u is also analytic in Ω_{ε}, and hence differentiable. Direct computation gives the formula

$$
\begin{equation*}
\Delta(f \cdot g)=f \Delta g+2\langle\operatorname{grad} f, \operatorname{grad} g\rangle+g \Delta f \tag{2.7}
\end{equation*}
$$

where

$$
\langle\operatorname{grad} f, \operatorname{grad} g\rangle=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \cdot \frac{\partial g}{\partial x_{i}}
$$

It follows from (2.7), if u is defined by (2.5) with v_{j} harmonic, that

$$
\begin{equation*}
\Delta u=\sum_{j=2}^{p-1} \frac{x_{1}^{j-2}}{(j-2)!} v_{j}+2 \sum_{j=1}^{p-1} \frac{x_{1}^{j-1}}{(j-1)!} D_{1} v_{j} \tag{2.8}
\end{equation*}
$$

By the induction hypothesis the first sum in (2.8) is ($p-2$)-harmonic, the second $(p-1)$-harmonic. Hence $\Delta^{p-1} \Delta u=0$, which proves that u is p-harmonic.

Now apply Δ^{p-2} to the $(p-1)$-harmonic function Δu in (2.8). Since we suppose (2.6) to be true when $p-1$ is replaced by $p-2$, we obtain

$$
\Delta^{p-1} u=\Delta^{p-2} \Delta u=\Delta^{p-2} 2 \sum_{j=1}^{p-1} \frac{x_{1}^{j-1}}{(j-1)!} D_{1} v_{j}=2^{p-1} D_{1}^{p-1} v_{p-1}
$$

i.e. (2.6) holds also for $p-1$.

Now assume that u is a p-harmonic function. Repeated use of Theorem 2.1 shows that we can find a harmonic function v_{p-1} in Ω_{ε}, such that

$$
2^{p-1} D_{1}^{p-1} v_{p-1}=\Delta^{p-1} u
$$

for $\Delta^{p-1} u$ is harmonic. Then the difference

$$
u_{1}=u-\frac{x_{1}^{p-1}}{(p-1)!} v_{p-1}
$$

is ($p-1$)-harmonic, since by (2.6)

$$
\Delta^{p-1} u_{1}=\Delta^{p-1} u-2^{p-1} D_{1}^{p-1} v_{p-1}=0
$$

Since the theorem is trivial when $p=1$, the proof is complete.
Corollary 2.1. Let Ω_{ε} be defined as before and let $u \in H^{p}\left(\Omega_{\varepsilon}\right)$. Then there is one function $u_{1} \in H^{k}\left(\Omega_{\varepsilon}\right), 0 \leqq k \leqq p$, and one function $u_{2} \in H^{p-k}\left(\Omega_{\varepsilon}\right)$ such that

$$
u=u_{1}+\frac{x_{1}^{k}}{k!} u_{2} \quad x \in \Omega_{\varepsilon}
$$

Conversely, every such function is p-harmonic.
Proof. Dropping, as we may, the numerical factors k ! above and $j!$ in (2.5), which are there for computational purpose only, we obtain from Theorem 2.2.

$$
u=\sum_{j=0}^{p-1} x_{1}^{j} v_{j}=\sum_{j=0}^{k-1} x_{1}^{j} v_{j}+x_{1}^{k} \sum_{j=k}^{p-1} x_{1}^{j-k} v_{j}=u_{1}+x_{1}^{k} u_{2}
$$

where, by the same theorem $u_{1} \in H^{k}\left(\Omega_{\varepsilon}\right)$ and $u_{2} \in H^{p-k}\left(\Omega_{\varepsilon}\right)$. The second statement is proved in the same way.

Because of the Almansi representation, the analogue of Theorem 2.1 can now be proved for polyharmonic functions.

Theorem 2.3. Let $u \in H^{p}\left(\Omega_{\varepsilon}\right), \Omega_{\varepsilon}$ being the same set as in Theorem 2.1. Then there is a function $U \in H^{p}\left(\Omega_{\varepsilon}\right)$ such that

$$
D_{1} U=u
$$

Proof. We proceed by induction. The case $p=1$ was proved in Theorem 2.1. Assume the result to be known when p is replaced by $p-1$. Corollary 2.1 shows with $k=1$ that

$$
\begin{equation*}
u=v_{0}+x_{1} u_{1} \tag{2.9}
\end{equation*}
$$

where v_{0} is harmonic and u_{1} is ($p-1$)-harmonic. By assumption there is a harmonic function V_{0} and a ($p-1$)-harmonic function U_{1} in Ω_{ε} such that $D_{1} V_{0}=v_{0}$ and $D_{1} U_{1}=u_{1}$. There is also a ($p-1$)-harmonic function U_{2} in Ω_{ε} such that $D_{1} U_{2}=U_{1}$. Then by Corollary 2.1 the function

$$
U=V_{0}+x_{1} U_{1}-U_{2}
$$

is p-harmonic. Since u satisfies (2.9), U satisfies the requirements of the theorem.
We shall now give another representation theorem which is also a mean value theorem for polyharmonic functions. Let Ω be as before and $x_{0} \in \Omega$. For a point x, let \bar{r} denote the vector from x_{0} to x and let $r \equiv|\tilde{r}|$. Also, let $S_{R}\left(x_{0}\right)$ or simply S_{R} denote the solid, closed n-sphere with center in x_{0} and radius R. R is chosen so that $S_{R} \subset \Omega$. Let $M_{R}\left(u, x_{0}\right)$ denote the mean value of u over the boundary ∂S_{R}
of S_{R}. It is well known that if v is harmonic in Ω, then

$$
M_{R}\left(v, x_{0}\right)=v\left(x_{0}\right)
$$

Theorem 2.4. Let S_{R} be as above, and let $u \in H^{P}(\Omega)$. Then there are p functions $w_{j}, j=0,1, \ldots, p-1$, each harmonic in S_{R} such that for $r \leqq R$ we have

$$
\begin{equation*}
u(x)=\sum_{j=0}^{p-1} r^{2 j} w_{j}(x) \tag{2.10}
\end{equation*}
$$

Conversely, every such function is p-harmonic in S_{R}, and finally we have the following mean value relation for $u(x)$:

$$
\begin{equation*}
M_{r}\left(u, x_{0}\right)=\sum_{j=0}^{p-1} r^{2 j} w_{j}\left(x_{0}\right)=\sum_{j=0}^{p-1} \frac{(n-2)!!}{2 j!!(2 j+n-2)!!} r^{2 j} \Delta^{j} u\left(x_{0}\right) \tag{2.11}
\end{equation*}
$$

where n, as before, is the dimensional number.
Proof. The proof is again carried out by induction over p. The result is trivial for $p=1$. We begin by showing that every function given by (2.10) is p-harmonic. Formula (2.7) shows that for w harmonic

$$
\Delta r^{2 j} w=w \Delta r^{2 j}+4 j r^{2 j-2}\langle\bar{r}, \operatorname{grad} w\rangle=w \Delta r^{2 j}+4 j r^{2 j-2} r \frac{\partial w}{\partial r} .
$$

Now, if f is a function of r alone, we have in R^{n}

$$
\Delta f=\frac{d^{2} f}{d r^{2}}+\frac{(n-1)}{r} \frac{d f}{d r}
$$

so that

$$
\begin{equation*}
\Delta r^{2 j} w=2 j(2 j+n-2) r^{2 j-2} w+4 j r^{2 j-1} \frac{\partial w}{\partial r} \tag{2.12}
\end{equation*}
$$

Since $\Delta r \frac{\partial w}{\partial r}=0$ for w harmonic, it follows from the induction hypothesis that $\Delta r^{2 j} w$ is j-harmonic for $j \leqq p-1$, and hence $r^{2 j} w$ is $j+1$-harmonic. Since each term in (2.10) is of this type, u is p-harmonic.

We shall now prove that for $u \in H^{p}(\Omega)$ we can find p harmonic functions w_{j}, such that (2.10) is true in S_{R}. The induction step will be to show that we can find w_{p-1} such that $u-r^{2 p-2} w_{p-1}$ is $p-1$-harmonic. Assume by induction that we can express Δu by $p-1$ harmonic functions $\bar{w}_{j}, 0 \leqq j \leqq p-2$ by means of

$$
\Delta u=\sum_{j=0}^{p-2} r^{2 j} \bar{w}_{j}
$$

Let (r, θ) denote the "spherical" coordinates in R^{n}, and define a function w by

$$
\frac{1}{2 p-2} w(r, \theta)=\frac{1}{r^{x}} \int_{0}^{r} t^{\alpha-1} \bar{w}_{p-2}(t, \theta) d t \quad r \leqq R
$$

where $\alpha=\frac{1}{2}(2 p+n-4) \geqq n / 2 \geqq 1$, since $p>1$. A direct computation shows that
w solves the equation

$$
\begin{equation*}
(2 p-2)\left(r \frac{\partial w}{\partial r}+\alpha w\right)=\bar{w}_{p-2} \tag{2.13}
\end{equation*}
$$

and

$$
\frac{1}{2 p-2} \Delta w=\frac{1}{r^{\alpha+2}} \int_{0}^{r} t^{\alpha+1} \Delta \bar{w}_{p-2} d t=0
$$

so that w is harmonic.
In view of (2.12) and (2.13) we get

$$
\begin{aligned}
\Delta\left(u-r^{2 p-2} w\right) & =\Delta u-r^{2 p-4}(2 p-2)\left[(2 p+n-4) w+2 r \frac{\partial w}{\partial r}\right]= \\
& =\Delta u-r^{2 p-4} w_{p-2}=\sum_{j=0}^{p-3} r^{2 j} \bar{w}_{j}
\end{aligned}
$$

This shows that $\Delta\left(u-r^{2 p-2} w\right)$ is $p-2$-harmonic, and that $\left(u-r^{2 p-2} w\right)$ is $p-1$-harmonic. Hence we can find harmonic functions $w_{j}, 0 \leqq j \leqq p-1$, with $w_{p-1}=w$ such that (2.10) holds.

To see the mean value relation, we first note that

$$
\begin{gather*}
M_{r}\left(u, x_{0}\right)=M_{r}\left(\sum_{j=0}^{p-1} r^{2 j} w_{j}, x_{0}\right)=\sum_{j=0}^{p-1} r^{2 j} M_{r}\left(w_{j}, x_{0}\right)= \\
=\sum_{j=0}^{p-1} r^{2 j} w_{j}\left(x_{0}\right) \text { for } r \leqq R . \tag{2.14}
\end{gather*}
$$

Since all w_{j} are harmonic in S_{R} which is compact, they are continuous and uniformly bounded there together with their derivatives of order $\leqq 2 p$. Hence

$$
\left(\Delta^{k} u\right)\left(x_{0}\right)=\lim _{r \rightarrow 0} \Delta^{k}\left(\sum_{j=0}^{p-1} r^{2 j} w_{j}\right)=\frac{(2 k)!!(2 k+n-2)!!}{(n-2)!!} w_{k}\left(x_{0}\right),
$$

since all other terms disappear as $r \rightarrow 0$. The coefficient in this formula comes from repeated application of (2.12). Together with (2.14) this gives the desired mean value relation.

In the next theorem the notation $x^{\prime} \in \omega_{\varepsilon}^{\prime}$ means that the point $\left(\varepsilon, x^{\prime}\right) \in \omega_{\varepsilon}$ (fig. 3)
Theorem 2.5. Let $v_{j}, 0 \leqq j \leqq p-1$, be harmonic in Ω_{e}, and let

$$
u(x)=\sum_{j=0}^{p-1} x_{1}^{j} v_{j}(x)=o(1) \quad \text { as } \quad x_{1} \rightarrow+0, \quad x^{\prime} \in \omega_{\varepsilon}^{\prime} .
$$

Then $v_{0}(x)=o(1)$ as $x_{1} \rightarrow+0, x^{\prime} \in \omega_{\varepsilon}^{\prime}$.
Proof. The theorem is trivial for u simply harmonic. Suppose by induction that the theorem is proved for $p-1$-harmonic functions. It is then enough to show that $x_{1}^{p-1} v_{p-1}(x)=o(1)$.

The condition on u means that for every $\varepsilon_{1}>0$, there is a $\delta>0$, such that

$$
\begin{equation*}
\left|u\left(x_{1}, x^{\prime}\right)\right| \leqq \varepsilon_{1} \quad \text { for } \quad 0<x_{1} \leqq 3 \delta, \quad x^{\prime} \in \omega_{\varepsilon}^{\prime}, \tag{2.15}
\end{equation*}
$$

and this holds uniformly in every compact of $\omega_{\varepsilon}^{\prime}$.
Take a x_{0}^{\prime} such that the sphere $S_{\delta}\left(x_{0}\right)$, where $x_{0}=\left(2 \delta, x_{0}^{\prime}\right)$, lies entirely in a compact of Ω_{ε}. The mean value relation (2.11) used for p different values of $r \leqq \delta$, e.g. $r_{i}=i \delta / p, i=1,2, \ldots, p$, gives a system of p equations in the p unknowns $\Delta^{j} u\left(x_{0}\right)$, $j=0,1, \ldots, p-1$, namely

$$
\sum_{j=0}^{p-1} A_{n, j} r_{i}^{2 j} \Delta^{j} u\left(x_{0}\right)=M_{r_{i}}\left(u, x_{0}\right), \quad i=1,2, \ldots, p
$$

where $A_{n, j}=\frac{(n-2)!!}{(2 j)!!(2 j+n-2)!!}$.
The determinant, Det, of this system is of the form

$$
\text { Det }=K \cdot \delta^{h} \operatorname{det}\left|i^{2 j}\right|, \quad i=1,2, \ldots, p, j=0,1, \ldots, p-1, K \neq 0
$$

and $h=\sum_{j=0}^{p-1} 2 j$. Hence $\operatorname{Det}=K_{1} \delta^{h}$, where $K_{1} \neq 0$. We solve this system by means of Cramer's rule, and obtain for $\Delta^{p-1} u\left(x_{0}\right)$

$$
\Delta^{p-1} u\left(x_{0}\right)=\operatorname{Det}_{1} / \text { Det. }
$$

Det $_{1}$ is obtained by substituting $M_{r_{i}}\left(u, x_{0}\right)$ for $A_{n, p-1}(i \delta / p)^{2 p-2} \Delta^{p-1} u\left(x_{0}\right) i=1, \ldots, p$, in the last column of Det. Now expand Det ${ }_{1}$ by means of this last column, and note that, because of (2.15), the mean value of u over the sphere $S_{r_{i}}\left(x_{0}\right)$ also satisfies $\left|M_{r_{i}}\left(u, x_{0}\right)\right|<\varepsilon_{1}, i=1,2, \ldots, p-1$. This gives the following estimate for Det_{1} :

$$
\left.\mid \operatorname{Det}_{1}\right\} \leqq \varepsilon_{1} \sum_{i=1}^{p}\left|K_{i} \delta^{\prime}\right|
$$

where $h^{\prime}=h-(2 p-2)$.
This implies that

$$
\left|\Delta^{p-1} u\left(x_{0}\right)\right| \leqq K_{2} \varepsilon_{1} \delta^{-(2 p-2)}=o\left(\delta^{2-2 p}\right) \quad \text { as } \quad \delta \rightarrow+0
$$

since K_{2} is independent of ε_{1} and δ. Since by Theorem 2.2

$$
\Delta^{p-1} u(x)=2^{p-1} D_{1}^{p-1} v_{p-1}(x)
$$

it is clear that $v_{p-1}(x)=o\left(x_{1}^{1-p}\right)$ and hence

$$
x_{1}^{p-1} v_{p-1}=o(1) \quad \text { as } \quad x_{1} \rightarrow+0
$$

This completes the proof.
Remark. Let $v_{0}=1$, and $v_{1}=-1 / r$ in R^{3}. Then $u=v_{0}+x_{1} v_{1}=0$ on the line $x_{2}=x_{3}=0$, but $v_{0}+0$ as $x_{1} \rightarrow 0$ on this line. This shows that it is essential that $\omega_{\varepsilon}^{\prime}$ does not degenerate in Theorem 2.5.

We shall now give some examples of polyharmonic functions. Let

$$
\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)=\left(\xi_{1}, \xi^{\prime}\right)
$$

be a fixed vector in an n-dimensional complex space, and such that the scalar product

$$
\langle\xi, \xi\rangle=\sum_{i=1}^{n} \xi_{i}^{2}=0,
$$

while

$$
\left\langle\xi^{\prime}, \xi^{\prime}\right\rangle=\sum_{i=2}^{n} \xi_{i}^{2} \neq 0 .
$$

Denote $\xi^{*}=\left(-\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$. Then $\left\langle\xi^{*}, \xi^{*}\right\rangle=0$. For later use (section 4), we also introduce a complex parameter τ. As in the introduction, $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a vector in R^{n}.

Define

$$
\begin{equation*}
v(x)=e^{\tau\langle\xi, x\rangle}, \tag{2.16}
\end{equation*}
$$

then

$$
\Delta v=\Delta e^{\tau \tau \xi, x\rangle}=e^{\tau\langle\zeta, x\rangle} \cdot \tau^{2} \cdot \sum_{i=1}^{n} \xi_{i}^{2}=0 .
$$

Hence $v \in H^{1}\left(R^{n}\right)$. We get the same result if ξ is replaced by ξ^{*}. Hence, by Theorem 2.2, $u(x)$ defined by

$$
\begin{equation*}
u(x)=\sum_{j=0}^{p-1} A_{j} \frac{x_{1}^{j}}{j!} \tau^{\tau(\xi, x\rangle}+\sum_{j=0}^{p-1} B_{j} \frac{x_{1}^{j}}{j!} e^{\tau\langle\xi \xi, x\rangle} \tag{2.17}
\end{equation*}
$$

where A_{j} and B_{j} are arbitrary constants, belongs to $H^{p}\left(R^{n}\right)$, and hence to $H^{p}(\Omega)$ for any open $\Omega \in R^{n}$.

The functions (2.17) are called "exponential solutions", and since any statement about the set $H^{p}(\Omega)$ must take such exponential solutions into account, they furnish necessary conditions on such statements, and it will be seen that very often these conditions are also sufficient. This is very natural in view of the fact that the set of exponential solutions is dense in $H^{p}\left(R^{n}\right)$. See Hörmander [8] p. 76 ff .

Another example of functions in $H^{p}\left(R^{n}\right)$ is given by $u=x_{1}^{k}, 0 \leqq k<2 p$. These functions will be used since their and their derivatives behaviour on the boundary $x_{1}=0$ is easily determined. A straightforward application of the proof of the Almansi representation gives for the biharmonic function $u=2 x_{1}^{3}$ the following as a possible representation among others.

$$
u=2 x_{1}^{3}=v_{0}+x_{1} v_{1}=\left(-x_{1}^{3}+3 x_{1} x_{i}^{2}+A x_{1}\right)+x_{1}\left(3 x_{1}^{2}-3 x_{i}^{2}-A\right)
$$

where $i \neq 1$ and A is arbitrary. It is seen that the Almansi representation is by no means unique. It is easy to find still more representations.

Remark. As a final remark to this section, we observe that the function

$$
u=x_{1}^{p-1} v
$$

where v is defined by (2.16) is an example of a function in H^{p} such that

$$
D_{1}^{j} u \notin H^{p-1} \quad j=1,2, \ldots
$$

and

$$
x_{1}^{l} u \in H^{p+l} \text { but } \notin H^{p+l-1} \quad l=1,2, \ldots .
$$

This observation will be helpful in section 5 .

3. General transversal boundary conditions

We consider p-harmonic functions $u\left(x_{1}, x^{\prime}\right)$ defined in an open set Ω of the type considered in the introduction, satisfying in the limit on ω the p boundary conditions

$$
\begin{equation*}
\lim _{x_{1} \rightarrow+0} q_{i}\left(D_{1}\right) u\left(x_{1}, x^{\prime}\right)=0, x \in \Omega, \quad i=1, \ldots, p \tag{3.1}
\end{equation*}
$$

where the q_{i} are linearly independent differential polynomials in D_{1}. Let Ω_{ε} be the set of all points in Ω with the property (2.1). Theorem 2.2 shows that u has an Almansi representation (2.5) in Ω_{ε} with $v_{j}, j=0, \ldots, p-1$, harmonic in Ω_{ε}. Let $\underline{\Omega}_{\varepsilon}$ be the reflection of Ω_{ε} in $x_{1}=0$, i.e. $\underline{\Omega}_{\varepsilon}$ is the set of all $x=\left(x_{1}, x^{\prime}\right)$ such that $\left(-x_{1}, x^{\prime}\right) \in \Omega_{\varepsilon}$. Also let $\omega_{\varepsilon}^{\prime}$ be the projection of ω_{ε} on the hyperplane $x_{1}=0$. Then $\Omega_{\varepsilon}^{\sim}$ defined by $\Omega_{\varepsilon}^{\sim}=\Omega_{\varepsilon} \cup \omega_{\varepsilon}^{\prime} \cup \Omega_{\varepsilon}$ is an open set. (See fig. 3.) By the definition of Ω^{\prime} and Ω_{2} in the introduction, $\lim _{\varepsilon \rightarrow 0}\left(\Omega \cup \omega_{\varepsilon}^{\prime} \cup \Omega_{\varepsilon}\right)=\Omega \cup \omega \cup \underline{\Omega}^{\prime}=\Omega_{2}$.

Theorem 3.1. Let Ω and ω satisfy the conditions of the introduction. Every p-harmonic function u in Ω satisfying (3.1) can be extended to a p-harmonic function in Ω_{2}.

The method of proof will be to use the Almansi representation of u to construct harmonic functions $w_{i}, i=1, \ldots, p$, in Ω_{ε} in such a way that the boundary conditions (3.1) imply that $\lim _{x_{1} \rightarrow 0} w_{i}\left(x_{1}, x^{\prime}\right)=0, i=1, \ldots, p$. Hence each of the $w\left(x_{1}, x^{\prime}\right)$ can be continued into $\Omega_{\varepsilon}^{\tilde{\sim}}$ by means of Schwarz reflection principle. From the continuation of the w_{i} to $\Omega_{\varepsilon}^{\sim}$, we then conclude that u can be continued into $\Omega_{\varepsilon}^{\sim}$.

Proof. We know already that u has an Almansi representation

$$
\begin{equation*}
u=\sum_{j=0}^{p-1} \frac{x_{1}^{j}}{j!} v_{j} \tag{3.2}
\end{equation*}
$$

in Ω_{ε} with v_{j} harmonic in Ω_{ε}. Using this and Leibniz' formula for the k : th derivative of a product we obtain

$$
\begin{equation*}
q_{i}\left(D_{1}\right) u=\sum_{j=0}^{p-1} \sum_{k=0}^{j} \frac{x_{1}^{j-k}}{(j-k)!} \cdot \frac{1}{k!} q_{i}^{(k)}\left(D_{1}\right) v_{j} \tag{3.3}
\end{equation*}
$$

where $q_{i}^{(k)}(\tau)$ denotes $d^{k} q_{i}(\tau) / d \tau^{k}$. When $x_{1} \rightarrow+0$ in (3.3), (3.1) and Theorem 2.5 imply that the harmonic functions w_{i}, defined by

$$
w_{i}=\sum_{j=0}^{p-1} \frac{1}{j!} q_{i}^{(j)}\left(D_{1}\right) v_{j} \quad i=1, \ldots, p
$$

satisfy

$$
\lim _{x_{1} \rightarrow+0} w_{i}\left(x_{1}, x^{\prime}\right)=0, \quad x \in \Omega_{\varepsilon}, \quad i=1, \ldots, p
$$

Hence the w_{i} can be extended to harmonic functions $\tilde{w_{i}}$ in $\Omega_{\varepsilon}^{\tilde{\varepsilon}}$ by means of Schwarz' reflection principle, that is, we set

$$
\tilde{w_{i}} \tilde{(}\left(x_{1}, x^{\prime}\right)=\left\{\begin{array}{cl}
w_{i}\left(x_{1}, x^{\prime}\right), & \left(x_{1}, x^{\prime}\right) \in \Omega_{\varepsilon} \\
0, & \left(x_{1}, x^{\prime}\right) \in \Omega_{\varepsilon}^{\prime} \\
-w_{i}\left(-x_{1}, x^{\prime}\right), & \left(x_{1}, x^{\prime}\right) \in \underline{\Omega}_{\varepsilon}
\end{array}\right.
$$

We shall now define the extensions v_{j} of the functions v_{j} by solving the system of ordinary differential equations

$$
\begin{equation*}
\sum_{j=0}^{p-1} \frac{1}{j!} q_{i}^{(j)}\left(D_{1}\right) v_{j}^{\tilde{j}}=w_{i}^{\tilde{i}}, \quad i=1, \ldots, p x \in \Omega_{\varepsilon}^{\prime} \tag{3.4}
\end{equation*}
$$

with the conditions $v_{j}=v_{j}$ when $x_{1}>0$. This is a system of p ordinary differential equations in x_{1} of the p functions $v_{j}, j=0, \ldots, p-1$ and containing the parameters x_{2}, \ldots, x_{n}. The characteristic determinant of the system is the so-called Wronski determinant

$$
W(\tau)=\operatorname{det}\left|D^{j} q_{i}(\tau)\right|, \quad i=1, \ldots, p, \quad j=0, \ldots, p-1
$$

Since the boundary conditions are linearly independent, $W(\tau)$ does not vanish identically. Hence we can solve the system (3.4), and since the w_{i} are infinitely differentiable, each $\tilde{v_{j}}$ is also an infinitely differentiable function of $\left(x_{1}, \ldots, x_{n}\right)$. Applying the Laplace operator Δ to (3.4), we get the system

$$
\sum_{j=0}^{p-1} \frac{1}{j!} q_{i}^{(j)}\left(D_{1}\right) \Delta v_{j}^{\tilde{}}=0, \quad i=1, \ldots, p
$$

for $w_{i}^{\tilde{i}}$ is harmonic in $\Omega_{\varepsilon}^{\sim}$.
By solving this system for $\Delta \tilde{v_{j}}, j=0, \ldots, p-1$, and observing that $\Delta \tilde{v_{j}}=0$ in Ω_{ε} we infer that $\Delta \tilde{v_{j}}$ is identically 0 , that is, $\tilde{v_{j}}$ is harmonic in $\Omega_{\varepsilon}^{\sim}$. If we set

$$
\begin{equation*}
u^{\tilde{}}=\sum_{j=0}^{p-1} \frac{x_{1}^{j}}{j!} v_{j} \tag{3.5}
\end{equation*}
$$

we have proved that u^{\sim} is p-harmonic in $\Omega_{\varepsilon}^{\sim}$ and $u^{\sim} \equiv u$ in Ω_{ε}. Hence u^{\sim} is a p-harmonic extension of u into $\Omega_{\varepsilon}^{\sim}$. It is trivial that u^{\sim} is extendable to $\Omega \cup \omega_{\varepsilon}^{\prime} \cup \underline{\Omega}_{\varepsilon}$, although the Almansi representation (3.5) of u^{\sim} has only been proved to be valid
in $\Omega_{\varepsilon}^{\sim}$. Finally, letting $\varepsilon \rightarrow+0$, we have proved that u^{\sim} is extendable to $\Omega_{2}=$ $\lim _{\varepsilon \rightarrow 0}\left(\Omega \cup \omega_{\varepsilon}^{\prime} \cup \Omega_{\varepsilon}\right)$.

Example 3.1. Let u be harmonic in Ω, and satisfy the boundary condition $\lim _{x_{1} \rightarrow+0}\left(D_{1} u+k u\right)=0$ on ω, where k is a constant. Then the continuation of u to Ω_{2} is given by

$$
\begin{equation*}
u\left(-x_{1}, x^{\prime}\right)=u\left(x_{1}, x^{\prime}\right)+2 k e^{k x_{1}} \int_{0}^{x_{1}} e^{-k t} u\left(t, x^{\prime}\right) d t, \quad x \in \Omega_{e} \tag{3.6}
\end{equation*}
$$

Remark. Let Ω and ω be the same sets as in the introduction. Let $q_{i}(D)$ be differential polynomials in all $D_{t}, \quad t=1, \ldots, n$. A set of boundary conditions

$$
\begin{equation*}
q_{i}(D) u=0, \quad x \in \omega, \quad i=1, \ldots, p \tag{3.7}
\end{equation*}
$$

is called elliptic (see Hörmander [7]) with respect to Δ^{p} if every p-harmonic function $u \in C^{k}(\Omega \cup \omega)$, where k is the maximum of $2 p$ and the degrees of q_{i}, satisfying the conditions (3.7) can be continued across ω into some domain, independent of u. By Theorem 3.3 in Hörmander [7], the condition for ellipticity is that the Wronski determinant W^{0} of the principal parts q_{i}^{0} of the q_{i} has no zero $\neq 0$. Denote the degree of q_{i} by v_{i}, and note that we may assume that all q_{i} have different degrees. Then $q_{i}^{0}(\tau)=\tau^{\nu_{i}}$, and with the notation $R=\sum_{i=0}^{p} v_{i}-1-2-\ldots-p-1$, we get

$$
W^{0}(\tau)=\tau^{R} \Pi_{i<k}\left(v_{i}-v_{k}\right)
$$

which has no zero $\neq 0$. Hence the conditions (3.1) are elliptic with respect to Δ^{p}.
However, the theorem of Hörmander does not tell anything about the extent of the continuation, whereas our Theorem 3.1 extends u to a function in Ω_{2}.

4. Two auxiliary theorems on polyharmonic functions

Consider a biharmonic function u satisfying on $x_{1}=0$ the boundary conditions

$$
\begin{equation*}
\Delta u\left(0, x^{\prime}\right)=D_{1} \Delta u\left(0, x^{\prime}\right)=0 \tag{4.1}
\end{equation*}
$$

which are not elliptic in the sense of the remark at the end of section 3. These conditions imply, in view of the uniqueness of the Cauchy problem, that the harmonic function $v=\Delta u$ is identically zero. Hence all solutions u of $\Delta^{2} u=0$, satisfying (4.1), are also solutions of the "simpler" equation $\Delta u=0$. The object of the following theorem 4.1 is to prove that such a case cannot happen for the boundary conditions (1.2).

Theorem 4.1. Let $Q(D)$ be a polynomial differential operator and let $y=\left(y_{1}, y^{\prime}\right)$ be a fixed point with $y_{1} \neq 0$. Assume that

$$
\begin{equation*}
Q(D) u(y)=0 \tag{4.2}
\end{equation*}
$$

for every $u \in H^{p}\left(R^{n}\right)$ satisfying the p linearly independent boundary conditions

$$
\begin{equation*}
q_{i}\left(D_{1}\right) u=0, \quad x_{1}=0, \quad i=1, \ldots, p \tag{4.3}
\end{equation*}
$$

Then $Q(D)$ contains Δ^{p} as a factor.
Proof. We shall prove the theorem by imposing (4.2) and (4.3) to the p-harmonic exponential functions (2.17)

$$
\begin{equation*}
u=\sum_{j=0}^{p-1} A_{j} \frac{x_{1}^{j}}{j!} e^{\tau\langle\xi, x\rangle}+\sum_{j=0}^{p-1} B_{j} \frac{x_{1}^{j}}{j!} e^{\tau\langle\xi *, x\rangle} \tag{4.4}
\end{equation*}
$$

where τ is a complex parameter and, as before, A_{j} and B_{j} are constants. Also, as is (2.17), ξ is a fixed complex n-vector such that $\langle\xi, \xi\rangle=\left\langle\xi^{*}, \xi^{*}\right\rangle=0$ and $\xi_{1} \neq 0$. Because of Leibniz' rule (3.3) for the derivative of a product, the boundary conditions (4.3) for $x_{1}=0$ applied to (4.4) give a system of p linear equations in the $2 p$ constants A_{j} and B_{j}.

$$
\begin{equation*}
\sum_{j=0}^{p-1} \frac{1}{j!} A_{j} q_{i}^{(j)}\left(\tau \xi_{1}\right)+\sum_{j=0}^{p-1} \frac{1}{j!} B_{j} q_{i}^{(j)}\left(-\tau \xi_{1}\right)=0, \quad i=1, \ldots, p \tag{4.5}
\end{equation*}
$$

Here $q_{i}^{(j)}(\eta)=\frac{d^{j}}{d \eta^{j}} q_{i}(\eta)$. From section 3 we know that the determinant $W\left(-\tau \xi_{1}\right)$ consisting of the coefficients of the B_{j} is $\not \equiv 0$. Hence we can solve the equations with respect to the B_{j} for large τ and obtain by Cramer's rule

$$
\begin{equation*}
B_{j}=\sum_{k=0}^{p-1} C_{j k}\left(\tau \xi_{1}\right) A_{k}, \quad j=0,1, \ldots, p-1 \tag{4.6}
\end{equation*}
$$

where the $C_{j k}$ are rational functions in $\tau \xi_{1}$, with the denominator $W\left(-\tau \xi_{1}\right)$.
Applying the operator Q to one of the terms in the first sum in (4.4), we get by means of Leibniz' formula

$$
Q(D)\left(\frac{x_{1}^{j}}{j!} e^{\tau\langle\xi, x\rangle}\right)=\sum_{l=0}^{j} \frac{x_{1}^{j-l}}{(j-l)!} \frac{1}{l!} e^{\tau\langle\xi, x\rangle} Q^{(l)}(\tau \xi), \quad j=0,1, \ldots, p-1
$$

where

$$
Q^{(l)}(\eta)=\frac{\partial^{l}}{\partial \eta_{1}^{l}} Q(\eta)
$$

Now we eliminate in (4.4) the constants B_{j} by means of (4.6). Then we get from (4.2) the somewhat cumbersome expression

$$
\begin{gather*}
Q(D) u(y)=\left[\sum_{j=0}^{p-1} A_{j} \sum_{l=0}^{j} \frac{y_{1}^{j-1}}{(j-l)!l!} Q^{(l)}(\tau \xi)\right] e^{\tau\langle\xi, y\rangle} \\
+\left[\sum_{j=0}^{p-1}\left\{\sum_{k=0}^{p-1} C_{j k}\left(\tau \xi_{1}\right) A_{k}\right\} \sum_{l=0}^{j} \frac{y_{1}^{j-l}}{(j-l)!l!} Q^{(l)}\left(\tau \xi^{*}\right)\right] e^{\tau\langle\xi *, y\rangle}=0 \tag{4.7}
\end{gather*}
$$

and the important thing is that (4.7) is linear and homogeneous in the A_{j} which still are arbitrary. Thus, the coefficient of each A_{j} must be zero. The coefficient of A_{j} in (4.7) is, after division of $e^{\tau\langle\xi, y\rangle}$

$$
\begin{equation*}
\left[\sum_{l=0}^{j} \frac{y_{1}^{j-l}}{(j-l)!l!} Q^{(l)}(\tau \xi)\right] e^{2 \tau \xi_{1} y_{1}}+\left[\sum_{k=0}^{p-1} C_{j k}\left(\tau \xi_{1}\right) \sum_{l=0}^{j} \frac{y_{1}^{k-l}}{(k-l)!l!} Q^{(l)}\left(\tau \xi^{*}\right)\right] \equiv 0 \tag{4.8}
\end{equation*}
$$

for all τ such that the denominator of $C_{j k}$ does not vanish.
This can be written

$$
K_{1}(\tau) e^{2 \tau \xi_{1} y_{1}}+K_{2}(\tau) \equiv 0
$$

where $K_{1}(\tau)$ and $K_{2}(\tau)$ are rational functions. Since $y_{1} \neq 0, e^{2 \tau \tau_{1}, y_{1}}$ is a transcendent function of τ, it follows that both K_{1} and K_{2} must be identically zero. Hence, we get from (4.8)

$$
K_{1}(\tau)_{\tau=1}=\sum_{l=0}^{j} \frac{y_{1}^{(j-l)}}{(j-l)!l!} Q^{(l)}(\xi) \equiv 0, \quad j=0,1, \ldots, p-1
$$

which proves that
if

$$
\begin{equation*}
Q^{(l)}(\xi)=0, \quad l=0, \ldots, p-1 \tag{4.9}
\end{equation*}
$$

$$
\langle\xi, \xi\rangle=\sum_{i=1}^{n} \xi_{i}^{2}=0
$$

Now $\langle\xi, \xi\rangle^{p}$ is a polynomial in ξ_{1} of degree $2 p$. Hence, because of the division algorithm, we can write

$$
Q(\xi)=\langle\xi, \xi\rangle^{p} Q^{\prime}(\xi)+R(\xi)
$$

where the degree of $R(\xi)$ as a polynomial in ξ_{1} is less that $2 p$, and the coefficients are polynomials in $\xi^{\prime}=\xi_{2}, \ldots, \xi_{n}$. (4.9) shows that for any fixed ξ^{\prime} with $\left\langle\xi^{\prime}, \xi^{\prime}\right\rangle=$ $t^{2} \neq 0$, the equation $Q(\xi)=0$ has the zeros $\xi_{1}= \pm i t$, each of multiplicity p and so has $\langle\xi, \xi\rangle^{p} Q^{\prime}(\xi)$. Hence $R(\xi)$ must also have the same zeros and of the same multiplicity, but since it is of degree less than $2 p$ is must be identically zero and $Q(\xi)=\langle\xi, \xi\rangle^{p} Q^{\prime}(\xi)$; that is, $Q(D) u=Q^{\prime}(D) \Delta^{p} u=0$ for all $u \in H^{p}$, which was to be proved.

Remark. The vital point in the proof is that we can eliminate the B_{j} in (4.5). This will be possible as long as the determinant $W\left(-\tau \xi_{1}\right) \not \equiv 0$. According to the
remark at the end of section three, this is true for an elliptic set of boundary conditions, since for such a set $W^{0}(-\tau, \xi)$ has no zero $\neq 0$. Hence the theorem remains true for all elliptic boundary conditions.

In the next theorem we shall for later purposes study slightly more general boundary conditions than in Theorem 4.1. These may contain differentials also in the boundary variables. Let $q_{i}(D), i=1, \ldots, p$ be p differential polynomials with constant coefficients, each of degree $r_{i}<2 p$ (counted as a polynomial in all differentials D_{i}). Suppose that $r_{i}>r_{j}$ for $i>j$ and that the coefficient of each $D_{1}^{r_{i}} \neq 0$. We may suppose the coefficient to be 1 and write

$$
\begin{equation*}
q_{i}(D)=\sum_{l=0}^{r_{i}} R_{i l}\left(D^{\prime}\right) D_{1}^{l}, \quad i=1, \ldots, p \tag{4.10}
\end{equation*}
$$

where $R_{i l}$ are polynomials in the boundary differentials only, and $R_{i r_{i}}\left(D^{\prime}\right) \equiv 1$.
Theorem 4.2. Let $q_{i}(D), i=1, \ldots, p$ be p differential polynomials as described above. Let y be a fixed point with $y_{1}=0$, and $V(D)$ a differential polynomial such that for all $u \in H^{p}\left(R^{n}\right)$ satisfying the p boundary conditions

$$
\begin{equation*}
q_{i}(D) u\left(0, x^{\prime}\right)=0, \quad i=1, \ldots, p \tag{4.11}
\end{equation*}
$$

we have

$$
\begin{equation*}
V(D) u(y)=0 \tag{4.12}
\end{equation*}
$$

Then $V(D)$ can be written in the form

$$
\begin{equation*}
V(D)=\sum_{i=1}^{p} P_{r_{i}}\left(D^{\prime}\right) q_{i}(D)+P_{2 p}(D) \Delta^{p} \tag{4.13}
\end{equation*}
$$

where $P_{r_{i}}\left(D^{\prime}\right)$ are polynomials in the boundary D^{\prime} only, and $P_{2 p}(D)$ can be any operator.
Proof. Consider a given polynomial $V(D)$, and suppose that it cannot be brought into the form (4.13). The proof will then consist of an explicit construction of a function $u \in H^{p}\left(R^{n}\right)$ which satisfies (4.11) but not (4.12).

Because of the division algorithm, any differential polynomial can be written in the form

$$
\begin{equation*}
V(D)=\sum_{k=0}^{2 p-1} P_{k}\left(D^{\prime}\right) D_{1}^{k}+P_{2 p}(D) \Delta^{p} \tag{4.14}
\end{equation*}
$$

We shall now separate $V(D)$ in two parts. One part which is of the form (4.13), and one which is not. Since in each $q_{i}(D)$ in (4.10) the coefficient of $D_{1}^{r_{i}}=1$, and since $2 p>r_{i}>r_{j}$ for $i>j$, we can extract first $P_{r_{p}}\left(D^{\prime}\right) q_{p}(D)$ from the sum (4.14), and then the following $q_{r_{i}}, i=p-1, \ldots, 1$ in strictly descending order, and finally obtain

$$
V(D)=\sum_{i=1}^{p} P_{r_{i}}\left(D^{\prime}\right) q_{i}(D)+\sum_{k=0}^{\prime 2 p-1} P_{k}\left(D^{\prime}\right) D_{1}^{k}+P_{2 p} \Delta^{p}
$$

where Σ^{\prime} in the second sum indicates that $k=r_{i}, i=p, \ldots, 1$ are not included in the summation.

We may assume that there is at least one $k=k^{\prime}$ in the second sum such that $P_{k^{\prime}}\left(D^{\prime}\right) \not \equiv 0$, since otherwise $V(D)$ is of the form (4.13) and the theorem is proved. As before, take a fixed $\xi=\left(\xi_{1}, \xi^{\prime}\right)$ such that $\langle\xi, \xi\rangle=0,\left\langle\xi^{\prime}, \xi^{\prime}\right\rangle \neq 0$ and $P_{k}^{\prime}\left(\xi^{\prime}\right) \neq 0$.

Let ξ^{*} be $\left(-\xi_{1}, \xi^{\prime}\right)$. Consider the p-harmonic functions (2.17) with $\tau=1$.

$$
u=\sum_{j=0}^{p-1} A_{j} \frac{x_{1}^{j}}{j!} e^{\langle\xi, x\rangle}+\sum_{j=0}^{p-1} B_{j} \frac{x_{1}^{j}}{j!} e^{\langle\xi *, x\rangle}
$$

For $x_{1}=0$ we have

$$
D_{1}^{k} u=L_{k}\left(A_{j}, B_{j}\right) e^{\left\langle\xi^{\prime}, x^{\prime}\right\rangle}, \quad k=0, \ldots, 2 p-1
$$

where L_{k} is a linear expression in the coefficients A_{j} and B_{j}. It is well known from the Cauchy problem that $D_{1}^{k} u\left(0, x^{\prime}\right)=0, k=0, \ldots, 2 p-1$, implies $u(x) \equiv 0$. This shows that the $2 p$ equations

$$
L_{k}\left(A_{j}, B_{j}\right)=0, \quad k=0, \ldots, 2 p-1
$$

have only the trivial solution $A_{j}=B_{j}=0, j=1, \ldots, p-1$. Hence it follows from the theory of linear equations that there exists a unique solution of the following system of linear equations in the $2 p$ "unknown" A_{j} and B_{j} :

$$
\left\{\begin{array}{l}
L_{k}^{\prime}=1 \tag{4.15}\\
L_{k}=0, \quad 0 \leqq k<2 p, \quad k \neq k^{\prime} \quad \text { and } \quad k \neq r_{i}, \quad i=1, \ldots, p \\
L_{r_{i}}=\sum_{l=0}^{r_{i}-1} R_{i l}\left(\xi^{\prime}\right) L_{l}, \quad i=1, \ldots, p
\end{array}\right.
$$

This system is constructed recursively from $k=0$ to $k=2 p-1$. The reason for this is that the last set of the equations (4.15), (which comes from (4.10)), contains $L_{1}\left(A_{j}, B_{j}\right)$ in the right hand side also. But since the system is built up recursively and since the summation in the right hand side of $L_{r_{i}}$ in (4.15) is brought only to $l=r_{i}-1$, we can express these $L_{i}, l \leqq r_{i}-1$, by means of ξ^{\prime} only and not A_{j} or B_{j}.

The exponential p-harmonic function u whose coefficients A_{j} and B_{j} satisfy (4.15), has the following property for $x_{1}=0$.

$$
\left\{\begin{array}{l}
D_{1}^{k^{\prime}} u=e^{\left\langle x^{\prime}, \xi^{\prime}\right\rangle} \\
D_{1}^{k} u=0, \quad 0 \leqq k<2 p, k \neq k^{\prime}, k \neq r_{i}, \quad i=1, \ldots, p \\
q_{i}(D) u=0, \quad i=1, \ldots, p
\end{array}\right.
$$

Thus u satisfies the conditions of the theorem, but

$$
V(D) u(y)=P_{k^{\prime}}\left(D^{\prime}\right) D_{1}^{k^{\prime}} u(y)=e^{\left(y^{\prime}, \xi^{\prime}\right\rangle} P_{k^{\prime}}\left(\xi^{\prime}\right) \cdot L_{k^{\prime}} \neq 0
$$

This proves the theorem.
Remark. It is clear that any $u \in H^{P}$ which satisfies (4.11) also satisfies (4.12) if $V(D)$ is defined by (4.13).

It is also clear from the proof of the theorem, that the number of boundary conditions (4.11) is irrelevant as long as it is less than $2 p$. We shall however only be dealing with p conditions.

For the special case of Theorem 4.2 that the boundary conditions (4.10) are $q_{i}(D)=D_{1}^{r_{i}}$, we state:

Corollary 4.1. Let y be a fixed point with $y_{1}=0$, and $V(D)$ a differential polynomial such that for all $u \in H^{p}\left(R^{n}\right)$ satisfying the p boundary conditions

$$
D_{1}^{r_{t}} u\left(0, x^{\prime}\right)=0, \quad 0 \leqq r_{1}<r_{2}<\ldots<r_{p}<2 p
$$

we have

$$
V(D) u(y)=0 .
$$

Then $V(D)$ can be written in the form

$$
V(D)=\sum_{i=1}^{p} P_{r_{i}}\left(D^{\prime}\right) D_{1}^{r_{i}+}+P_{2 p}(D) \Delta^{p}
$$

where $P_{r_{i}}\left(D^{\prime}\right)$ are polynomials in the boundary D^{\prime} only, and $P_{2 p}(D)$ can be any operator.

5. Necessary conditions on reflection formulas of differential type

As was seen in the proof of Theorem 3.1, the continuation of a p-harmonic function in Ω across ω is effected by solving a system of differential equations (3.4). Hence we can expect that a continuation formula generally contains integrations as e.g. in formula (3.6). The example (1.6) shows, however, that sometimes a continuation formula, involving differentiations only, can be given. In such cases the restrictions on Ω given in (2.1) are superfluous, so that u can be continued into the whole of the domain Ω_{1} defined in the introduction. We shall in this section determine necessary conditions for a differential operator Q to have the property that each p-harmonic function u in Ω, satisfying a set of boundary conditions (1.2) can be continued into a function $u^{\tilde{}} \in H^{p}\left(\Omega_{1}\right)$ by means of the formula

$$
u^{\sim}\left(x_{1}, x^{\prime}\right)= \begin{cases}u\left(x_{1}, x^{\prime}\right), & x \in \Omega \tag{5.1}\\ \lim _{x_{1} \rightarrow 0} u\left(x_{1}, x^{\prime}\right), & x \in \omega \\ \underline{Q u\left(-x_{1}, x^{\prime}\right),} & x \in \underline{\Omega}\end{cases}
$$

Throughout the rest of the paper, we shall make use of the fact that a necessary conditions for (5.1) to constitute a p-harmonic continuation of u into Ω_{1} is that for all $u \in H^{p}\left(R^{n}\right)$ satisfying the same boundary conditions (1.2), we must have

$$
\begin{equation*}
u\left(-x_{1}, x^{\prime}\right)=Q u\left(x_{1}, x^{\prime}\right), \quad x \in R^{n} \tag{5.2}
\end{equation*}
$$

We shall call (5.2) a reflexion formula. It will be seen that the set $H^{p}\left(R^{n}\right)$ is so large that for our purpose the condition (5.2) is also sufficient.

In this chapter we assume the polynomials $q_{i}\left(D_{1}\right)$ in (1.2) to be homogeneous, that is $q_{i}\left(D_{1}\right) D_{1}^{v_{i}}, i=1, \ldots, p$.

Theorem 5.1. Let y be a fixed point with $y_{1} \neq 0$ and assume that there is a differential operator $Q(D)$ with constant coefficients, and with the property that

$$
\begin{equation*}
u\left(-y_{1}, y^{\prime}\right)=Q(D) u\left(y_{1}, y^{\prime}\right) \tag{5.3}
\end{equation*}
$$

for all $u \in H^{p}\left(R^{n}\right)$ such that u satisfies the boundary conditions

$$
\begin{equation*}
D_{1}^{y_{i}} u=0, \quad x_{1}=0, \quad i=1, \ldots, p, \tag{5.4}
\end{equation*}
$$

where $0 \leqq v_{1}<v_{2}<\ldots<v_{p}$. Then there is a differential operator Q_{1} defined by

$$
\begin{equation*}
Q_{1}\left(x_{1}, D\right) u=\sum_{i=0}^{p-1} B_{i} x_{1}^{p+i} \Delta^{i}\left(\frac{u}{x_{1}^{p-i}}\right) \tag{5.5}
\end{equation*}
$$

with constant B_{i} such that

$$
\begin{equation*}
u\left(-x_{1}, x^{\prime}\right)=Q_{1}\left(x_{1}, D\right) u\left(x_{1}, x^{\prime}\right) \tag{5.6}
\end{equation*}
$$

for all x and all $u \in H^{p}\left(R^{n}\right)$ satisfying (5.4).
The proof will be given by means of a few lemmas.
Lemma 5.1. If the assumptions of Theorem 5.1 are fulfilled, then there is a differential operator $Q_{1}\left(x_{1}, D\right)$ of the form

$$
\begin{equation*}
Q_{1}\left(x_{1}, D\right) \equiv \sum_{\alpha} \sum_{\beta} A_{\alpha, \beta} x_{1}^{\alpha+2 \beta} D_{1}^{\alpha} \Delta^{\beta}, \quad \beta<p \tag{5.7}
\end{equation*}
$$

where the $A_{\alpha, \beta}$ are constants, and such that (5.6) holds.
Proof. First we observe that any orthonormal transformation O in the boundary variables x^{\prime}, which keeps y^{\prime} fix, transforms Q into an operator Q^{0} which also satisfies the condition (5.3). Since the set of all orthonormal transformations in the x^{\prime}-variables is a compact group, it can be equipped with a Haar-measure. See e.g. Weil [14] p. 34. Therefore, if we take the mean value of Q^{0} over the set of all orthonormal transformations in the x^{\prime}-variables by means of an integration with respect to this Haar measure, we obtain an operator Q^{\prime} which also satisfies (5.3) and which is invariant under orthonormal transformations in the boundary variables.

It is clear that a function whose values depend only on x_{1} and $r^{\prime}=\left(x_{2}^{2}+\ldots+x_{n}^{2}\right)^{1 / 2}$ is a function of x_{1} and r^{\prime}. Therefore, a polynomial which is invariant for all orthonormal transformations in the boundary variables $x_{i}, l=2, \ldots, n$ is a polynomial in x_{1} and $r^{\prime 2}$, hence a polynomial in x_{1} and $r^{2}=x_{1}^{2}+r^{\prime 2}$. This shows that the mean
value operator Q^{\prime} must be of the form

$$
\begin{equation*}
Q^{\prime} u\left(y_{1}, y^{\prime}\right)=\sum_{\alpha} \sum_{\beta} A_{\alpha, \beta}^{\prime} D_{1}^{\alpha} \Delta^{\beta} u\left(y_{1}, y^{\prime}\right) \tag{5.8}
\end{equation*}
$$

and satisfy (5.3).
We observe further that the conditions (5.4) are invariant for translations in the x^{\prime}-variables and for contractions. This means that if $u\left(x_{1}, x^{\prime}\right) \in H^{p}\left(R^{\prime}\right)$, and u satisfies (5.4), then, for any fixed (x_{1}, x^{\prime}) with $x_{1} \neq 0$, the function $v(z)$ defined by

$$
v\left(z_{1}, z^{\prime}\right)=u\left(z_{1} \frac{x_{1}}{y_{1}},\left(z^{\prime}-y^{\prime}\right) \frac{x_{1}}{y_{1}}+x^{\prime}\right)
$$

is also in $H^{p}\left(R^{n}\right)$ and satisfies (5.4). Hence we can apply (5.3) and (5.8) to v with $z=y$, and get for any x with $x_{1} \neq 0$

$$
u\left(-x_{1}, x^{\prime}\right)=v\left(-y_{1}, y^{\prime}\right)=Q^{\prime} v\left(y_{1}, y^{\prime}\right)=\sum_{\alpha} \sum_{\beta} A_{\alpha, \beta}^{\prime}\left(\frac{x_{1}}{y_{1}}\right)^{\alpha+2 \beta} D_{1}^{\alpha} \Delta^{\beta} u\left(x_{1}, x^{\prime}\right)
$$

since $\frac{\partial v}{\partial z_{\imath}}=\left(\frac{x_{1}}{y_{1}}\right) D_{\imath} u, t=1, \ldots, n$. Since y was a fixed point, this proves the lemma.
Remark. It is obvious that the lemma remains true if the boundary conditions (5.4) contain differentials in the boundary variables if only these conditions remain invariant for contractions, for translations and orthogonal transformations in the boundary variables x^{\prime}, e.g., if each condition (5.4) is of the form

$$
q_{i}(D)=\sum_{k+2 l=i} a_{k, l}^{i} D_{1}^{k} \Delta^{l}
$$

We shall now introduce a set of p operators defined by

$$
\begin{equation*}
u \rightarrow u_{i}=x_{1}^{p+i} \Delta^{i}\left(\frac{u}{x_{1}^{p-i}}\right), \quad i=0,1, \ldots, p-1 \tag{5.9}
\end{equation*}
$$

which were used by Huber in formula (1.6).
Lemma 5.2. If $u \in H^{p}\left(R^{n}\right)$, then $u_{i} \in H^{p}\left(R^{n}\right)$.
Proof. Let $u=x_{1}^{j} v$ where v is simply harmonic. For $p-1 \geqq j \supseteqq p-i$ we get

$$
u_{i}=x_{1}^{p+i} \Delta^{i}\left(\frac{x_{1}^{j} v}{x_{1}^{p-i}}\right)=x_{1}^{p+i} \Delta^{i}\left(x_{1}^{j-p+i} v\right)=0
$$

since for such a $j, i-1 \geqq j-p+i \geqq 0$, and hence $x_{1}^{j-p+i} v \in H^{i}$. For $p-i>j \geqq 0$ we get from a repeated use of formula (2.7)

$$
u_{i}=x_{1}^{p+i} \Delta^{i}\left(\frac{v}{x_{1}^{p-i-j}}\right)=x_{1}^{p+i} \sum_{k=0}^{i} a_{k} \frac{1}{x_{1}^{p-j+k}} D_{1}^{i-k} v=\sum_{k=0}^{i} a_{k} x_{1}^{i+j-k} D_{1}^{i-k} v
$$

where a_{k} are constants. Since $0 \leqq k \leqq i, 0 \leqq j<p-i$ and $D_{1}^{i-k} v \in H^{1}$, we get $0 \leqq i+$ $j-k \leqq p-1$, hence the right hand sum belongs to H^{p}.

Since the Huber operators (5.9) are linear, the lemma now follows from the Almansi representation of u.

It is evident that the Huber operators (5.9) are linearly independent, and a straightforward computation by means of (2.7) shows that they can be written in the form

$$
\begin{equation*}
u_{i}=\sum_{0 \leqq \alpha+\beta \leqq i} A_{\alpha, \beta}^{i} x_{1}^{\alpha+2 \beta} D_{1}^{\alpha} \Delta^{\beta} u, \quad i=0,1, \ldots, p-1 \tag{5.10}
\end{equation*}
$$

where $A_{0, i}^{i}=1$.
Our third lemma is the converse of this statement.
Lemma 5.3. If a differential operator of the form (5.7) maps $H^{p}\left(R^{n}\right)$ into $H^{p}\left(R^{n}\right)$, it is equivalent to an operator written in the form (5.5), using Huber operators only.

Proof. Take $\xi=\left(\xi_{1}, \xi^{\prime}\right)$ with $\xi_{1} \neq 0$ and $\langle\xi, \xi\rangle=0$ and set

$$
\begin{equation*}
u(x)=\frac{x_{1}^{k}}{k!} e^{\langle x, \xi\rangle} \tag{5.11}
\end{equation*}
$$

We shall prove the lemma by applying the operator Q_{1} in (5.7) to the function u in (5.11) for different values of k. We observe that for $k=k_{0}, u \in H^{k_{0}+1}$, and $u \notin H^{k_{0}}$, so that a necessary condition for u to belong to H^{p} is that $k<p$. Let Q_{1} defined by (5.7) transform H^{p} into H^{p}. We may suppose that $\beta<p$. We denote the upper bound of $(\alpha+\beta)$ in (5.7) by j. Applying (5.7) to (5.11) we get

$$
\begin{equation*}
Q_{1} u=x_{1}^{j+k} e^{\langle x, \xi\rangle} \xi_{1}^{j} \sum_{\alpha+\beta=j} A_{\alpha, \beta} \frac{2^{\beta}}{(k-\beta)!}+R\left(x_{1}, \xi_{1}\right) e^{\langle x, \xi\rangle}, \tag{5.12}
\end{equation*}
$$

where R is a polynomial in x_{1} of degree less than $j+k$ in x_{1}. We shall interpret $2^{\beta} /(k-\beta)$! as 0 when $k-\beta<0$. If $k<p$ we have $u \in H^{p}$, hence by assumption $Q_{1} u \in H^{p}$. This implies that if $j+k \geqq p$, the coefficient of $x_{1}^{j+k} e^{\langle x, \xi\rangle}$ must be zero, that is

$$
\begin{equation*}
\sum_{\alpha+\beta=j} A_{\alpha, \beta} \frac{2^{\beta}}{(k-\beta)!}=0 \tag{5.13}
\end{equation*}
$$

First suppose that $j \geqq p$. Putting $k=0$, we get that the sum (5.13) reduces to one term with $\beta=0$. Hence $A_{j, 0}=0$, and continuing with $k=1, \ldots, p-1$, we get recursively that all $A_{\alpha, \beta}=0, \alpha+\beta=j \geqq p$. Hence we may assume that $j<p$. Applying (5.7) to the functions (5.11) for $k=p-j, p-j+1, \ldots, p-1$, we again infer that the coefficient (5.13) of $\xi_{1}^{j} x_{1}^{j+k} e^{\langle x, \xi\rangle}$ in (5.12) must be zero for each $k \geqq p-j$, that is, we get a system of j linear equations in the $j+1$ unknowns $A_{\alpha, \beta}, \alpha+\beta=j$. The
matrix of the coefficients has the rank j. Indeed the matrix is

$$
\left(\begin{array}{ccc}
\frac{2^{0}}{(p-j)!} & \cdots & \frac{2^{j}}{(p-j-j)!} \\
\vdots & \cdots & \\
\frac{2^{0}}{(p-1)!} & \cdots & \frac{2^{j}}{(p-1-j)!}
\end{array}\right)
$$

The determinant of the first j columns is easily transformed to

$$
\frac{2^{1+2+\ldots+(j-1)}}{(p-1)!\ldots(p-j)!} \cdot\left|\begin{array}{cccc}
1 & p-j & \ldots & (p-j)^{j-1} \\
1 & p-j+1 & (p-j+1)^{j-1} \\
\vdots & \vdots & \vdots \\
1 & p-1 & & (p-1)^{j-1}
\end{array}\right|
$$

which is a Van der Monde determinant. Thus the determinant is $\neq 0$. This means that there is exactly one degree of freedom among the $A_{\alpha, \beta}, \alpha+\beta=j$, for each $j=p-1, p-2, \ldots, 1,0$.

In other words: once we have choosen the value of e.g. $A_{0, j}$, the value of all $A_{\alpha, \beta}, \alpha+\beta=j$ are determined.

Now consider the Huber operator $B_{j} u_{j}=B_{j} x_{1}^{p+j} \Delta^{j}\left(u / x_{1}^{p-j}\right)$.
(5.10) shows that $B_{j} u_{j}$ can be written in the form (5.7) with $A_{\alpha, \beta}=0$ if $\alpha+\beta>j$, and we have $A_{0, j}=B_{j}$.

Since, by Lemma 5.2, a Huber operator transforms H^{p} into H^{p}, we obtain from (5.12).

$$
Q_{1} u=A_{0, j} x_{1}^{p+j} \Delta^{j}\left(u / x_{1}^{p-j}\right)+Q_{1}^{\prime} u
$$

where Q_{1}^{\prime} is also of the form (5.7), transforms H^{p} into H^{p} and only contains terms with $\alpha+\beta<j$. We can therefore iterate the procedure for $j=p-1, p-2, \ldots, 0$, and finally get, with $B_{i}=A_{0, i}$,

$$
Q_{1} u=\sum_{i=0}^{p-1} B_{i} x_{1}^{p+i} \Delta^{i}\left(u / x_{1}^{p-i}\right)
$$

which was to be proved.
To prove Theorem 5.1 it is now sufficient to note that it follows from Theorem 4.1 that if $Q u \in H^{p}$ for those $u \in H^{p}$ which satisfy the boundary conditions (5.4), then $Q u \in H^{p}$ for all $u \in H^{p}$, that is Q maps $H^{p}\left(R^{n}\right)$ into $H^{p}\left(R^{n}\right)$.

It is readily seen that Q_{1} is invariant if x_{1} is replaced by $-x_{1}$. Using (5.6) twice, we obtain

$$
\begin{equation*}
Q^{2} u=u, \quad u \in H^{p} \tag{5.14}
\end{equation*}
$$

provided that u satisfies (5.4). Because of Theorem 4.1, (5.14) must then hold for all p-harmonic functions.

Definition 5.1. To each operator Q of the form (5.5) we define p numbers $C_{\alpha}(Q)$ by

$$
C_{\alpha}(Q)=\sum_{i=0}^{\alpha} \frac{(\alpha+i)!}{(\alpha-i)!} B_{i}, \quad \alpha=0,1, \ldots, p-1
$$

Theorem 5.2. A differential operator Q of the form (5.5) has the property (5.14) if and only if

$$
\begin{equation*}
C_{\alpha}(Q)= \pm 1, \quad \alpha=0, \quad 1, \ldots, p-1 \tag{5.15}
\end{equation*}
$$

Proof. For the proof we shall consider the p-harmonic functions $x_{1}^{k} 0 \leqq k<2 p$. We first prove the "only if". To do so, note that an elementary computation gives

$$
\begin{equation*}
Q\left(x_{1}, D\right) x_{1}^{p+\alpha}=C_{\alpha}(Q) x_{1}^{p+\alpha}, \quad 0 \leqq \alpha<p \tag{5.16}
\end{equation*}
$$

and

$$
\begin{equation*}
Q\left(x_{1}, D\right) x_{1}^{p-1-\alpha}=C_{\alpha}(Q) x_{1}^{p-1-\alpha}, \quad 0 \leqq \alpha<p \tag{5.17}
\end{equation*}
$$

Hence, applying either (5.16) or (5.17) in (5.14) we obtain the necessity of (5.15).
Next we prove the sufficiency. Since $Q^{2} u-u \in H^{p}$ for all $u \in H^{p}$, and since $Q^{2} u-u$ is obviously of the form (5.7) except for terms containing Δ^{p} as a factor, it follows from Lemma 5.3 that with constant A_{i}

$$
\begin{equation*}
Q^{2} u-u=\sum_{i=0}^{p-1} A_{i} x_{1}^{p+i} \Delta^{i}\left(\frac{u}{x_{1}^{p-i}}\right), \quad u \in H^{p} \tag{5.18}
\end{equation*}
$$

Now we have $Q^{2} u-u=0$ if $u(x)=x_{1}^{p-1-\alpha} 0 \leqq \alpha<p$, in view of (5.17). Applying (5.18), to $x_{1}^{p-1-\alpha}$ for $\alpha=0,1, \ldots, p-1$ we get successively that $A_{0}=0, A_{1}=$ $0, \ldots, A_{p-1}=0$. This completes the proof.

The theorem implies that there are exactly 2^{p} sets of coefficients B_{i}, each defining an operator Q of the form (5.5), satisfying (5.14), and transforming H^{p} into H^{p}. For each p, the set of 2^{p} operators mentioned in this theorem will be denoted T^{p}.

6. Reflection formulas and the corresponding boundary conditions

Let Ω and $\underline{\Omega}$ be domains as defined in the introduction. Let $u \in H^{p}(\Omega)$ and let Q be an operator such that $Q u \in H^{p}(\Omega)$ for all $u \in H^{p}(\Omega)$. Define a function u^{\sim} in $\Omega \cup \underline{\Omega}$ by

$$
u^{\sim}(x)= \begin{cases}u\left(x_{1}, x^{\prime}\right) & x \in \Omega \tag{6.1}\\ Q u\left(-x_{1}, x^{\prime}\right) & x \in \underline{\Omega}\end{cases}
$$

Then u^{\sim} is p-harmonic in Ω and in $\underline{\Omega}$, and it is clear that a necessary and sufficient condition for u^{\sim} to be p-harmonic in $\Omega_{\mathrm{I}}=\Omega \cup \omega \cup \underline{\Omega}$ is that \tilde{u}^{\sim} is continuous over ω together with the $2 p-1$ first normal derivatives.

If we denote

$$
\begin{equation*}
q_{j}(D) u\left(0, x^{\prime}\right)=\lim _{x_{1} \rightarrow 0}\left[D_{1}^{j} u\left(x_{1}, x^{\prime}\right)-(-1)^{j} D_{1}^{j} Q u\left(x_{1}, x^{\prime}\right)\right], \quad j=0,1, \ldots \tag{6.2}
\end{equation*}
$$

then this condition becomes

$$
\begin{equation*}
q_{j}(D) u\left(0, x^{\prime}\right)=0, \quad j=0,1, \ldots, 2 p-1 \quad \text { and } \quad u \in C^{2 p}(\Omega \cup \omega) \tag{6.3}
\end{equation*}
$$

When (6.3) is satisfied, u^{\sim} is a p-harmonic extension of u into Ω_{1}. Since u^{\sim} is then analytic in Ω_{1}, it follows that $q_{j}(D) u\left(0, x^{\prime}\right)=0$ for $j \geqq 2 p$ also.

From (6.2) we get $2 p$ conditions on u over ω and since the $q_{j}(D)$ obviously depend only on Q, we shall call them the boundary conditions corresponding to Q.

We shall here only be concerned with operators $Q \in T^{p}$.
Lemma 6.1. Let $Q \in T^{p}$. Then a boundary condition $q_{j}(D)$, corresponding to Q, is a homogeneous differential polynomial of order $j, j=0,1, \ldots$. It can be written in the form:

$$
\begin{equation*}
q_{j}(D)=\sum_{l=0}^{[j / 2]} a_{j, l} D_{1}^{j-2 l} \Delta^{\prime l} \tag{6.4}
\end{equation*}
$$

where $[j / 2]$ denotes the integer part of $j / 2$.
If $C_{\alpha}(Q)(-1)^{p+\alpha}=-1$, then $a_{p+\alpha, 0}=2$ and $a_{p-\alpha-1,0}=0$.
If $C_{\alpha}(Q)(-1)^{p-\alpha-1}=-1$, then $a_{p+\alpha, 0}=0$ and $a_{p-\alpha-1,0}=2$.
Proof. We note that

$$
\lim _{x_{1} \rightarrow 0} D_{1}^{j} x_{1}^{\alpha+2 \beta} D_{1}^{\alpha} \Delta^{\beta} u=\left\{\begin{array}{l}
0 \quad \text { if } j<\alpha+2 \beta \\
(\alpha+2 \beta)!\binom{j}{\alpha+2 \beta} D_{1}^{j-2 \beta} \Delta^{\beta} u \quad \text { if } \quad j \geqq \alpha+2 \beta
\end{array}\right.
$$

which is homogeneous of order j. Since all terms of $Q \in T^{p}$ are of this type, it is clear that $q_{j}(D)$ is also homogeneous of order j. And since the boundary differentials only appear as $\Delta^{\prime}=\left(\Delta-D_{1}^{2}\right)$ we see that $q_{i}(D)$ has the form (6.4).

To show the second part of the lemma, we use the p-harmonic functions
and

$$
u_{\alpha}=x_{1}^{p+\alpha}, \quad \alpha=0,1, \ldots, p-1
$$

$$
v_{\alpha}=x_{1}^{p-\alpha-1}, \quad \alpha=0,1, \ldots, p-1
$$

Since $Q \in T^{p}$, (5.16) shows that

$$
q_{p+\alpha}(D) u_{\alpha}(0)=\lim _{x_{1} \rightarrow 0}\left[D_{1}^{p+\alpha} x_{1}^{p+\alpha}-(-1)^{p+\alpha} C_{\alpha}(Q) D_{1}^{p+\alpha} x_{1}^{p+\alpha}\right]
$$

Let $C_{\alpha}(Q)(-1)^{p+\alpha}=-1$. Then

$$
q_{p+\alpha}(D) u_{\alpha}(0)=2 \cdot(p+\alpha)!
$$

On the other hand we obtain from (6.4)

$$
q_{p+\alpha}(D) u_{x}(0)=a_{p+\alpha, 0} \cdot(p+\alpha)!
$$

Hence $a_{p+\alpha, 0}=2$. Repeating the argument for $C_{\alpha}(Q)(-1)^{p-\alpha-1}=-1$, (i.e. $\left.C_{\alpha}(Q)(-1)^{p+\alpha}=+1\right)$, we obtain

$$
q_{p+\alpha}(D) u_{\alpha}(0)=a_{p+\alpha, 0} \cdot(p+\alpha)!=0
$$

Hence $a_{p+\alpha, 0}=0$.
The statement about $a_{p-\alpha-1,0}$ is proved in the same way by means of the functions v_{α}.

For a special Q then number of conditions (6.3) may be reduced by two reasons. It may be that for some j, q_{j} reduces to identically zero. It may also be that some of the conditions (6.3) are consequences of the others in the following way. Suppose that there are differential polynomials $s_{j, k}\left(D^{\prime}\right)$ in the boundary differentials only, such that for, $0 \leqq j<2 p$, we have

$$
\begin{equation*}
q_{j}(D)=\sum_{k \in N} s_{j, k}\left(D^{\prime}\right) q_{k}(D) \tag{6.5}
\end{equation*}
$$

where N is a set of integers with at least some $\mathrm{j} \ddagger N$. In that case $q_{j}(D) u\left(0, x^{\prime}\right)=0$ for all u such that $q_{k}(D) u\left(0, x^{\prime}\right)=0$, all $k \in N$, since $s_{j, k}\left(D^{\prime}\right)$ differentiates in the boundary variables only.

These two cases may be treated as one by permitting the polynomials $s_{j, k}$ to vanish identically.

Since, by Lemma 6.1, the boundary differentials always appear as Δ^{\prime}, the $s_{j, k}\left(D^{\prime}\right)$ can be regarded as polynomials in the single variable Δ^{\prime}, i.e., $s_{j, k}\left(\Delta^{\prime}\right)$.

Definition 6.1. An operator $Q \in T^{p}$ is said to be in S^{p} if there are p numbers $v_{i}, i=1, \ldots, p$ and differential polynomials $s_{j, v_{i}}\left(\Delta^{\prime}\right)$ such that the boundary conditions corresponding to Q satisfy

$$
q_{j}(D)=\sum_{i=1}^{p} s_{j, v_{i}}\left(\Delta^{\prime}\right) q_{v_{i}}(D), \quad 0 \leqq j<2 p
$$

The set $\left\{v_{i} \mid i=1, \ldots, p\right\}$, will be denoted $N_{1}(Q)$.
Lemma 6.2. Let $Q \in S^{p}$ and let $u \in H^{p}\left(R^{n}\right)$ satisfy the corresponding p boundary conditions:

$$
\begin{equation*}
q_{j}(D) u\left(0, x^{\prime}\right)=0 \quad j \in N_{1}(Q) \tag{6.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
u\left(-x_{1}, x^{\prime}\right)=Q u\left(x_{1}, x^{\prime}\right) \tag{6.7}
\end{equation*}
$$

Proof. Let $u \in H^{p}\left(R^{n}\right)$ satisfy (6.6). Let the restriction of u to R_{+}^{n} be continued into the whole of R^{n} by means of (6.1). Since $Q \in S^{p}$, the conditions (6.3) are fulfilled. (6.7) is then a consequence of the uniqueness of the analytic continuation.

Example 6.1. Let $Q u \equiv-u$. We get from (6.2) that the corresponding boundary conditions are

$$
q_{j}(D) u=\lim _{x_{1} \rightarrow 0}\left[D_{1}^{j} u+(-1)^{j} D_{1}^{j} u\right] .
$$

That is: $q_{j}(D) \equiv 2 D_{1}^{j}$ for $j=2 j^{\prime}, j^{\prime}=0, \ldots, p-1$ and $q_{j}(D) \equiv 0$ for $j=2 j^{\prime}+1$, $j^{\prime}=0, \ldots, p-1$.

Hence $Q \equiv-1$ belongs to S^{p}, all p, and $N_{1}(Q)$ consists of the first p even numbers $\left\{j=2 j^{\prime} \mid j^{\prime}=0, \ldots, p-1\right\}$.

For $Q u \equiv u$, we get in the same way that the corresponding boundary conditions are $q_{j}(D)=0$ for $j=2 j^{\prime}, j^{\prime}=0, \ldots, p-1$, and $q_{j}(D)=2 D_{1}^{j}$ for $j=2 j^{\prime}+1$, $j^{\prime}=0, \ldots, p-1 . \quad Q \equiv+1$ is also in S^{p} for all p and $N_{1}(Q)$ is the set

$$
\left\{j=2 j^{\prime}+1 \mid j^{\prime}=0, \ldots, p-1\right\} .
$$

The boundary conditions in Example 6.1 suggest the following definition.
Definition 6.2. For each p we define a set of operators M^{p} by the following condition. $Q \in T^{p}$ belongs to M^{p} if there are p numbers v_{i}, such that the boundary conditions corresponding to Q can be written

$$
\begin{equation*}
q_{j}(D)=\sum_{i=1}^{p} s_{j, v_{i}}\left(\Delta^{\prime}\right) D_{1}^{y_{i}} \quad 0 \leqq j<2 p \tag{6.8}
\end{equation*}
$$

where $s_{j, v_{i}}\left(\Delta^{\prime}\right)$ are zero or non-zero polynomials in Δ^{\prime}.
The set $\left\{v_{i} \mid i=1, \ldots, p\right\}$, will be denoted $N_{2}(Q)$.
M^{p} is not void, since at least the two operators in Example 6.1 belong to M^{p}. The operator given in (1.6) is also in M^{p}.

There is of course a lemma for M^{p} corresponding to Lemma 6.2.
Lemma 6.3. Let $Q \in M^{p}$ and let $u \in H^{p}\left(R^{n}\right)$ satisfy the p conditions

$$
D_{1}^{j} u\left(0, x^{\prime}\right)=0, \quad j \in N_{2}(Q) .
$$

Then $u\left(-x_{1}, x^{\prime}\right)=Q u\left(x_{1}, x^{\prime}\right), x \in R^{n}$.
The proof is obvious.
We state the next lemma both for $Q \in S^{p}$ and, within parenthesis, for $Q \in M^{p}$.
Lemma 6.4. Let $Q \in S^{p}$ (respectively $Q \in M^{p}$).
Then

$$
\begin{equation*}
C_{\alpha}(Q) \cdot(-1)^{p+\alpha}=-1 \Leftrightarrow p+\alpha \in N_{1}(Q),\left(p+\alpha \in N_{2}(Q)\right), \quad \alpha=0, \ldots, p-1 \tag{6.9}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{\alpha}(Q) \cdot(-1)^{p-1-\alpha}=-1 \Leftrightarrow p-1-\alpha \in N_{1}(Q),\left(p-1-\alpha \in N_{2}(Q)\right), \quad \alpha=0, \ldots, p-1 \tag{6.10}
\end{equation*}
$$

According to this lemma, only one of the two numbers $p+\alpha$ and $p-1-\alpha$ can belong to $N_{1}(Q),\left(N_{2}(Q)\right)$.

Proof. As in Lemma 6.1, we consider the functions $u_{\alpha}=x_{1}^{p+\alpha}$ and obtain by means of (5.16)

$$
q_{j}(D) u_{\alpha}(0)=\lim _{x_{1} \rightarrow 0}\left[D_{1}^{j} x_{1}^{p+\alpha}-(-1)^{j} D_{1}^{j} C_{\alpha}(Q) x_{1}^{p+\alpha}\right]
$$

Let $C_{\alpha}(Q)(-1)^{p+\alpha}=-1$. Then

$$
\left\{\begin{array}{l}
q_{j}(D) u_{\alpha}(0)=0 \quad j \neq p+\alpha \tag{6.11}\\
q_{p+\alpha}(D) u_{\alpha}(0)=2 \cdot(p+\alpha)!
\end{array}\right.
$$

Let $Q \in S^{p}$ and assume that $p+\alpha \notin N_{1}(Q)$. Then the conditions of Lemma 6.2 are fulfilled, but

$$
Q u_{\alpha}\left(x_{1}\right)=C_{\alpha}(Q) x_{1}^{p+\alpha}=-\left(-x_{1}\right)^{p+\alpha} \neq u_{\alpha}\left(-x_{1}\right) .
$$

Hence

$$
C_{\alpha}(Q)(-1)^{p+\alpha}=-1 \Rightarrow p+\alpha \in N_{1}(Q), \quad \alpha=0, \ldots, p-1 .
$$

The same argument applied to the functions $v_{\alpha}=x_{1}^{p-\alpha-1}$, shows that

$$
C_{\alpha}(Q)(-1)^{p-\alpha-1}=-1 \Rightarrow p-1-\alpha \in N_{1}(Q), \quad \alpha=0, \ldots, p-1 .
$$

Since this already makes p elements in $N_{1}(Q)$, the assumption $Q \in S^{p}$ proves the implication from right to left in (6.9) and (6.10).

This proves the Lemma for $Q \in S^{p}$.
To prove the lemma for $Q \in M^{p}$, it is sufficient to note that

$$
D_{1}^{j} u_{\alpha}(0)=0, \quad j \neq p+\alpha
$$

The rest of the argument will be the same as above, except that we appeal to Lemma 6.3 instead of Lemma 6.2.

It is an immediate consequence of Lemma 6.4 that if Q belongs to both S^{p} and M^{p}, then $N_{1}(Q)=N_{2}(Q)$.

A comparison of Lemma 6.4 and 6.1 shows
Corollary 6.1. Let $Q \in S^{p}$ and $j \in N_{1}(Q)$. Then in (6.4), $a_{j, 0}=2$.
Proof. Let $j=p+\alpha \in N_{1}(Q)$. Then by Lemma 6.4, $C_{\alpha}(Q)(-1)^{p+\alpha}=-1$ and by Lemma 6.1, $a_{p+\alpha, 0}=2$. The argument holds also for $j=p-\alpha-1$.

Lemma 6.5. Let $Q \in S^{p}$. Then there are polynomials $s_{j, k}\left(\Delta^{\prime}\right)$ in Δ^{\prime} only and $s_{j}\left(D_{1}, \Delta^{\prime}\right)$ such that the boundary conditions $q_{j}(D)$ corresponding to Q satisfy

$$
\begin{equation*}
q_{j}(D)=\sum_{k \in N_{1}(Q)} s_{j, k}\left(\Delta^{\prime}\right) q_{k}(D)+s_{j}\left(D_{1}, \Delta^{\prime}\right) \Delta^{p}, \quad \text { all } \quad j \geqq 0 \tag{6.12}
\end{equation*}
$$

Proof. Let $u \in H^{p}\left(R_{+}^{n}\right)$. Define $u^{\tilde{\prime}}$ by means of (6.1). Let u satisfy the p boundary conditions

$$
q_{k}(D) u\left(0, x^{\prime}\right)=0, \quad k \in N_{1}(Q)
$$

Then u^{\sim} is analytic in R^{n}. Hence

$$
q_{j}(D) u\left(0, x^{\prime}\right)=0 \quad \text { all } \quad j \geqq 0
$$

Because of Lemma 6.1 and Corollary 6.1, Theorem 4.2 is applicable and proves the result.

In the same way we can prove the corresponding lemma for $Q \in M^{p}$ by means of Corollary 4.1.

We only state the lemma.
Lemma 6.6. Let $Q \in M^{p}$. Then there are differential polynomials $s_{j, k}\left(\Lambda^{\prime}\right)$ and $s_{j}\left(D_{1}, \Delta^{\prime}\right)$ such that

$$
q_{j}(D)=\sum_{k \in N_{2}(Q)} s_{j, k}\left(\Delta^{\prime}\right) D_{1}^{k}+s_{j}\left(D_{1}, \Delta^{\prime}\right) \Delta^{p}, \quad \text { all } \quad j \geqq 0
$$

The form (5.5) of the operators in T^{p} suggests the following definition 6.3.
Definition 6.3. To each sum of Huber operators

$$
\begin{equation*}
Q(u)=\sum_{i=0}^{p-1} B_{i} x_{1}^{p+i} \Delta^{i}\left(\frac{u}{x_{1}^{p-i}}\right) \tag{6.13}
\end{equation*}
$$

i.e. transforming H^{p} into H^{p}, we define the operator Q^{*} by

$$
\begin{equation*}
Q^{*} u=-\sum_{i=0}^{p-2} B_{i} x_{1}^{p-1+i} \Delta^{i}\left(\frac{u}{x_{1}^{p-1-i}}\right) \tag{6.14}
\end{equation*}
$$

It is clear that Q^{*} is an operator transforming H^{p-1} into H^{p-1}. The boundary conditions (6.2) corresponding to Q^{*} will be denoted $q_{j}^{*}(D)$. If Q^{*} belongs to S^{p-1} or M^{p-1}, the meaning of $N_{1}\left(Q^{*}\right)$ and $N_{2}\left(Q^{*}\right)$ is obvious. Note however that $N_{1}\left(Q^{*}\right)$, $\left(N_{2}\left(Q^{*}\right)\right)$ contains only $p-1$ elements.

Lemma 6.7. Let $Q \in T^{p}$. Then $Q^{*} \in T^{p-1}$. Let $Q \in S^{p}$ and $Q^{*} \in S^{p-1}$. Then $k \in N_{1}\left(Q^{*}\right)$ implies $k+1 \in N_{1}(Q)$. Similarly if $Q \in M^{p}$ and $Q^{*} \in M^{p-1}$, then $k \in N_{2}\left(Q^{*}\right)$ implies $k+1 \in N_{2}(Q)$.

Proof. It is an immediate consequence of Definition 6.3 that for $u=x_{1} v$, $v \in H^{p-1}$,

$$
\begin{equation*}
Q\left(x_{1} v\right)=-x_{1} Q^{*} v \tag{6.15}
\end{equation*}
$$

Hence if $Q \in T^{p}$,

$$
\left(Q^{*}\right)^{2} v=\frac{1}{x_{1}} Q^{2}\left(x_{1} v\right)=\frac{1}{x_{1}} x_{1} v=v
$$

which proves that $Q^{*} \in T^{p-1}$.
Let $Q^{*} \in S^{p-1}$ and $Q \in S^{p},\left(Q^{*} \in M^{p-1}\right.$ and $\left.Q \in M^{p}\right)$. Suppose that $k=p-$ $1+\alpha \in N_{1}\left(Q^{*}\right)\left(N_{2}\left(Q^{*}\right)\right), \alpha=0, \ldots, p-2$. Then by Lemma 6.4

$$
C_{\alpha}\left(Q^{*}\right)(-1)^{p-1+\alpha}=-1, \quad \alpha=0, \ldots, p-2
$$

The definition of Q^{*} and Definition 5.1 applied to $C_{\alpha}\left(Q^{*}\right)$ show that

$$
C_{\alpha}\left(Q^{*}\right)=-C_{\alpha}(Q), \quad \alpha=0, \ldots, p-2
$$

Hence

$$
C_{\alpha}(Q)(-1)^{p+\alpha}=-1, \quad \alpha=0, \ldots, p-2
$$

which by Lemma 6.4 implies that $k+1=p+\alpha \in N_{1}(Q)\left(p+\alpha \in N_{2}(Q)\right)$.
The proof is similar for $k=p-1-\alpha-1$. To each $Q_{1} \in T^{p-1}$, there are two operators $Q \in T^{p}$ such that $Q^{*}=Q_{1}$. For one $C_{p-1}(Q)=+1$ and for the other $C_{p-1}(Q)=-1$.

Lemma 6.8. Let Q be a Huber operator (6.13) transforming H^{p} into H^{p}. Let $q_{j}(D)$ be the boundary conditions corresponding to Q and $q_{j}^{*}(D)$ be the boundary conditions corresponding to Q^{*}. Then

$$
\frac{\partial q_{j}(\xi)}{\partial \xi_{1}}=j \cdot q_{j-1}^{*}(\xi), \quad j=1, \ldots, 2 p-2
$$

and

$$
\begin{equation*}
\frac{\partial q_{2 p-1}(\xi)}{\partial \xi_{1}}=(2 p-1) \cdot q_{2 p-2}^{*}(\xi)+K \cdot \Delta^{p-1} \tag{6.17}
\end{equation*}
$$

where K is a constant.
Proof. Take a function $f\left(x_{1}, x^{\prime}\right)$ such that $u=x_{1} f \in H^{p}\left(R^{n}\right)$. Then (6.15) shows, in view of Theorem 4.1 that

$$
Q\left(x_{1} f\right)+x_{1} Q^{*} f=P\left(x_{1}, D\right) \Delta^{p-1} f
$$

since the left hand side is zero for $f \in H^{p-1}$. To determine $P\left(x_{1}, D\right)$ we write $Q\left(x_{1} f\right)$ and $x_{1} Q^{*} f$ in the form (5.10). Since in (5.10) the summation only goes to $\alpha+\beta \leqq$ $p-1$ for Q and $\alpha+\beta \leqq p-2$ for Q^{*}, we see that there will only be one term containing $\Lambda^{p-1} f$, the coefficient of which is $K \cdot x_{1}^{2 p-1}$ where K is a constant.

Hence

$$
\begin{equation*}
Q\left(x_{1} f\right)+x_{1} Q^{*} f=K \cdot x_{1}^{2 p-1} \Delta^{p-1} f \tag{6.18}
\end{equation*}
$$

Now (6.2) gives in view of (6.18)

$$
\begin{aligned}
& \lim _{x_{1} \rightarrow 0} q_{j}(D) x_{1} f\left(x_{1}, x^{\prime}\right)=\lim _{x_{1} \rightarrow 0}\left[D_{1}^{j} x_{1} f\left(x_{1}, x^{\prime}\right)-(-1)^{j} D_{1}^{j} Q\left(x_{1} f\left(x_{1}, x^{\prime}\right)\right)\right]= \\
& =\lim _{x_{1} \rightarrow 0}\left[D_{1}^{j} x_{1} f\left(x_{1}, x^{\prime}\right)-(-1)^{j} D_{1}^{j}\left\{-x_{1} Q^{*} f\left(x_{1}, x^{\prime}\right)+K x_{1}^{2 p-1} \Delta^{p-1} f\left(x_{1}, x^{\prime}\right)\right\}\right]
\end{aligned}
$$

For $j<2 p-1$ this becomes by Leibniz' formula

$$
\lim _{x_{1} \rightarrow 0} j\left[D_{1}^{j-1} f\left(x_{1}, x^{\prime}\right)-(-1)^{j-1} D_{1}^{j-1} Q^{*} f\left(x_{1}, x^{\prime}\right)\right]=j \cdot q_{j-1}^{*}(D) f\left(0, x^{\prime}\right)
$$

and for $j=2 p-1$ we obtain

$$
(2 p-1) \cdot q_{2 p-2}^{*}(D) f\left(0, x^{\prime}\right)+K_{1} \Delta^{p-1} f\left(0, x^{\prime}\right)
$$

where K_{1} is a constant.
Since by Leibniz' formula

$$
\lim _{x_{1} \rightarrow 0} q_{j}(D) x_{1} f\left(x_{1}, x^{\prime}\right)=q_{j}^{\prime}(D) f\left(0, x^{\prime}\right), \quad j>0
$$

where $q_{j}^{\prime}(\xi)=\frac{\partial q_{j}(\xi)}{\partial \xi_{1}}$, the lemma is proved.
Lemma 6.9. Let Q be an operator in T^{p} with $C_{p-1}(Q)=-1$ and such that $Q^{*} \in S^{p-1}$. Then $Q \in S^{p}$.

Proof. Since $Q^{*} \in S^{p-1}$ there are by definition a set $N_{1}\left(Q^{*}\right)$ of $p-1$ numbers and polynomials $s_{j, k}\left(\Delta^{\prime}\right)$ such that the boundary conditions corresponding to Q satisfy

$$
j \cdot q_{j-1}^{*}(D)=\sum_{k-1 \in N_{1}\left(Q^{*}\right)} s_{j, k}\left(4^{\prime}\right) k \cdot q_{k-1}^{*}(D), \quad 0 \leqq j-1 \leqq 2 p-3
$$

Hence by Lemma 6.8, the boundary conditions corresponding to Q satisfy

$$
\begin{equation*}
q_{j}(D)=s_{j}\left(\Delta^{\prime}\right)+\sum_{k-1 \in N_{1}\left(Q^{*}\right)} s_{j, k}\left(\Delta^{\prime}\right) q_{k}(D), \quad 1 \leqq j \leqq 2 p-2 \tag{6.19}
\end{equation*}
$$

For $j=0, q_{0}(D)$ is by Lemma 6.1 a constant $a_{0,0}=2$.
Hence, in (6.19), $s_{j}\left(\Delta^{\prime}\right)$ may be written $s_{j}\left(\Delta^{\prime}\right)=s_{j, 0}\left(\Delta^{\prime}\right) \cdot q_{0}(D)$. Thus there is a set N of p numbers such that $0 \in N$ and $k \in N$ if $k-1 \in N_{1}\left(Q^{*}\right)$ (cf. Lemma 6.7) and such that

$$
\begin{equation*}
q_{j}(D)=\sum_{k \in N} s_{j, k}\left(\Delta^{\prime}\right) q_{k}(D) \quad 0 \leqq j \leqq 2 p-2 \tag{6.20}
\end{equation*}
$$

It remains to show that (6.20) holds for $j=2 p-1$, for then $N=N_{1}(Q)$ and $Q \in S^{p}$.

From Lemma 6.5 applied to $Q^{*} \in S^{p-1}$ and $j=2 p-2$ we obtain that

$$
(2 p-1) \cdot q_{2 p-2}^{*}(D)=\sum_{k-1 \in N_{1}\left(Q^{*}\right)} s_{2 p-2, k}\left(\Delta^{\prime}\right) k q_{k-1}^{*}(D)+K_{2} \Delta^{p-1}
$$

where K_{2} is a constant. Then by (6.17)

$$
\begin{equation*}
q_{2 p-1}(D)=\sum_{k \in N} s_{j, k}\left(\Delta^{\prime}\right) q_{k}(D)+K_{3} \cdot q(D) \tag{6.21}
\end{equation*}
$$

where

$$
\frac{\partial q(\xi)}{\partial \check{\xi}_{1}}=(2 p-1) \cdot \Delta^{p-1}
$$

Since the order of $q_{k}(D)$ is $k<2 p-1, q(D)$ is the only term in (6.21) that contains the term $D_{1}^{2 p-1}$. Hence, writing $q_{2 p-1}(D)$ in the form (6.4), we see that

$$
K_{3}=a_{2 p-1,0}
$$

Since $C_{p-1}(Q)=-1, a_{2 p-1,0}=K_{3}=0$ by Lemma 6.1, which proves that (6.20) holds for $0 \leqq j \leqq 2 p-1$. Hence $Q \in S^{p}$.

There is of course a corresponding lemma for M^{p}.
Lemma 6.10. Let Q be an operator in T^{p} with $C_{p-1}(Q)=-1$ and such that $Q^{*} \in M^{p-1}$. Then $Q^{*} M^{p}$.

Proof. By the definition of M^{p-1}, there is a set $N_{2}\left(Q^{*}\right)$ of $p-1$ numbers and polynomials $s_{j, k}\left(\Lambda^{\prime}\right)$ such that the boundary conditions corresponding to Q^{*} satisfy

$$
j \cdot q_{j-1}^{*}(D)=\sum_{k-1 \in N_{2}\left(Q^{*}\right)} s_{j, k}\left(\Delta^{\prime}\right) \cdot k \cdot D_{1}^{k-1} \quad 0 \leqq j-1 \leqq 2 p-3 .
$$

The proof of Lemma 6.9 can now be repeated to show that the boundary conditions corresponding to Q satisfy

$$
q_{j}(D)=\sum_{k \in N_{2}(Q)} s_{j, k}\left(4^{\prime}\right) D_{1}^{k} \quad 0 \leqq j \leqq 2 p-1
$$

Hence $Q \in M^{p}$.

7. Sufficient conditions on reflection formulas

Up to now the coefficients B_{i} in (5.5) for an operator $Q \in T^{p}$ have only been defined implicitly by means of $C_{\alpha}(Q)$ and the condition (5.15). We shall begin this paragraph by studying them more closely.

Lemma 7.1. Define a set of Huber operators O_{m} by

$$
\begin{equation*}
O_{m} u=(-1)^{p} \sum_{i=m}^{p-1}(-1)^{i} \frac{1}{(2 i)!}\left[\binom{2 i}{i-m}-\binom{2 i}{i-m-1}\right] x_{1}^{p+i} \Delta^{i}\left(\frac{u}{x_{1}^{p-i}}\right) . \tag{7.1}
\end{equation*}
$$

Then each operator Q defined by

$$
\begin{equation*}
Q u=\sum_{m=0}^{p-1} a_{m} O_{m} u, a_{m}= \pm 1, \quad m=0, \ldots, p-1 \tag{7.2}
\end{equation*}
$$

is one of the operators in T^{p}. Furthermore
and

$$
\begin{equation*}
a_{m}=+1 \Rightarrow C_{m}(Q)(-1)^{p+m}=1 \tag{7.3}
\end{equation*}
$$

$$
\begin{equation*}
a_{m}=-1 \Rightarrow C_{m}(Q)(-1)^{p-1-m}=1 \tag{7.4}
\end{equation*}
$$

Proof. In the proof of Theorem 5.2, both the necessity and the sufficiency of (5.15) was proved by means of the p-harmonic functions $x_{1}^{k}, 0 \leqq k<2 p$. Hence it follows from (5.16) and (5.17) that it is enough to prove that

$$
\begin{equation*}
O_{m}\left(x_{1}^{p+\alpha}\right)=\delta_{m, a}\left(-x_{1}\right)^{p+x}, \tag{7.5}
\end{equation*}
$$

and

$$
\begin{equation*}
O_{m}\left(x_{1}^{p-1-\alpha}\right)=-\delta_{m, \alpha}\left(x_{1}\right)^{p-1-\alpha}, \tag{7.6}
\end{equation*}
$$

where $\delta_{m, \alpha}=1$ if $m=\alpha$ and $\delta_{m, \alpha}=0$ otherwise.
Indeed, if this is proved, then for a Q defined by (7.2)

$$
\begin{equation*}
Q x_{1}^{p+\alpha}=\sum_{m=0}^{p-1} a_{m} O_{m}\left(x_{1}^{p+\alpha}\right)=a_{\alpha}\left(-x_{1}\right)^{p+\alpha}, \quad \alpha=0, \ldots, p-1 \tag{7.7}
\end{equation*}
$$

and

$$
\begin{equation*}
Q x_{1}^{p-1-\alpha}=\sum_{m=0}^{p-1} a_{m} O_{m}\left(x_{1}^{p-1-\alpha}\right)=-a_{\alpha}\left(-x_{1}\right)^{p-1-\alpha}, \quad \alpha=0, \ldots, p-1 \tag{7.8}
\end{equation*}
$$

an comparison with (5.16) and (5.17) proves (7.3) and (7.4) respectively.
A direct computation in (7.1) with $u=x_{1}^{p+\alpha}$ shows that

$$
\begin{equation*}
O_{m}\left(x_{1}^{p+\alpha}\right)=(-1)^{p} \sum_{i=m}^{p-1}(-1)^{i} \frac{2 m+1}{(i-m)!(i+m+1)!} \frac{(\alpha+i)!}{(\alpha-i)!} x_{1}^{p+\alpha}, \quad \alpha=0, \ldots, p-1 \tag{7.9}
\end{equation*}
$$

where we define $a!=(a!)^{-1}=0$ for a negative. Hence

$$
\begin{equation*}
O_{m}\left(x_{1}^{p+\alpha}\right)=0 \quad \text { for } \quad m>\alpha, \tag{7.10}
\end{equation*}
$$

since then $i \geqq m>\alpha$ and $(\alpha-i)!^{-1}=0$.
For $m \leqq \alpha$ we get from (7.9, putting $i-m=j$

$$
\begin{equation*}
O_{m}\left(x_{1}^{p+\alpha}\right)=(-1)^{p+m} \frac{2 m+1}{(\alpha-m)!} \sum_{j=0}^{p-m-1}(-1)^{j}\binom{\alpha-m}{j} \frac{(\alpha+j+m)!}{(j+2 m+1)!} x_{1}^{p+\alpha} . \tag{7.11}
\end{equation*}
$$

The coefficient in (7.11) can also be obtained in the following way. Differentiate, by means of Leibniz' rule for the differentiation of a product, the (constant) function

$$
K=(-1)^{p+m} \frac{2 m+1}{(\alpha-m)!} \cdot \frac{(\alpha+m)!}{(\alpha+m+1)!} \cdot \frac{1}{x_{1}^{\alpha+m+1}} \cdot x_{1}^{\alpha+m+1}
$$

$(\alpha-m)$ times. Hence

$$
O_{m}\left(x_{1}^{p+\alpha}\right)=0 \quad \text { for } \quad \alpha>m
$$

From (7.11) we obtain for $\alpha=m$

$$
O_{\alpha}\left(x_{1}^{p+\alpha}\right)=(-1)^{p+\alpha} x_{1}^{p+\alpha}
$$

since $\binom{0}{j}=0$ for $j>0$. This proves (7.5).
If we take $u=x_{1}^{p-\alpha-1}, \alpha=0, \ldots, p-1$, the coefficients in the computations above will remain unchanged. Hence (7.6) and the lemma are proved.

Note. Since there are only 2^{p} elements in T^{p}, (7.2) exhausts T^{p}. If Q defined by (7.2) belongs to $S^{p},\left(M^{p}\right)$, then by Lemma 6.4, $a_{m}=+1$ implies $p-1-m \in N_{1}(Q)$, $\left(N_{2}(Q)\right), m=0, \ldots, p-1$ and $a_{m}=-1$ implies $p+m \in N_{1}(Q),\left(N_{2}(Q)\right)$.

Lemma 7.2. Let $O_{m} u$ be defined by (7.1). Then

$$
\begin{equation*}
Q u=u+2 \cdot \sum_{m=0}^{p-1}(-1)^{p-1-m} b_{m} O_{m} u, b_{m}=0 \text { or } 1, \quad m=0, \ldots, p-1 \tag{7.12}
\end{equation*}
$$

is an operator in T^{p}.
If $b_{m}=1$, then $C_{m}(Q)=-1, m=0, \ldots, p-1$.
If $b_{m}=0$, then $C_{m}(Q)=+1, m=0, \ldots, p-1$.
Proof. (7.5) shows that with $u=x_{1}^{p+\alpha}$,

$$
Q\left(x_{1}^{p+\alpha}\right)=x^{p+\alpha}+2(-1)^{p-1-\alpha}\left(-x_{1}\right)^{p+\alpha} b_{\alpha}, \quad \alpha=0, \ldots, p-1
$$

Hence

$$
Q\left(x_{1}^{p+\alpha}\right)=x^{p+\alpha} \quad \text { if } \quad b_{\alpha}=0
$$

and

$$
Q\left(x_{1}^{p+\alpha}\right)=-x_{1}^{p+\alpha} \quad \text { if } \quad b_{\alpha}=1
$$

Similarly we obtain from (7.6)
and

$$
Q\left(x_{1}^{p-1-\alpha}\right)=x_{1}^{p-1-\alpha} \quad \text { if } \quad b_{\alpha}=0
$$

$$
Q\left(x_{1}^{p-1-\alpha}\right)=-x_{1}^{p-1-\alpha} \quad \text { if } \quad b_{\alpha}=1
$$

That $b_{m}=0$ implies $C_{m}(Q)=+1$ and $b_{m}=1$ implies $C_{m}(Q)=-1$ is clear from a comparison with (5.16) and (5.17).

In Theorem 7.1, when we shall characterize the set M^{p}, we need the coefficients of the operators $Q \in M^{p}$ for which $N_{2}(Q)$ consists of the p elements:

$$
\begin{gather*}
0,1, \ldots, k, \text { and then } k+2, k+4, \ldots, k+2(p-1-k), \\
0 \leqq k<p . \tag{7.13}
\end{gather*}
$$

It is seen that this is consistent with the fact that only one of the two numbers $p+m$ and $p-1-m$ can belong to $N_{2}(Q)$, (Lemma 6.4). Formula (6.10) shows that in order to compute the coefficients B_{i} of the operator Q corresponding to (7.13) we shall for $0 \leqq v \leqq k$ take

$$
C_{p-v-1}(Q)(-1)^{v}=-1
$$

Hence, if we substitute $p-v-1=m$, we shall in (7.2) choose

$$
a_{m}=+1, \quad m=p-1, p-2, \ldots, p-k-1
$$

For $k<y<p$ we shall because of (6.10) take

$$
C_{p-v-1}(Q)(-1)^{v}=(-1)^{v-1-k}
$$

hence by (7.3) and (7.4)

$$
a_{m}=(-1)^{p-m-k}=(-1)^{v-k}, \quad m=p-k-2, \ldots, 0 .
$$

With these a_{m} we obtain from (7.1) and (7.2) that the coefficient B_{i} of

$$
x_{1}^{p+i} \Delta^{i}\left(\frac{u}{x_{1}^{p-i}}\right)
$$

is

$$
\begin{gathered}
B_{i}=\sum_{m=0}^{p-1} a_{m}(-1)^{p+i} \frac{1}{(2 i)!}\left[\binom{2 i}{i-m}-\binom{2 i}{i-m-1}\right]= \\
=(-1)^{p+i} \frac{1}{(2 i)!}\left[\sum_{m=0}^{p-k-1}(-1)^{p-m-k-1}\binom{2 i}{i-m}-\sum_{m=1}^{p-k-2}(-1)^{p-m-k-1}\binom{2 i}{i-m-1}\right],
\end{gathered}
$$

since the terms for $m>p-k-1$ cancel each other because of the signs of a_{m}. Put $p-k-1=-l$ in the first sum. In the second sum put $p-k-1=l$ and $m=m^{\prime}-1$. Then

$$
\begin{gather*}
B_{i}=(-1)^{p+i} \frac{1}{(2 i)!}\left[\sum_{m=0}^{-l}(-1)^{m+l}\binom{2 i}{i-m}+\sum_{m^{\prime}=0}^{l}(-1)^{m^{\prime}+l}\binom{2 i}{i-m^{\prime}}\right]= \\
=(-1)^{p+i} \frac{1}{(2 i)!} \sum_{m=-l}^{l}(-1)^{m+l}\binom{2 i}{i-m}= \\
=(-1)^{p+i} \frac{1}{(2 i)!} \sum_{m=-l}^{l}\left[\binom{2 i-1}{i-m}+\binom{2 i-1}{i-m-1}\right](-1)^{m+l}=(-1)^{p+i} \frac{2}{(2 i)!}\binom{2 i-1}{i+1} \tag{7.14}
\end{gather*}
$$

for $i \neq 0$ and $B_{0}=(-1)^{1+k}$. Since $2 i-l<i+l$ for $i<l+1, B_{i}=0$ for $0<i \leqq l$.
For the special case $k=p-1$, (i.e. $l=0$) this becomes

$$
B_{i}=(-1)^{p+i} \frac{2}{(2 i)!}\binom{2 i-1}{i}=(-1)^{p+i} \frac{1}{(i!)^{2}}
$$

which we recognize as the coefficients in formula (1.6).
We shall now come to our first main theorem which completely characterizes the set M^{p} of operators whose boundary conditions are of the form (6.8).

Theorem 7.1. Let $Q \in M^{p}$. Then either
a) $Q u=u$ and $N_{2}(Q)=\left\{v_{i} \mid v_{i}=2 i+1, i=0, \ldots, p^{i}-1\right\}$,
b) or else for some k with $0 \leqq k<p$ and $l=p-1-k$

$$
\begin{equation*}
Q u=(-1)^{p}\left[(-1)^{l} u+\sum_{i=l+1}^{p-1}(-1)^{i} \frac{2}{(2 i)!}\binom{2 i-1}{i+l} x_{1}^{p+i} \Delta^{i}\left(\frac{u}{x_{1}^{p-i}}\right)\right], \tag{7.15}
\end{equation*}
$$

and the corresponding $N_{2}(Q)$ is

$$
N_{2}(Q)=\left\{v_{i} \mid v_{i}=i, i=0, \ldots, k ; v_{i}=k+2(i-k), i=k+1, \ldots, p-1\right\}
$$

According to the theorem, M^{p} as defined above contains $p+1$ elements.

The proof will be split up into a few lemmas. We shall first prove the negative result, that is, M^{p} cannot contain more than $p+1$ elements.

Lemma 7.3. For each $Q \in M^{p}$ we have either $C_{p-1}(Q)=-1$ or $Q u \equiv u$.
Proof. Suppose that $Q \in M^{p}$ and let $C_{p-1}(Q)=+1$. Take j such that with Q expressed in the form (5.5), $B_{i}=0$ for $i>j$, but $B_{j} \neq 0$. Of course j can be $p-1$. Let $u\left(x^{\prime}\right) \in H^{p}\left(R^{n}\right)$ be a function of the x^{\prime} only and such that $\Delta^{j} u \neq 0$. Then

$$
D_{1}^{v} u\left(x^{\prime}\right)=0 \quad \text { for } \quad v>0 .
$$

Since, by Lemma 6.4, $C_{p-1}(Q)=1$ implies $0 \notin N_{2}(Q)$, the conditions of Lemma 6.3 are fulfilled. Hence

$$
Q u\left(x^{\prime}\right)=u\left(x^{\prime}\right)
$$

is independent of x_{1}.
A direct calculation however, shows that

$$
Q u\left(x^{\prime}\right)=\sum_{i=0}^{j} B_{i} x_{1}^{p+i} \Delta^{i}\left(\frac{u\left(x^{\prime}\right)}{x_{1}^{p-i}}\right)=B_{j} x_{1}^{2 j} \Delta^{j} u\left(x^{\prime}\right)+R\left(x_{1}, D\right) u\left(x^{\prime}\right)
$$

where R is a polynomial in x_{1} and D of degree less than $2 j$ in x_{1}. Hence $Q u\left(x^{\prime}\right)$ is not independent of x_{1} if $j>0$. Thus $j=0$ and $Q u= \pm u$. Since for $Q u \equiv-u$, $C_{p-1}(Q)=-1$, the lemma is proved.

Lemma 7.4. If $Q \in M^{p}$, then $Q^{*} \in M^{p-1}$. (Cf. Lemma 6.10).
Proof. Let $Q \in M^{p}$. If $Q u \equiv u$, then $Q^{*} v \equiv-v$. Example 6.1 shows that the lemma is then valid. In view of Lemma 7.3, we may thus assume that $0 \in N_{2}(Q)$. By Definition 6.2 there are $p-1$ numbers $v_{i}>0, i=1, \ldots, p-1$ such that the boundary conditions corresponding to Q satisfy

$$
q_{j}(D)=s_{j, 0}\left(\Delta^{\prime}\right)+\sum_{i=1}^{p-1} s_{j, v_{i}}\left(\Delta^{\prime}\right) D_{1}^{v_{i}}, \quad j=0, \ldots, 2 p-1 .
$$

Lemma 6.8 then shows that the boundary conditions corresponding to Q^{*} satisfy

$$
j \cdot q_{j-1}^{*}(D)=\sum_{i=1}^{p-1} s_{j, v_{i}}\left(4^{\prime}\right) \cdot v_{i} \cdot D_{1}^{v_{i}-1}, \quad j-1=0, \ldots, 2 p-2 .
$$

Hence $Q^{*} \in M^{p-1}$.
Proof of Theorem 7.1. From these two lemmas it follows by induction that M^{p} contains at most $p+1$ elements. Indeed, $M^{p} \subset T^{p}$ and T^{p} contains 2^{p} elements. For $p=1$ we have $p+1=2^{p}$. Hence the assertion is true for $p=1$. Suppose that M^{j} contains $j+1$ elements. Then by Lemma $7.4, M^{j+1}$ cannot contain more than $2(j+1)$ elements. However, only $j+1$ of these Q have $C_{j}(Q)=-1$. Therefore by Lemma $7.3, M^{j+1}$ contains at most $j+2$ elements. The positive result is also proved by induction. For $p=1, M^{p}=T^{p}$ consists of the two elements $Q u=$
$\pm u$, hence the theorem is true for $p=1$. Case a of the theorem is true for all p by Example 6.1. Suppose that case b has been proved for $p=j$. Then Lemma 6.7 and Lemma 6.10 show that the statement about the sets $N_{2}(Q)$ is true for $p=j+1$ also, since this implies that $C_{j}(Q)=-1$ and $Q^{*} \in M^{j}$. The computation of the coefficients B_{i} of the corresponding Q was effected in (7.14).

The results now obtained may be used to prove the existence of an analytic continuation of a function in $H^{p}(\Omega)$.

Theorem 7.2. Let Ω and ω be sets as defined in the introduction. Let Q be an operator in M^{p}, and let $u \in H^{p}(\Omega)$ satisfy in the limit the p boundary conditions

$$
\lim _{x_{1} \rightarrow+0} D_{1}^{v_{i}} u\left(x_{1}, x^{\prime}\right)=0,\left(0, x^{\prime}\right) \in \omega, v_{i} \in N_{2}(Q), \quad i=1, \ldots, p-1
$$

Then the function $u^{\sim}\left(x_{1}, x^{\prime}\right)$ defined by

$$
u^{\sim}\left(x_{1}, x^{\prime}\right)= \begin{cases}u\left(x_{1}, x^{\prime}\right), & x \in \Omega \\ \lim _{x_{1} \rightarrow+0} u\left(x_{1}, x^{\prime}\right), & x \in \omega \\ Q u\left(-x_{1}, x^{\prime}\right), & x \in \underline{\Omega}\end{cases}
$$

is a polyharmonic extension of u into Ω_{1}.
Proof. It follows from Theorem 3.1 that u can be analytically continued across $x_{1}=0$. Hence $u^{\sim}\left(x_{1}, x^{\prime}\right) \in C^{\infty}(\Omega \cup \omega)$. Furthermore it follows that u^{\sim} is p-harmonic in Ω and in Ω. Because of Theorem 7.1, u^{\sim} has 2^{p-1} continuous derivatives over ω. Hence $u^{\sim} \bar{\epsilon} H^{p}\left(\Omega_{1}\right)$.

Remark. The formula (7.15) may be transformed into the following form, more similar to formula (1.6)

$$
Q u=(-1)^{p} \sum_{i=0}^{p-1} \frac{(-1)^{i}}{(i!)^{2}} \Pi_{j=0}^{l-1} \frac{(i-j)}{(i+j)} x_{1}^{p+i} \Delta^{i}\left(\frac{u}{x_{1}^{p-i}}\right)
$$

It is seen immediately that (1.4) corresponds to the special case $l=1$.
The operators in T^{p} which are not in M^{p} have boundary conditions of more complicated structure. Still we have that they are in S^{p}, that is, p boundary conditions on $u \in H^{p}(\Omega \cup \omega)$ are enough to ensure that u can be continued into Ω_{1} by Q.

Theorem 7.3. Let $Q \in T^{p}$. Then $Q \in S^{p}$.
We shall prove the theorem by induction over p.
Since the result is trivial when $p=1$, it is, in view of Lemma 6.9, enough to prove.

Lemma 7.5. Let Q be an operator in T^{p} with $C_{p-1}(Q)=+1$ and such that $Q^{*} \in S^{p-1}$. Then $Q \in S^{p}$.

Proof. Following the proof of Lemma 6.9, we know that the assumptions of the lemma imply that the boundary conditions $q_{j}(D)$ corresponding to Q satisfy (6.19) for $1 \leqq j \leqq 2 p-2$.

From Lemma 6.1 it follows that $q_{0}(D) \equiv a_{0,0}=0$, since $C_{p-1}(Q)=+1$. We need not bother with $q_{2 p-1}(D)$, since if $Q \in S^{p}$ and $C_{p-1}(Q)=+1$, then by Lemma $6.4,2 p-1 \in N_{1}(Q)$.

Hence it is enough to prove that in (6.19), $s_{j, 0}\left(4^{\prime}\right) \equiv 0,1 \leqq j \leqq 2 p-2$, for then by Definition 6.1, $Q \in S^{p}$.

Since Δ^{\prime} is of order two, and since $q_{j}(D)$ is homogeneous of order j, a term $s_{j, 0}\left(4^{\prime}\right)$ can only appear for j even, $j=2 h$. Formula (6.2) and Lemma 7.2 show that for $j=2 h$

$$
\begin{equation*}
q_{2 h}(D) u=\lim _{x_{1} \rightarrow 0}\left[-2 \sum_{m=0}^{p-1}(-1)^{p-1-m} b_{m} D_{1}^{2 h} O_{m} u\right] \tag{7.16}
\end{equation*}
$$

where we may stop the summation at $m=p-2$, since $C_{p-1}(Q)=+1$ implies $b_{p-1}=0$.

By the same argument as was used in Lemma 6.1, $o_{m, j}(D)$, defined by

$$
\begin{equation*}
o_{m, j}(D) u=\lim _{x_{1} \rightarrow 0} D_{1}^{j} O_{m} u \tag{7.17}
\end{equation*}
$$

is a homogeneous differential polynomial of order j. Hence we may write (for $j=2 h$),

$$
\begin{equation*}
o_{m, 2 h}(D)=\sum_{l=0}^{h} a_{2 h, l}^{m} \Delta^{\prime 1} D_{1}^{2(h-l)} \tag{7.18}
\end{equation*}
$$

where the $a_{2 h, l}^{m}$ are constants. We obtain from (7.16),

$$
q_{2 h}(D)=-2 \sum_{m=0}^{p-2}(-1)^{p-1-m} b_{m} o_{m, 2 h}(D)
$$

For the coefficients $a_{2 h, l}^{m}$ in (7.18), we shall now prove
Lemma 7.6. For each operator $O_{m}, m \neq p-1$, and all $j=2 h, h>0$,

$$
a_{2 h, h}^{m}+K_{m} \cdot a_{2 h, h-1}^{m}=0
$$

where $K_{m}=\frac{1}{2}(p+m)(p-1-m)$ is independent of $h, h>0$.
We shall first see how this lemma proves Lemma 7.5.
Since $K_{m} \neq 0, m \neq p-1$, the following can be written as one term in the expression (7.18) of $o_{m, 2 h}$

$$
a_{2 h, h-1}^{m} \Delta^{\prime h-1}\left(D_{1}^{2}-K_{m} \Delta^{\prime}\right)
$$

for K_{m} is independent of h. Since this is true for each $m \neq p-1$, it must also be true for the sum

$$
-2 \sum_{m=0}^{p-2}(-1)^{p-1-m} b_{m} o_{m, 2 h}(D)=q_{2 h}(D)
$$

that, with the same notation, no term $\Delta^{\prime h}$ will appear alone. Hence in the expression (6.19) of $q_{2 h}(D), s_{2 h, 0}\left(\Delta^{\prime}\right) \equiv 0$ for all h, since $s_{2 h, 0}\left(\Delta^{\prime}\right)$ does not contain D_{1}^{2}.

Proof of Lemma 7.6. The verification of the lemma consists of a trivial, though a bit lengthy computation.

First, let us determine $a_{2 h, h}^{m}$, that is the coefficient of ${\Delta^{\prime h}}^{\prime h} D_{1}^{0}$ in (7.18). If we write the operator $B_{i} x_{1}^{p+i} \Delta^{i}\left(\frac{u}{x_{1}^{p-i}}\right)$ in the form (5.10), we see that the coefficient $A_{0, h}^{i}$ of $x_{1}^{2 h} D_{1}^{0} \Delta^{h} u$ is

$$
\begin{equation*}
A_{0, h}^{i}=B_{i} \frac{(p+i-2 h-1)!}{(p-i-1)!}\binom{i}{h} \tag{7.19}
\end{equation*}
$$

Then we observe that

$$
\lim _{x_{1} \rightarrow 0} D_{1}^{2 h} A_{0, h}^{i} x_{1}^{2 h} \Delta^{h} u=(2 h)!A_{0, h}^{i} \Delta^{h} u
$$

and observe that in the binomial expression of $C \cdot \Delta^{h}=C\left(D_{1}^{2}+\Delta^{\prime}\right)^{h}$, the coefficients of $\Delta^{\prime h}$ and Δ^{h} are equal. Hence (7.1), (7.17) and (7.19) show that in (7.18)

$$
a_{2 h, h}^{m}=(-1)^{p} \sum_{i=m}^{p-1}(-1)^{i} \frac{(2 h)!}{(2 i)!}\left[\binom{2 i}{i-m}-\binom{2 i}{i-m-1}\right]\binom{i}{h} \frac{(p+i-2 h-1)!}{(p-i-1)!}
$$

To compute $a_{2 h, h-1}^{m}$ we may proceed as follows.
Define O_{m}^{*} and $O_{m}^{* *}$ by means of a repetition of Definition 6.3.
Note that Definition 6.3 and Lemma 6.8 do not require that $Q \in T^{p}$, only that Q is a sum of Huber operators transforming H^{p} into H^{p}.

We then define $o_{m, 2 h-1}^{*}(D)$ by

$$
o_{m, 2 h-1}^{*}(D) u=\lim _{x_{1} \rightarrow 0} D_{1}^{2 h-1} O_{m}^{*} u
$$

and $o_{m, 2 h-2}^{* *}(D)$ correspondingly.
A reproduction of the proof of Lemma 6.8 shows that

$$
\frac{\partial}{\partial \xi_{1}} o_{m, 2 h}(\xi)=-2 h o_{m, 2 h-1}^{*}(\xi), \quad 1 \leqq 2 h<2 p-1
$$

(The only difference in the definition of $q_{2 h}(D)$ and $o_{m, 2 h}(D)$ is the term $D_{1}^{2 h}$ and the sign $(-1)^{2 h}$.)

Hence by repetition

$$
\begin{equation*}
\frac{\partial^{2}}{\partial \xi_{1}^{2}} o_{m, 2 h}(\xi)=2 h(2 h-1) o_{m, 2 h-2}^{* *}(\xi), \quad 2 \leqq 2 h<2 p-2 \tag{7.20}
\end{equation*}
$$

Since the coefficient of $x_{1}^{2 h-2} D_{1}^{0} \Delta^{h-1}$ in the expansion (5.10) of

$$
\left(x_{1}^{p+i} \Delta^{i}\left(\frac{u}{x_{1}^{p-i}}\right)\right)^{* *}=x_{1}^{p+i-2} \Delta^{i}\left(\frac{u}{x_{1}^{p-i-2}}\right)
$$

is

$$
\binom{i}{h-1} \frac{(p+i-1-2 h)!}{(p-i-3)!}
$$

we obtain that the coefficient of $\Delta^{\prime h-1}$ in $o_{m, 2 h-2}^{* *}(D)$ is

$$
(-1)^{p} \sum_{i=m}^{p-1}(-1)^{i} \frac{(2 h-2)!}{(2 i)!}\left[\binom{2 i}{i-m}-\binom{2 i}{i-m-1}\right]\binom{i}{h-1} \frac{(p+i-1-2 h)!}{(p-i-3)!}
$$

$$
a_{2 h, h-1}^{m}=(-1)^{p} \sum_{i=m}^{p-1}(-1)^{i} \frac{(2 h)!}{2(2 i)!}\left[\binom{2 i}{i-m}-\binom{2 i}{i-m-1}\right]\binom{i}{h-1} \frac{(p+i-1-2 h)!}{(p-i-3)!}
$$

where we use the convention that $(a!)^{-1}=0$ for $a<0$.
To show the lemma, we compute

$$
\begin{gathered}
S=a_{2 h, h-1}^{m}+\frac{1}{2}(p+m)(p-1-m) a_{2 h, h}^{m} \\
=(-1)^{p} \sum_{i=m}^{p-1}(-1)^{i} \frac{(2 m+1)(p+i-2 h-1)!2 h!}{(i+m+1)!(i-m)!(p-i-3)!\cdot 2} \\
\times\left[\binom{i}{h-1}+\binom{i}{h} \frac{(p+m)(p-1-m)}{(p-i-2)(p-i-1)}\right]
\end{gathered}
$$

for $\binom{2 i}{i-m}-\binom{2 i}{i-m-1}=\frac{(2 m+1)(2 i)!}{(i+m+1)!(i-m)!}$. Since also

$$
\frac{(p+m)(p-1-m)}{(p-i-2)(p-i-1)}=1+2 \frac{i+1}{p-i-2}+\frac{(i+1+m)(i-m)}{(p-i-1)(p-i-2)},
$$

we obtain from the expression in the brackets

$$
\begin{gathered}
\binom{i}{h-1}+\binom{i}{h}\left\{1+2 \frac{i+1}{p-i-2}+\frac{(i+1+m)(i-m)}{(p-i-1)(p-i-2)}\right\}=\binom{i+1}{h}+2\binom{i+1}{h} \frac{i+1-h}{p-i-2} \\
\quad+\binom{i}{h} \frac{(i+1+m)(i-m)}{(p-i-1)(p-i-2)}=\binom{i+1}{h} \frac{p+i-2 h}{p-i-2}+\binom{i}{h} \frac{(i+1+m)(i-m)}{(p-i-1)(p-i-2)} .
\end{gathered}
$$

Hence

$$
\begin{aligned}
S= & (-1)^{p}\left[\sum_{i=m}^{p-2}(-1)^{i} \frac{(2 m+1)(p+i-2 h)!(2 h)!}{(i+m+1)!(i-m)!(p-i-2)!2}\binom{i+1}{h}\right. \\
& \left.+\sum_{i=m+1}^{p-1}(-1)^{i} \frac{(2 m+1)(p+i-2 h-1)!(2 h)!}{(i+m)!(i-m-1)!(p-i-1)!2}\binom{i}{h}\right]
\end{aligned}
$$

The deleted terms $i=p-1$ and $i=m$ are zero, since $(p-i-2)!^{-1}=0$ for $i=p-1$, and similarly $(i-m-1)!^{-1}=0$ for $i=m$.

Substituting $i \rightarrow i^{\prime}+1$ in the last sum we obtain $S=0$, which proves the lemma.
There is also in this case a Theorem corresponding to Theorem 7.2.
Theorem 7.4. Let Ω and ω be sets as defined in the introduction. Let Q be an operator in T^{p} (and hence in S^{p}), and let $q_{j}(D)$ be the boundary conditions corresponding to Q. Further let $u \in C^{2 p-1}(\Omega \cup \omega)$ and $u \in H^{p}(\Omega)$ satisfy the p boundary conditions:

$$
q_{j}(D) u\left(0, x^{\prime}\right)=0 \quad j \in N_{1}(Q)
$$

Then $u^{\sim}\left(x_{1}, x^{\prime}\right)$ defined by

$$
u^{\sim}\left(x_{1}, x^{\prime}\right)= \begin{cases}u\left(x_{1}, x^{\prime}\right) & x \in \Omega \cup \omega \\ Q u\left(-x_{1}, x^{\prime}\right) & x \in \underline{\Omega}\end{cases}
$$

is a polyharmonic extension of u into Ω_{1}.
The proof is evident. It follows the proof of Theorem 7.2.

8. The MacLaurin expansion and continuation formulas

Let Ω and ω be defined as in the introduction. Let $u \in H^{p}(\Omega)$ satisfy the set of boundary conditions

$$
\begin{equation*}
\lim _{x_{1} \rightarrow 0} D_{1}^{v_{i}} u\left(0, x^{\prime}\right)=0, \quad i=1, \ldots, p \tag{8.1}
\end{equation*}
$$

If the set $\left\{v_{i}\right\}$ is one of the sets mentioned in Theorem 7.1, then we have already obtained the reflection formula which continues u into the whole of Ω_{1}. We shall in this section give a method to obtain continuation formulas for other sets $\left\{v_{i}\right\}$ in (8.1). Since the corresponding continuation formulas cannot be of purely differential type, the continuation will not necessarily be possible into more than Ω_{2}.

For all natural numbers p, let Q_{p} be the operator in formula (1.6). This operator continues any $u \in H^{p}(\Omega)$ which satisfies on ω the Dirichlet boundary conditions.

Define the operator Q_{p}^{k} by

$$
\begin{equation*}
Q_{p}^{k}\left(x_{1}, D\right) u=\frac{1}{x_{1}^{k+1}} Q_{p+1}\left[x_{1}^{k+1} D_{1}\left(\frac{u}{x_{1}^{k}}\right)\right] \tag{8.2}
\end{equation*}
$$

Theorem 8.1. Let $u \in H^{p}(\Omega)$ satisfy the p boundary conditions

$$
\begin{equation*}
\lim _{x_{1} \rightarrow 0} D_{1}^{i} u\left(x_{1}, x^{\prime}\right)=0, \quad x \in \Omega, \quad i=0, \quad 1, \ldots, k-1, \quad k+1, \ldots, p, \quad 0 \leqq k<p \tag{8.3}
\end{equation*}
$$

Then the operator Q defined by

$$
\begin{equation*}
Q u=x_{1}^{k} \int_{0}^{x_{1}} Q_{p}^{k}(t, D) u d t+\frac{\left(-x_{1}\right)^{k}}{k!} \cdot\left[\lim _{x_{1} \rightarrow 0} D_{1}^{k} u\right] \tag{8.4}
\end{equation*}
$$

has the property that

$$
u\left(-x_{1}, x^{\prime}\right)=Q u\left(x_{1}, x^{\prime}\right) \quad x \in \Omega^{\prime}
$$

continues u analytically into Ω_{2}.
Proof. The boundary conditions (8.3) imply by Theorem 3.1 that there exists a continuation of u into Ω_{2}. Hence u is analytic on ω. We can therefore expand u in MacLaurin series in x_{1} (with x_{2}, \ldots, x_{n} as parameters) with a positive radius of convergence

$$
\begin{equation*}
u\left(x_{1}, x^{\prime}\right)=\sum_{j=0}^{\infty} x_{1}^{j} g_{j}\left(x^{\prime}\right) \tag{8.5}
\end{equation*}
$$

The conditions (8.3) imply that

$$
g_{j}\left(x^{\prime}\right) \equiv 0 \quad \text { for } \quad j=0,1, k-1, k+1, \ldots, p
$$

Using the expansion (8.5) we see that the function u_{1} defined by

$$
\begin{equation*}
u_{1}=x_{1}^{k+1} D_{1}\left(\frac{u}{x_{1}^{k}}\right) \tag{8.6}
\end{equation*}
$$

satisfies the $p+1$ Dirichlet boundary conditions

$$
D_{1}^{i} u_{1}\left(0, x^{\prime}\right) \equiv 0, \quad i=0,1, \ldots, p .
$$

Since $u_{1}=x_{1} D_{1} u-k u, u_{1} \in H^{p+1}(\Omega)$ because of Corollary 2.1.
Theorem 7.2 then shows that the continuation of u_{1} into Ω_{2} may be effected by

$$
\begin{equation*}
u_{1}\left(-x_{1}, x^{\prime}\right)=Q_{p^{+1}} u_{1}\left(x_{1}, x^{\prime}\right) \quad x \in \Omega \tag{8.7}
\end{equation*}
$$

It follows from (8.6) that the MacLaurin expansion of u_{1} is

$$
u_{1}\left(x_{1}, x^{\prime}\right)=\sum_{j=0}^{\infty}(j-k)\left(+x_{1}\right)^{j} g_{j}\left(x^{\prime}\right),
$$

where the series converges uniformly inside the radius of convergence. We obtain from (8.7)

$$
\sum_{j=0}^{\infty}(j-k)\left(-x_{1}\right)^{j} g_{j}\left(x^{\prime}\right)=u_{1}\left(-x_{1}, x^{\prime}\right)=Q_{p} u_{1}\left(x_{1}, x^{\prime}\right)
$$

Divide both sides by x_{1}^{k+1} and integrate. In the left hand side we integrate term by term, which is permissible because of the uniform convergence. A multiplication
with x_{1}^{k} then gives with the notation (8.2).

$$
\sum_{\substack{j=0 \\ j \neq k}}^{\infty}\left(-x_{1}\right)^{j_{j}} g_{j}\left(x^{\prime}\right)=x_{1}^{k} \int_{0}^{x_{1}} Q_{p}^{k}(t, D) u\left(t, x^{\prime}\right) d t
$$

Finally we add

$$
\left(-x_{1}\right)^{k} g_{k}\left(x^{\prime}\right)=\frac{\left(-x_{1}\right)^{k}}{k!}\left[\lim _{x_{1} \rightarrow 0} D_{1}^{k} u\right]
$$

to both sides and obtain (8.4). The unicity of the analytic continuation then proves the theorem.

The case $k=p-1$ is of course included in Theorem 7.2.
The method described in this section may be used for other sets (8.1) of boundary conditions as well.

References

1. Almansi, E., Sull'integrazione dell'equazione differentiale $d^{2 n}=0$. Annali di Math. Pura ed Applicata 2 (1899), 1-52.
2. Canavan, R. I., Necessary conditions for continuation and reflection principles for solutions of homogeneous linear partial differential equations with constant coefficients. Dissertation, New York, 1957.
3. Courant, R. and Hilbert, D., Methods of Mathematical Physics T. II. New York, 1962.
4. Diaz, J. B., and Ludford, G. S. S., Reflection principles for linear elliptic second order partial differential equations with constant coefficients. Annali di Math. Pura ed Applicata 39 (1955), 87-95.
5. Duffin, R. J., Continuation of biharmonic functions by reflection. Duke Math. J. 22 (1955), 313-324.
6. Huber, A., The reflection principle for polyharmonic functions. Pacific J. Math. 5 (1955), 433-439.
7. Hörmander, L., On the regularity of the solutions of boundary problems. Acta Math. 99 (1958), 225-264.
8. Hörmander, L., Linear Partial Differential Operators. Berlin, 1963.
9. John, F., Continuation and reflection of solutions of partial differential equations. Bull. American Math. Soc. 63 (1957), 327-344.
10. Kraft, R., Reflection of polyharmonic functions in two independent variables. J. Math. Anal. and appl. 19 (1967), 505-518.
11. Levy, H., On the reflecting laws of second order differential equations in two independent variables. Bull. American Math. Soc. 65 (1959), 37-58.
12. Nicolesco, M., Les fonctions polyharmoniques. Actualités Scient. et Industrielles 331, Paris 1936.
13. Poritsky, H., Application of analytic functions to two-dimensional biharmonic analysis. Trans. Amer. Math. Soc. 59 (1946), 248-279.
14. Weil, A., L'integration dans les groupes topologiques. Actualités Scient. et Industrielles 869-1145. Paris 1951.
15. Diaz, J. B. and Ram, R. B., On biharmonic functions which are always harmonic functions. Applicable Analysis 6 (1976/77), 149-153.
16. Diaz, J, B. and Ram, R. B., A reflection principle for a fourthorder partial differential equation which is related to the biharmonic equation. Bull. Calcutta Math. Soc. 69 (1977), 125-130.
17. Armitage, D. H., Reflection principles for harmonic and polyharmonic functions. J. Math. Anal. Appl. 65 (1978), 44-55.

Received December 5, 1980

Lars Nystedt
Department of Mathematics
University of Stockholm
Box 6701
11385 Stockholm SWEDEN

[^0]: * The main part of this work constituted a PH.D. thesis accepted at Stockholm University 1973.

