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Introduction 

A characteristic property of holomorphic functions, in one as well as in several 
variables, is that they are about as "rigid" as one can demand, without being iden- 
tically constant. An example of this rigidity is the fact that every holomorphic 
function element, or germ of a holomorphic function, has associated with it a unique 
domain, the maximal domain to which the function can be continued. Usually this 
domain is no longer in euclidean space (a "schlicht" domain), but lies over euclidean 
space as a many-sheeted Riemann domain. 

It  is now natural to ask whether, given a domain, there is a holomorphic func- 
tion for which it is the domain of existence, and for domains in the complex plane 
this is always the case. This is a consequence of the Weierstrass product theorem 
(cf. [13] p. 15). In higher dimensions, however, the situation is different, and the 
domains of existence, usually called domains of  holomorphy, form a proper sub- 
class of  the class of  aU domains, which can be characterised in various ways (holo- 
morphic convexity, pseudoconvexity etc.). To obtain a complete theory it is also 
in this case necessary to consider many-sheeted domains, since it may well happen 
that the maximal domain to which all functions in a given domain can be continued 
is no longer "schlicht". 

It  is possible to go further than this, and ask for quantitative refinements of 
various kinds, such as: is every domain of  holomorphy the domain of  existence of  
a function which satisfies some given growth condition? Certain results in this 
direction have been obtained (cf. for example [17] and [19]). 

An extreme case is to consider the bounded functions, and now a new situa- 
tion arises. It is for example no longer true that every domain in the complex plane 
is the domain of  definition of  a bounded function; one only has to consider the 
punctured disc and use the Riemann removable singularity theorem. A similar 
phenomenon occurs in higher dimensions, wich can be seem follows. 
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Consider a domain of holomorphy and a function which is holomorphic and 
not identically zero in the domain, but which has zeros there, nevertheless. Then 
the set of points in the domain where the function is different from zero is also a 
domain of holomorphy (it can easily be seen to be holomorphically convex). One 
can now apply the extension of Riemann's theorem (cf. [11] p. 19) to conclude 
that there is no bounded function for which this new domain of holomorphy is the 
domain of existence. 

The problem now arises to characterise those domains which are the domains 
of existence of bounded, holomorphic functions, a problem where little progress 
has been made so far. A major difficulty is that the condition of boundedness is 
a global condition, so that the usual methods of patching together local elements 
to get a global function (e.g. the use of cohomology theory for coherent sheaves) 
do not seem to apply. 

The present work has its origin in attempts to obtain the desired characterisa- 
tion using adaptations of the criteria used in the unbounded case. The complete 
characterisation has proved elusive, but certain partial results have been obtained. 
Furthermore, the classes of domains studied here are important in other contexts 
(such as the Serre problem concerning holomorphic fibre bundles, and the classifica- 
tion of pseudoconvex domains), so that the results relating these classes can be of 
interest. 

Now for a sketch of the.contents of the various sections. 
Section 1 starts with a short description of the construction of general envelopes 

of hol0morphy. Then follow basic definitions and criteria, and finally examples 
are given of domains which are domains of existence of a bounded holomorphic 
function. 

Section 2 is concerned with the bounded analogue of holomorphic convexity. 
It turns out that one gets two different kinds of convexity, and the relation between 
them is studied, as well as their relation to the domains of existence of bounded 
holomorphic functions. 

Section 3 deals with what can be seen as a generalisation of one of the con- 
cepts of bounded convexity, namely completeness with respect to the Carath6odory 
metric. The relationship between this concept and the previously introduced ones 
is given. 

Section 4, finally, is concerned with a characterisation using a bounded pluri- 
subharmonic function, namely hyperconvexity. It is shown, among other things, 
that strongly complete domains are hyperconvex, and a certain consequence of this 
result is stated. 

Some words about notation: ~ (D) will denote the space of holomorphic func- 
tions and H=(D) the space of bounded holomorphic functions on a domain D. 
By I[ flip we denote the supremum of the function f on D. 
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1. Domains of bounded holomorphy 

As mentioned in the introduction, it is usually necessary to consider domains 
lying over C '~ and consisting of several sheets when one is looking for the maximal 
domain to which a holomorphic function (or class of such functions) can be con- 
tinued. The precise definition is the following. (For fundamental facts on envelopes 
of holornorphy, see [18].) 

Definition 1.1. Let D be a domain (a non-empty, connected open set) in C", let 

X be a connected Hausdorffspace and let 7z: X ~ D  be a local homeomorphism (i.e. 

every point in X has an open neighbourhood U such that z~(U) is open in D and zc 
restricted to U is a homeomorphism onto re(U)). Then (X, ~, D) is said to be a Rie- 
mann domain over D. 

Note that according to the Poincar6---Volterra theorem ([18] p. 25) a Rieman~ 
domain has a second countable topology. Furthermore, the map z~ can be used to 
endow X with the structure of a complex manifold, and consequently one can tall( 
meaningfully about holomorphic functions on X, and also about holomorphic maps 
between Riemann domains. 

Definition 1.2. Let (~krX, 7~1, C n) and (X2, re2, C n) be Riemann domains, and let 

f~ be a holomorphic function on X1. A holomorphic function f2 on X2 is said to be 
the analytic continuation o f  f t  to X2 i f  there is a holomorphic map ~0 : X 1 ~ X2 such that 
i) ~1=~2o~ 

ii) f~ =f2o ~o. 

Graphically i) and ii) can be expressed by saying that the following diagram 
commutes: 

C 

/ 

\ / 

C" 

Note that according to the principle of analytic continuation G is uniquely deter- 
mined by A.  
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One way to obtain the maximal Riemann domain associated with a given holo- 
morphic function is to consider the connected component in the sheaf of germs of  
holomorphic functions on cn which contains a germ of the given function. In this 
manner one gets the following result (cf. [18] p. 28). 

Theorem 1.3. Given a holomorphic function f l  on a Riemann domain (X1, if1, cn), 
there is a Riemann domain (X2, re2, C") and a continuation f2 off1 to )(2 with the 
following property. 

For any Riemann domain (X', 7z', C") and continuation f" of f l  to X" there is a 
holomorphic map q~: X ' ~  X2 such that 7~o~p=n" and f2o~o:f'. 

The construction given above can be generalised to the case of simultaneous 
continuation of all holornorphic functions in any given subset ScO(X) .  One can 
conceive of the resulting Riemann domain as the intersection of the maximal domains 
for the individual functions in S. See [20] for an elegant treatment along those lines. 
The appropriate definition is the following. 

Definition 1.4. Let (X1, ~zl, C") be a Riemann domain and let Sc0(X1), Then 
the Riemann domain (X~, ~2, C") is an S-envelope of holomorphy of Xt if  the follow- 
ing is true. 

i) 
a) 
b) 
ii) 

a) 
b) 
c) 

There is a holomorphic map q~: X1 ~ X2 such that 

for every ~ E S  there is a function ~E~(X~) such that ~ o ~ = ~ .  
For every Riemann domain (X', ~', C") which satisfies i) with q~': X I~X ' ,  
there is a holomorphic map ~: X" ~X2 such that 

~= ~o~"  

I f  f2 and f '  are the continuations to Xa and X" off1, then f ' : f 2 o z .  

The first part of the definition states that the functions in S can be continued 
to )(2 in the sense of Definition 1.2, the second part says that if the functions in S 
can be continued to X', then their continuations can be continued to )(2. I f  one 
introduces a preordering on the set of Riemann domains which satisfy i) by defining 
X-< Y if the continuations of  the functions in S to X can be continued to Y, then 
ii) asserts that X~ is a maximal element with respect to this preorder. 

The S-envelope is unique up to isomorphism (if it exists). 
The following theorem on the existence of S-envelopes was first demonstrated 

by P. Thullen in 1932. (See [18], p. 91 for a proof.) 

Theorem 1.5. Let (X, ~z, C n) be a Riemann domain. For every Sc(P(X) there 
is an S-envelope of holomorphy of X. 
In the sequel the case S=H~(X)  will be treated. The H=-envelope of X will be 
denoted by E=(X). 
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Lemma 1.6. Suppose that all fimctions in H=(X) can be continued to Y, let 
f l E H = ( X ) ,  and let f2 be the extension off1 to Y. Then [If2ilr=llftiix. 

Proof. Take ~ E C \ f l ( X ) .  Then it is clear that ( ~ - - f l ) - I E H = ( X )  and thus 
can be continued to Y. By uniqueness of  analytic continuation this continuation 
has to be (~- f2)  -1, and since this function is holomorphic in Y it follows that 

~ f 2 ( Y ) .  Letting ~ vary, we get f2(Y)cf~(X),  and in particular it follows that 

IlAIly<--ll if[Ix. 
Remark. I f  X lies over a bounded domain in C", then the lemma shows that  

the same is true for E=(X), since we can apply it to the coordinate functions on X. 

Definition 1.7. A Riemann domain (X, ~, C") is a domain of bounded holo- 
morphy (an H=-domain for short) if the bounded holomorphic functions separate 
the points on X and the map of X into its H=-envelope is an isomorphism. 

Remark. The statement that the bounded holomorphic functions separate the 
points on X means that for every pair p, q of  points in X there is an fEH=(X) such 

that  f (p)r  This assumption is included in order to avoid certain unpleasant 
features such as including C" among the H~%domains. This would be unnatural 
since the impossibility to continue the bounded holomorphic functions on C", i.e. 
the constants, is a consequence, not of  the character of  the functions but of  the set- 
theoretic properties of  the domain. In the case of  bounded domains in C" it is of  
course always true that bounded holomorphic functions separate points. 

I t  is necessary to have some criterion by which one can conclude that a domain 
is of  bounded holomorphy. In order to find such a criterion a description will be 
given of how to construct a new "larger" Riemann domain to any given one. 

The distance function on a Riemann domain (X, zr, C") is defined as follows. 
I f  pEX, then d(p, C X) is defined as the supremum of  the set of  real numbers r 
such that there is a neighbourhood of p which is mapped homeomorphically by 7r 
onto a polydisc around lr(p) with all radii r. One can think of d(p, C X) as the 
distance of  p to the "boundary"  of  X, and since X is connected d is finite unless 
X =  C". In case d is finite it is clearly continuous, and in case X =  C" we already 
know that X is not an H=-domain .  

Let pEX, and let D be the polydisc in C" with centre at zc(p) and all radii 
2d(p, ~ X). One can now construct a new Riemann domain as follows. 

Consider first the disjoint union of  X and D. Then perform a partial "gluing 
together" via an equivalence relation in the following way. I f  zED and qEX we 
identify them if 

a) ~ (q)=z ,  

b) there is a curve in zc-l(D) joining q to p. 
Furthermore every point is identified with itself. 
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In this way a new Riemann domain is obtained, which will be denoted X(p). 
Clearly one can think of X as a subdomain of  X(p). 

The desired criterion can now be stated. 

Theorem 1.8. Let (X, re, C") be a Riemann domain such that the bounded holo- 
morphic functions separate points on X, and such that there is a compact set K in X 
so that {pEX; there is an fEH=(X)  which cannot be continued to X(p)} is dense in 
X \ K .  Then (X, re, C") is an H~-domain, and there is a function fEH~(X)  which 
cannot be continued beyond X. 

Proof. Assume that X is not an H=-domain,  and consider the map ~0: X~E=(X).  
It is easy to see that since the bounded functions separate points on X, ~o is injec- 
tive. Since it fails to be an isomorphism it also fails to be surjective (as a map between 
Riemann domains q~ is a local homeomorphism), so there is a qEE=(X)\q~(X). 

Take pE~0(X) and let 7: [0, 1]~E=(X) be a continuous curve such that 
~(0)=p a nd~ ( 1 )=q .  Let to=inf{t;~(t)~qg(X)}. 

Since the distance function is continuous and y is compact, there is a real num- 
ber ~ > 0  such that d(e(t),CE=(X))~== for all t, 0<-t<=l. On the other hand, 
one can choose t l<t  o so near t o that d(7(q), C~o(X))<e, where e is a given posi- 
tive number. Using this it is clear that from the condition in the statement of  the 
theorem one can deduce the existence of  a point rE ~0 (X) such that 

2d(r, Cq~ (x)) < d(r, ~E= (X)), 

and such that there is a function fEH=(q~(X)) which cannot be continued to 
~o(X)(r). But the inequality above shows that cb(X)(r)cE=(X), and if we 
identify X with q~ (X) it is clear that every )rE H=(~o (iV)) can be continued to E=(X), 
so we have a contradiction. 

In order to prove the existence of  a function which cannot be continued beyond 
X, we consider the restriction maps 

�9 ,: H = (x(p,)) H = (x), 

where {Pi} is chosen as a denumerable dense subset of the dense subset of  X \ K  
mentioned in the statement of  the theorem.  These maps are linear continuous 
maps between Banach spaces (H=(X) with the supremum norm is a Banach space). 
The condition in the theorem implies that none of the maps is surjective. It is then 
a consequence of  the open mapping theorem that all images are of  the first category 
in H=(X) and the same is true of  their union. The Baire category theorem finally 
gives the existence of  a function 

f E H  ~* ( X ) \  [ J v,H(X(pi)). 
i 
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The same kind of  reasoning as in the first part of  the proof  shows that if we could 
extend f to a Riemann domain which contains X, then it must be possible to extend 
f a s  a (possibly unbounded) holomorphic function on some X(pi). But the denseness 
of the Pi shows that there must be a Pi so t ha t f i s  bounded on X(pj), which is impos- 
sible. The theorem is proved. 

In [21] a definition of "schlicht" H=-domains was given, which was a straight- 
forward adaption of the definition of domains of  holomorphy (cf. [13] p. 36) in C". 
It is important to see how this definition is connected with the present one. First 
we recall the alternative definition. 

Definition 1.9. A domain 12 in C" is an H•-domain (s for schlicht) i f  there are 
no open sets f21 and 02 in C" such that 

i) ~ # f21c f22n~2 
ii) 0 2 is connected and not contained in f2 

iii) For every f~H=(f2) there is an f~EH=(O~) such that f=f2 on 01. 

Note that the above definition does not require the domain to have the property 
that bounded holomorphic functions separate points on it. It is clear that for example 
C" is an H~~ 

The relation between the two definitions is described in the following theorem. 

Theorem 1.10. Let ~2 be a domain in C". Then f2 is an H~-domain i f  and only 
i f  f2 is an H~~ and bounded holomorphic functions separate points on f2. 

Proof. Suppose first that f2 is not an H=-domain,  but that bounded func- 
tions separate points. Theorem 1.8 shows the existence of  a point z612 such that 
all functions in H=(O) can be continued to f2(z). If we take O1 to be the polydisc 
around z with radius d(z, C f2) and 02 the polydisct with radius d(z, ~ f2), we have 
sets satisfying i)--iii) in Definition 1.9 and consequently f2 is not an HS-domain .  

Conversely, assume that f2 is not an H~-domain.  Then there are 121 and f2z 
with the properties i)--iii). If  a new Riemann domain X is constructed by considering 
the disjoint union of f2 and 02 and identifying the points in them which correspond 
to the points in the connected component (or components) of f2c~f2a which contain 
O1, then the functions in H=(Q)  can be extended to X and it is now easy to see that 
O cannot be an H=-domain.  

Corollary 1.11. An H=-domain in C" is a domain of holomorphy. 
This is of course true also for the Riemann domains which satisfy the condi- 

tions in Theorem 1.8. 
In the examples in the introduction it was shown that certain domains of  holo- 

morphy in C n failed to be H=-domains, by continuation of the bounded functions 
to the interior of  the closure of  the original domain. One may now ask whether a 
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domain which is equal to the interior of  its closure is in fact an H=-domain;  we wiI1 
call such a domain a full domain. 

For  domains in the complex plane the answer is that a bounded full domain 
is an H%domain ,  and this is a consequence of  the following theorem. 

Theorem 1.12. Let 12 be relatively compact in the Riemann domain (X, re, C). 
I f  s is full then I2 is an H=-domain. 

Proof To begin with we note that a Riemann domain over C is a Stein mani- 
fold (cf. [8] p. 182). Hence holomorphic functions separate points on X and since 
f2 is relatively compact in X, bounded holomorphic functions separate points on s 

Since s is relatively compact in X there is a real number ~ > 0  such that 
d(p, CX)>~ for all p in f2. It  is now possible to find a compact set K in s such 
that for every point q in s  it is the case that d(q, C f2)<~/2. For  every q in 
f 2 \ K  one can therefore identify s with a subdomain of  X, containing points 
in X \ O .  Since f2 is full, every s must contain a neighbourhood of  an exterior 
point s to f2. The Mittag--Leffler theorem (cf. [8] p. 181) can now be used to prove 
the existence of  a meromorphic function on X with the only pole at s. This func- 
tion is bounded on s and cannot be continued over s so Theorem 1.8 shows 
that s is an H%domain .  

The situation is different in higher dimensions. This is a consequence of  a 
remarkable example of Sibony [21]. This example is very useful to disprove the 
analogues for bounded holomorphic functions of  several well known characterisa- 
tions of  domains of  holomorphy and will occur frequently in the sequel, so we will 
give a sketch of  the construction. 

One starts by constructing a subharmonic function V defined in the unit disc 
and continuous there, satisfying 0<= V(z)< 1. The function V takes the value zero 
on a discrete infinite sequence in the unit disc with the property that every bound- 
ary point of  the disc is a non-tangential limit of  a subsequence. 

One then defines the domain 

M(V)  = {(z, w); [z I < 1, [wIe vC*) < 1}. 

Since ]w] e v <z) is plurisubharmonic in the unit bi-disc it follows that M(V)  is pseudo- 
convex and hence a domain of  holomorphy. Furthermore, the continuity of  V 
implies that M ( V )  is a full domain. 

I f  g~H=(M(V))  (one may assume that [g[<-i on M(V)) ,  it is possible to 
develop g in a power series in w with coefficients hv(z) which are bounded and holo- 
morphic in the unit disc. Using Cauchy's inequality one deduces that [hv[<=l on 
the above mentioned discrete sequence. Making use of  Fatou's theorem on the 
non-tangential limit of  bounded holomorphic functions in the unit disc, one finds 
that ]h,]<= 1 in the disc and consequently the power series for g converges for [wF< 1 
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and we get an extension of  g to the whole of the N-disc. Lemma 1.6 shows that 
the extended functions are still bounded on the bi-disc. It is easy, using power series 
expansions as mentioned and approximating the coefficients by polynomials, to 
show that M ( V )  is a Runge domain, i.e. polynomials approximate the holomorphic 
functions in M(V) ,  uniformly on compact subsets. 

In order to illustrate the usefulness of the criteria for H=-domains previously 
obtained, some examples will now be given (Cf. also [21] p. 210.) Let us first make 
the following definitions. 

Definition 1.13. Let (X, n, C") be a Riemann domain. A subdomain Y of X 
is said to have a Stein basis i f  the closure of Y is the intersection of a family of  sub- 
domains of X, which are domains of holomorphy, such that Y is relatively compact in 
each member of the family. 

Definition 1.14. I f  (X, ~, C') is a Riemann domain, then a subdomain Y of X 
is an analytic polyhedron in X if  Y is a connected component of  a set 

{p; pEX, Ifj(P)l < 1, j = 1 . . . . .  m, f jE0(X)}  

which is supposed to be relatively compact in J(. 

Theorem 1.15. We have that 
i) A Riemann domain which is full and has a Stein basis is an H ~-domain. 

ii) An analytic polyhedron in a domain of holomorphy is an H~-domain. 
iii) I f  {O~}~E a is a set of  H~-domains in C', then the interior of their intersection 

is an H~-domain. 
iv) The Cartesian product of a finite number of H~-domains in C" is an H~-domain. 

Proof. i) Let Y be a full Riemann domain with a Stein basis, contained in 
(J(, ~r, C'). By definition Y is relatively compact in a domain of  holomorphy, so 
bounded functions separate points on Y. Since Y is relatively compact in X, there 
is a positive real number d such that d(p, CX)>=e for p6 Y. This means that there 
is a compact subset K of Ysuch that for pE Y \ K ,  it is the case that 2d(p, g Y)<cq 
which implies that one can think of  the domains Y(p) as subdomains of  X. It is 
clear that these Y(p) contains points in X \ Y ,  and since Y is full they contain 
exterior points to I7. Since each domain in the Stein basis is the domain of  existence 
of  a holomorphic function (cf. [18] p. 114), which is bounded in Y since Y is rela- 
tively compact in the domains, it follows that for every Y(p) with pE Y \ K  there 
is a function in H ~ ( Y )  which cannot be continued to Y(p). Theorem 1.8 now 
gives the result. 

ii) Let Y be a component of {pEX; I f j (p ) l< l ,  j = l  . . . . .  m, fjEd)(X)} where 
X is a domain of  holomorphy. As in i) bounded functions separate points in Y. 
Also as in i) one can find Ksuch  that for pE Y \ K ,  Y(p)cJ( .  Every Y(p) must con-  
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tain a point q such that one of the f j  satisfies [fj(q)[= 1 there. Now a branch of 
the function (1 _fj)l/2 can be defined in Y, and it is clearly bounded and impossible 
to continue over Y(p). Theorem 1.8 again gives the result. 

iii) Since bounded functions separate points on f2, for all c~CA they do so on 
their intersection, 12. Assume now that there are f21 and f22 as in Definition 1.9, 
and choose f2, such that f22 is not contained in f2,. It is then clear that Q1 and f22, 
having the assumed properties, contradicts the fact that f2, is an/-/=-domain. 

iv) It is sufficient to consider the case of two domains, D1 and D2. To begin 
with, it is clear that if we have two different points in DIXD2, their projection in 
one of the components must be different and one can then use a bounded function 
in that component to separate them. 

If  we have f2~ and f22 as in Definition 1.9, then ~22 must intersect the boundary 
of D~• and hence it must intersect either the boundary of D~ or that of D~. 
In either case there is a function in H=(D~ • D~) which one cannot continue to f2z. 

Further examples of / - /=-domains will be obtained in Sections 2 and 3, as 
byproducts of the results there. 

Remark. It is known that an arbitrary domain of holomorphy can be exhausted 
by an increasing sequence of analytic polyhedra (cf. [4] p. 25), and so by an increasing 
sequence of H=-domains. Since, as we have seen above, not every domain of holo- 
morphy is an H=-domain, we can draw the conclusion that not every union of 
an increasing sequence of H=-domains is an H=-domain. This is contrary to the 
case of domains of holomorphy, since (at least in C") every increasing sequence of 
domains of holomorphy is again such a domain ("the theorem of Behnke--Stein", 
cf. [41 p. 130). 

In [6] it is shown that a bounded domain of  holomorphy in C" with smooth 
real-analytic boundary has a Stein basis. In view of Theorem 1.15 and the fact 
that a domain with the described properties is necessarily full, it is an H~-domain. 

2. Bounded convexity 

Let (X, ~, C") be a Riemann domain, and let F =  O (X) be a family of holo- 
morphic functions on X. Then X is said to be F-convex if, for every compact set 
K in X, the set 

1~ F = {p~X; If(P)[ ~--IlfllK for all fC F} 
is compact in X. 

A classical theorem, due to H. Cartan and P. Thullen (cf. for example [18] 
p. 110), states that X is a domain of holomorphy if and only if it is 0(X)-convex 
(holomorphically convex). 



Bounded holomorphic functions of several varaibles 259 

It seems natural to ask whether this result is true with domain of holomorphy 
replaced by H~-domain and H~-convexity instead of  holomorphic convexity, and 
this is indeed the case when X is a domain in the complex plane (cf. [1]). In higher 
dimensions, however, the result is not true in either direction. 

To begin with, the set M ( V )  in Sibony's construction is as mentioned a Runge 
domain. Hence, according to a well known theorem (cf. [13] p. 53) it is convex 
with respect to the polynomials, and so, being bounded, it is a fortiori H~-convex. 
As we saw it is not, however, an H~-domain.  

Conversely, the "Hartogs'  triangle" 

= {(z ,  w);  Izl < !wl < 1)  c c 

is easily seen, using Definition 1.9 and Theorem 1.10, to be an H~-domain.  On the 
other hand it is not H =-convex, since if we consider the set 

r = {z = 0, !wl = 1 / : )  c 4 ,  

then every function in H~(A), restricted to Ac~{z=O}, can be continued over 
the origin, and hence they are all holomorphic in {Iz]---O, Iwl< 1}. The maximum 
principle then shows that Jf(O, O)l~llf[I r and this implies that /~n~ is not com- 
pact in A. 

There is, however, another way to consider convexity with respect to the bounded 
holomorphic functions. 

In the case of  "ordinary" holomorphic convexity the following theorem is 
valid. 

Theorem 2.1. A Riemann domain (X, re, C") is holomorphically convex i f  and 
only if, for every infinite, discrete sequence in X there is a holomorphic function in X 
which is unbounded on the sequence. 

This result is true even for (not necessarily reduced) complex spaces, for a 
proof  see [10] p. 118. 

An analogous concept for the bounded case can now be introduced. 

Definition 2.2. A Riemann domain (X, re, C") is sequentially H~-convex i f  for 
every discrete sequence (Pk)k~N in X there is a function fE H~(X) ,  not identically 

constant, such that supk If(pk)l = I1 f l lx .  

Remark. Making use of a conformal map of  a disc onto itself, one realises 
that it is no restriction to assume that all functions f i n  the definition have a common 
zero in X. 

It  is now necessary to make clear the relation between the two types of H a- 
convexity. To begin with we have the following result. 
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Theorem 2.3. A sequentially H=-convex Riemann domain (X, ~, C"), on which 
bounded holomorphic functions separate points, is an I-I=-domain. 

Proof. Assume that X is not an H=-domain.  Theorem 1.8 shows that there 
must exist a point p ~ X  such that all fCH=(X) can be extended to X(p), and from 
Lemma 1.6 we have that the extension F o f f  satisfies I[F][x(p)= [] f][x. 

Take a sequence (Pk)kCN, with Pk in the inverse image around p of  a disc with 
centre zc(p) and radius d(p, CX), without accumulation point in X, such that 

pk~p=E X(p). 
I f  X is sequentially H ' - c o n v e x  there is a non-constant fCH~(X)  such that 

SUpk [f(Pk)l----][f[]x=l[F[]x~p), where F is the extension o f f  to X(p). It follows 
that IF(p~)l=l[F][x(p), and hence F is identically constant, a contradiction. 

The two concepts of  bounded convexity can now be seen to be related in the 
following way. 

Theorem 2.4. A sequentially H~-convex Riemann domain is H~-convex. The 
converse implication does not hold. 

Proof. Let K be compact in the Riemann domain (X, ~, C"). I f  / ~ i s  not 
compact in X there will be a discrete sequence (Pk)k~N in /~H~, and on this sequence 
every non-constant function in H~(X)  will satisfy ]f(Pk)l ~- [] f ] l r  < [] f[[x" Hence X 
is obviously not sequentially H~-convex.  

On the other hand the domain M ( V )  of Sibony is H~-convex.  Since it is not 
an H~-domain  and the bounded holomorphic functions separate points on it, 
Theorem 2.3 shows that it cannot be sequentially I-/~-convex. 

Remark. Failure to distinguish between the two kinds of bounded convexity 
has led to erroneous statements, cf. for example [7] p. 130 and 131 where it is stated 
that bounded Runge domains (for example M(V))  are sequentially H~176 

Some examples of  classes of  sequentially H~-convex domains will now be 
�9 given, they are then also H~-convex,  and to the extent that bounded holomorphic 

functions separate points on them they are also H~-domains.  

Theorem 2.5. The .following classes of domains are sequentially H~-convex: 
i) Non-compact domains on the Riemann sphere without discrete boundary com- 

ponents. 
ii) Simply connected Riemann surfaces on which there exists a non-constant holo- 

morphic function. 
iii) Analytic polyhedra in complex manifolds. 
iv) Bounded strictly pseudoconvex domains with C ~ boundary. 
v) Pseudoconvex domains in C ~ with smooth real analytic boundary. 

vi) Convex domains. 
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Proof. i) A discrete sequence contains a subsequence which tends to a com- 
ponent of  the boundary. The complement of  this component can then be mapped 
conformally onto the interior of  the unit disc, and the mapping function is then 
bounded and tends to its supremum along the subsequence. 

ii) A simply connected Riemann surface with a non-constant holomorphic func- 
tion is conformally equivalent to the interior of the unit disc (cf. [8] p. 187). Then 
reason as in i). 

iii) One only has to observe that a discrete sequence has an accumulation point 
on the boundary of  the polyhedron, and at least one of  the function used to define it 
takes the absolute value one there. 

iv) A theorem due to Rossi (cf. [l l]  p. 275) says that for a bounded strictly 
pseudoconvex domain f2 with C 2 boundary there exists for every zoEOf2 a function 
f holomorphic on a neighbourhood of ~ (hence bounded on f2) such that f(zo)-- 1 
and l f ( z ) ]< l  whenever zOE\{z0}. This implies sequential H=-convexity. 

v) This follows as in iv) from a result of Bedford and Fornaess [2]. 
vi) Let O be convex in C" with ZoEOf2. The convexity of  f2 shows that there 

is a function 

L(z )  = alz l  +.. .  §  

with a 1 . . . . .  a,+IEC, such that L(z0)=O and R e L ( z ) < O  for zEf2. Putting 
g (z )=exp  (L(z)) one realises that f2 is sequentially convex. 

Remark. In the proof  of  part iv) and v) we used that boundary points z 0 were 
peak points for the algebra A (f2) of  functions holomorphic in the domain and con- 
tinuous in its closure, i.e. there is an f E A ( f 2 ) s u c h  that f ( z 0 ) = l  and ] f t < l  on 
~ \{z0} .  Clearly the fact that every point on the boundary of  a certain domain, 
bounded in C", is a peak point shows that the domain is sequentially H~-convex.  

3. The Carath6odory metric 

In this section a notion is going to be discussed, which can be considered as a 
generalisation of sequential H=-convexity (cf. Theorem 3.3). 

To begin with, recall that the Poineard metric in the unit disc is defined by 

cls~ = ( 1 - I z ? ) - 2 a z d ~ .  

With this metric the unit disc becomes a Riemannian space of curvature - 4 .  
The most important property of the Poincar6 metric in this context is that it is 
decreased under holomorphic maps from the disc to itself, a statement which is 
equivalent to the Schwarz lemma (cf. [14] for more details). 
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Definition 3.1. Let M be a connected complex manifold, and let 0 denote the 
Poincar~ distance in the unit disc U. The Carathdodory pseudometric is defined by 
CM(p, q)=SUpF o(f(P),f(q)) for p, q in M, where F is the family of holomorphic 
maps from M into U. 

Remark. It is immediate from this definition that CM is a metric, i.e. Cu(p, q) = 0  
if and only if p=q, exactly when the functions in H=(M) separate points in M. 
For domains in the complex plane this is equivalent to the existence of a non-con- 
stant, bounded holomorphic function on the domain. (If a and b are different points 
in the domain and f(a)=f(b), then the function g(z)=( f (z ) - f (a) ) / ( z -a)  m, where 
m is the order of the zero of f ( z ) - f (a )  at z=a, satisfies g(b)=0,  g(a)r If  
one is interested in properties of domains which are related to the behaviour of the 
bounded holomorphic functions, then it is natural to assume that C~t is a metric. 

Definition 3.2. A connected complex manifold is strongly pseudoeomplete with 
respect to the Carathjodory pseudometrie (strongly pseudoeomplete for short) if every 
subset of the manifold which is bounded in the Carath~odory pseudometric iX relatively 
compact in the manifold. In the case when bounded holomorphic functions separate 
points we talk about strong completeness in the corresponding situation. 

Lemma 3.3. Let M be a connected complex manifold, let pE M be fixed, and put 

Fp : {f~H=(M); f(p) : 0, If[ ~ I on M}. 

Then M is strongly (pyeudo-)complete i f  and only if  every subset of M which i6' bounded 
by a constant less than one in the (pseudo-)metric 

Co(p, q) ----- sup If(q)[, 
% 

is relatively compact in M. 

Proof. It is known that 

f 1 + If(q)]~ 209), CM(p, q) ---- sup t l--IJtq)l~l/21~ (cf. [12] p. Fp 

so that a subset of M is bounded in C M if and only if it is bounded by a constant 
less than one in Co. 

Carath6odory-completeness can now be shown to generalise sequential H =- 
convexity. 

Theorem 3.4. A connected complex manifold M is strongly pseudocomplete if 
and only i f  for every discrete sequence (Pk)kCN in M there is a sequence of  functions 
(fk)k~N with fkE Fp, such that SUpk I.fk(pk)l=l. 

Proof. Assume to begin with that M is strongly pseudocomplete. I f  (Pk)k~N 
is a discrete sequence in M then it follows that C~ (p, Pk) must be unbounded, and 
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by Lemma 3.3, Co(p, pk ) tends to one (maybe after taking a subsequence). This 
clearly implies that there are fkEFp such that SUpk [fk(Pk)] = 1. 

Conversely, if there is a subset in M which is bounded but not relatively com- 
pact in M, then one can find a discrete sequence (Pk)RCN in this subset which is bounded 
by a constant less than one in Co, so for every fEFp we have that ]f(pk)[<=e<l 
for some constant e. No sequence (fk)kcN with the desired properties can then 
exist. 

Corollary 3.5. A sequentially H=-convex manifold is strongly pseudocomplete. 

The following two theorems show that strongly complete manifolds share cer- 
tain properties with sequentially H=-convex ones. The results are not new (cf. 
[14] p. 55 and [21] p. 223 resp.) but the given proofs are more in the spirit of  the 
present work. 

Theorem 3.6. A strongly pseudocomplete manifold is H~-convex. 

Proof. Let M be strongly pseudocomplete with K compact in M, and assume 
that /~u= fails to be compact in M. Then there is a discrete sequence (Pk)kCNC I(U=, 
and the strong pseudocompleteness guarantees the existence of a corresponding 
sequence (fk)keNCFp, where p is fixed in M, such that SUpk [fk(Pk)[ = 1. 

Now Fp is a normal family, and hence there is a subsequence of  (fv)peN which 
converges uniformly on compact subsets of M. The limit function f will clearly 
satisfy [fl<_-I on M, f ( p ) = 0 .  Because of the maximum principle one has 

( * )  liflIK = ce < 1. 

But Ru=~(Pk)k~N shows that 

(*  *)  I]fkl[~[fk(Pk)l, which tends to 1 as k-~o~ (possibly after an earlier choice 
of subsequence). 

It  is clearly impossible to reconcile ( . )  and ( . . )  with the fact that a sub- 
sequence of  (fk)k~N tends uniformly to f on compact subsets of M. 

Theorem 3.7. A strongly complete Riemann domain is an H~176 

Proof. Assume that the Riemann domain (2, 7r, C") is not an H~-domain,  
and take p~X such that the functions in H~(X) can be extended to H~(X(p)). 
Now take a sequence (Pk)k~N just as in Theorem 2.3, and let (fk)kCN be the corre- 
sponding sequence of  functions in F v which exists since X is strongly complete. 

Lemma 1.6 shows that (fk)k~N is a normal family in X(p) and so there is a 
subsequence converging on compact subsets of  X(p) to f ,  which satisfies f ( p ) = 0 ,  
I f ]<1  in X(p). 
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By taking a compact set in X(p) containing p~  and using I f ( p ~ ) [ = a < l ,  
]f~(pn)l ~ 1 as n ~ ,  one gets, as in the previous proof, a contradiction t o  the 
uniform convergence. 

Remark. As for the reverse of the implications in Theorems 3.6 and 3.7, the 
domain M ( V )  of  Sibony and the Hartogs' triangle show that in general they do 
not hold. In the case of domains which are boun6ed in the complex plane, the 
two theorems actually coincide, and it is shown in [1] that the reverse is not true in 
general here either. 

Sibony has given an example of  a bounded domain in C", which is H~-con  - 
vex as well as an H~-domain,  but which is not strongly complete (cf. [21] p. 219). 

4. Hypereonvexity 

Progress in complex analysis during the last thirty years has largely been due 
to the use of plurisubharmonic functions, and in this context the most important 
problem has been to show that domains of holomorphy can be characterised using 
such functions, the so-called Levi problem. A positive answer has been obtained in 
a large number of  cases. See [22] for a recent review. 

A Riemann domain (X, re, C") is said to be pseudoconvex if  there is a pluri- 
subharmonic function p on X such that the set {zEX; p(z)<ct} is relatively com- 
pact in X for all real c~. One way to express the solution is then the following (cf. 
[11] p. 283). 

Theorem 4.1. A Riemann domain is a domain of holomorphy i f  and only i f  it is 
pseudoconvex. 

The concept of hyperconvexity, introduced by Stehl6 in [23] can be considered 
as a bounded version of pseudoconvexity. 

Definition 4.2. A Riemann domain (X, ~, C") is hyperconvex i f  there is a pluri- 
subharmonic function p on X such that p is negative on X and the set {zEX; p(z)<~} 
is relatively compact in X for all negative real ~. 

Remark. A hyperconvex Riemann domain is necessarily pseudoconvex since 
if we put  V(z) --- - p  (z) -1, where p satisfies the conditions of Definition 4.2, it 
follows that V is plurisubharmonic in X and {zEX; V(z)<a} is relatively com- 
pact in X for all real ct. It  follows from this and Theorem 4.1 that a hyperconvex 
domain is a domain of  holomorphy. It will be shown later that the Hartog's triangle 
is not  hyperconvex, so the hyperconvex domains form a proper subclass of  the 
domains of  holomorphy. 
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When Stehl6 in [23] defined hyperconvexity in the more general context of  
complex analytic spaces, he assumed, in addition to the existence of  a plurisubhar- 
monic function with the properties in Definition 4.2, that the space should be a 
Stein space. This concept is usually considered to be the proper generalisation of  
domains of  holomorphy, and a Stein space is characterised by the fact that it is 
holomorphically convex and holomorphic functions separate points. A Riemann 
domain is a domain of holomorphy if and only if it is Stein. (Cf. [10] and [11] for 
more information on Stein spaces.) 

An example will now be given which shows that the assumption of Stein-ness 
is not superfluous, i.e. that the conclusion in the above remark does not extend to 
the general case. (The manifold below was constructed by H. Grauert  and used for 
other purposes, see Narasimhan [16].) 

Theorem 4.3. There exists a non-compact complex manifold M on which there 
is a plurisubharmonicfunction p such that p < 0  on M and {zEM; p(z)<er is 
relatively compact in M for all negative ~t, and such that all holomorphic functions 
on M are identically constant. 

Proof. Let F be the lattice in C 2 generated by wx=(1, 0), wi=(Zil, zlz), 
i=2 ,  3, 4, where {w~; i=1  . . . . .  4} are linearly independent over R. It is also 
assumed that Re z i l=0  for i_->2, and that {Imza;  i=>2} are linearly independent 
over the integers. 

Now consider the torus T =  C2/F with the projection zc: C2-~C2/F, and let 
M be the open submanifold of  T defined as zr(D), where 

Put 
D = {zEC2; 0 < Re Z 1 < 1/2}. 

p(z) = (1 - -Re z ~ ) - l + ( 1 / 2 + R e  zl) - ~ -  3. 

This defines p as a function on M since it is dearly invariant under those transforma- 
tions in F which identify points in D. Furthermore, p is a convex function of  the 
harmonic function Re zl and so plurisubharmonic in D. But rr is locally biholo- 
morphic and consequently p can be considered as a plurisubharmonic function 
in M. It is easy to see that p ( z ) < 0  in M and also that p(z)~O as z~OM. 

The fact that the only holomorphic functions on M are the constants can be 
seen as follows. The set K=zr(Re zl--1/4) is compact in M, so that if fEO(M),  
then f assumes its supremum on K at a point P0. Now take z0= (zx, z2) in D such 
that 7r(zo)=Po. The image under zr of  those points in D whose first coordinate 
is Zl is a connected proper analytic subset of  M which contains P0. Because of  the 
assumption on the imaginary parts of  the coordinates of  the points in the lattice it 
follows that this analytic subset is dense in K. This implies that, since the maximum 
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principle is valid on analytic sets (cf. [11] p. 272), the function f is constant on K. 
But K has real dimension 3, so f is constant on M. 

Hyperconvex domains have certain features in common with domains of bounded 
holomorphy. To begin with one realises that the whole of C n cannot be hypercon- 
vex since a bounded plurisubharmonic function on C n is necessarily a constant. 
Furthermore, a domain obtained by removing analytic subsets from a given domain 
can not be a domain of bounded holomorphy, nor can it be hyperconvex. This 
follows from the fact that one can extend bounded plurisubharmonic functions over 
analytic subsets. 

An example of  a domain of bounded holomorphy which is not hyperconvex is 
the Hartogs' triangle. The proof is practically identical to the one given at the begin- 
ning of Section 2 where it was shown that this domain is not H~-convex, since 
the maximum principle and the possibility to extend bounded functions over isolated 
singularities is valid for subharmonic functions too. 

On the other hand, if one assumes that the boundary of a bounded domain of 
holomorphy is twice continuously differentiable, then a theorem of Diederich and 
Fornaess [5] says that it is in fact hyperconvex. 

The Hartogs' triangle shows that an H~-domain does not have to be hyper- 
convex. Using Sibony's domain M(V), described in Section 1, one can see that a 
hyperconvex domain does not have to be an H~-domain either, and so any hope of 
getting a bounded version of Theorem 4.1 by replacing domain of holomorphy by 
H~-domain and pseudoconvexity by hyperconvexity must fail. 

The hyperconvexity of M(V) is seen as follows. From the definition in Sec- 
tion 1 one has 

M(V) = {(z, w); [z[ < 1, [w[e v(z) < 1}. 
It is easy to see that 

tOM(V) = {(z, w); ]z[ = 1, [w[ < 1}w{(z, w); lzl  < 1, Iwl = e-V<zq. 

Now put p(z, w)=sup {[z[-1, log ]w[+ V(z)}. As the supremum of two plurisub- 
harmonic functions p is plurisubharmonic in M(V) and the set {(z, w); p(z, w)<a} 
is relatively compact in M(V) for all negative a in view of the continuity ofp.  

Note that this example also shows that it is possible for a hyperconvex domain 
not to have a Stein basis (cf. Theorem 1.15). Stehl6 has conjectured (see [23] p.  167) 
that a full Stein domain, relatively compact in C ~ with a Stein basis, is hyperconvex. 

In order to relate hyperconvexity to some of the other notions introduced above 
it is now going to be shown that a strongly complete domain is hyperconvex. This 
is going to be done in a more general context than the one used up till now and is 
a generalisation of  a result in [3]. 

The definition of Carath6odory metric and strong completeness can be used 
without change for complex analytic spaces. A complex analytic space (cf. [11]) 
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is locally isomorphic to an analytic set in some C", and the holomorphic functions 
on the complex space correspond via the isomorphism to equivalence classes of  
holomorphic functions on the analytic set and such a function is by definition holo- 
morphic on some neighbourhood in C" of  each point in the set; two functions are 
equivalent if their difference is zero on the set (we are only considering so called 
"reduced" complex spaces). 

Plurisubharmonic functions on a complex space can be defined in the same 
manner, so they can locally be considered as plurisubharmonic functions on some 
neighbourhood in C" of a point in the analytic set, "pulled back" via the above 
mentioned isomorphism. (For more information on this matter, see [15].) 

As mentioned above, a complex space X is said to be hyperconvex if it is a 
Stein space, and if there is a negative plurisubharmonic function p on X such that 
{xEX; p (x)<~}  is relatively compact in X for all c~<0. The existence of  such a 
function is going to be expressed by saying that X has a bounded plurisubharmonie 
exhaustion function. 

Theorem 4.4. A strongly pseudoeomplete complex space has a bounded pluri- 
subharmonie exhaustion function. 

Proof. Let X be strongly pseudocomplete, and let p be a point in X. As above 
we have that 

F~ ---- {fEO(X); f(p) = 0, If] <= 1}, 

and we put  ~o (x) = sup~  If(x)[. 
Let xo be a point in X, let n be an isomorphism of  a neighbourhood of x0 onto 

an analytic set V in some open set in C", and let n(x0)=zo. In order to prove that 
~o is plurisubharmonic on X, it is sufficient to show that there is a neighbourhood 
of  z 0 in C", and a plurisubharmonic function $ in this neighbourhood, such that 
~o=~on on the corresponding neighbourhood of  x 0. 

Let Uo be a Stein neighbourhood of  z0. This implies that all holomorphic 
functions on VnUo can be extended to Uo (cf. [11] p. 245). If  Yis a complex space, 
then O(Y) is a Fr6chet space with seminorms taken as the supremum on compact 
subsets, so the extension property can be expressed by saying that there is a surjec- 
tive map 

�9 : r  ~ e ( U o n V ) ,  

obtained by restricting the holomorphic functions on U0 to Uon V. As a surjective 
map between Fr6chet spaces ~ is open. 

This means that if (Ki)~c~ is an increasing sequence of  compact subsets of  U0 
such that Uo= U~ K~, then for every K~ there is a K i and a constant ci such that 
for every fEO(VnUo) there is an extension FEO(Uo) of  f with the property 

(*) IIFIIK, <= cillfll~,nv. 
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In particular this is true for the functions in n*(Fp), i.e. the functions on V which 
via the isomorphism correspond to the functions in Fp. 

Let now W be relatively compact in U0, and choose Ks such that W c  c K v  
If Gp denotes those functions in O (U0) which have been obtained by extending the 
functions in n* (Fp) under the condition ( . ) ,  and if one puts 

~k (z) = sup If(z) l, Gp 

then clearly ~0=~orc, and ~-<c i on W. In order to prove that ~k is plurisubhar- 
monic on W, it is sufficient to show that it is continuous, since the continuous 
supremum of a uniformly bounded family of plurisubharmonic functions is itself 
plurisubharmonic (cf. [13] p. 16). 

Fix the point w0C W and let W' and P be neighbourhoods of w0 contained 
in W with W ' c  c P and P a polydisc. It is now possible to use Cauchy's integral 
formula in the polydisc to obtain estimates for the derivatives in W' of  the functions 
in O(U0), and then, using the mean value theorem, one can deduce the existence 
of a constant K such that for all wE W" and all fE Gp one has 

(* *) ]f(w)-f(wo)l <--Kllw-wol[, 

where II II is the euclidean distance in C". 
Let now v be a point in W'. Using Montel's theorem, which applies since Gp 

is a normal family, one obtains that 

~(v) = Ig(v)[ 

for a certain function gEGp. Using ( . . )  this leads to 

@(v) = Ig(v)[ ~ [g(v)-g(wo)l+ [g(wo)r ~ K[lv-wo[[ +@(wo). 

In exactly the same way one gets 

,P(wo) <= gllv-woll +~,(v), 

and combining these formulae one has 

[O(o)-O(wo)l  <-- gllv-woll. 

So ~ is continuous, and it is proved that ~o is plurisubharmonic on X. 
Since the maximum principle for plurisubharmonic functions applies to com- 

plex spaces (cf. [15]) it is obviously the case that ~o<l on X. 
The fact that Xis strongly pseudocomplete means that for every discrete sequence 

(Xk)kE N there is a sequence (fk)kCN of functions in Fp such that sup Ifk(xk)[=l, and 
hence ~o (Xk)-~ 1. 

If  we put ~U(x)=tp(x)-- 1 then it is Clear that T is a bounded plurisubharmonic 
exhaustion function on X. 
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Corollary 4.5. A strongly complete complex space is hyperconvex. 

Proof. It  only remains to be shown that the space is a Stein space. But by 
the definition of  strong completeness holomorphic functions separate points on the 
space, and Theorem 3.6 can be used in this more general context and shows that 
the space is holomorphically convex. 

The concept o f  hyperconvexity is interesting partly because of  its connection 
with holomorphic fibre bundles and the "problem of  Serre". 

Let X and B be complex spaces, and it a holomorphic map from X to B. Then 
X is the total space of  a locally trivial holomorphic fibre bundle with fibre Y and base 
B if there is an open cover {U~}~c A of  B such that 7r-1 (U~) is isomorphic to U~ • Y. 
The problem which Serre posed in 1953 is to decide whether the fact that Y and B 
are Stein spaces implies that X is a Stein space. This is not true in general (see [22] 
for a review and the relevant references). 

Using hyperconvexity Stehl6 in [23] was able to give some positive results 
using Narasimhan's solution of  the Levi problem for complex spaces [15]. If  X is 
the total space and Y the fibre of a locally trivial holomorphic fibre bundle, he proved 
among other things the following. 
i) I f  there is a strictly plurisubharmonic, bounded function on Y, then there is a 

strictly plurisubharmonic, positive function on X. 
ii) If  Y is hyperconvex then there is a plurisubharmonic function ~p on X such that 
{xEX; r ~ X  for all real ~. 

I f  one adds the two functions obtained in this way, one has a strictly pluri- 
subharmonic function on • with the exhaustion property of ~p in ii), and then Nara- 
simhan's result shows that X is a Stein space. 

A natural manner in which one can guarantee that there exists a strictly pluri- 
subharmonic bounded function on the fibre is to assume that the fibre is relatively, 
compact in a Stein space. Using Corollary 4.5 we then have the following result 
proved earlier by Hirschowitz and Sibony (see references in [22]) using the concept 
of  Banach--Stein space. 

Theorem 4.6. A locally trivial holomorphic fibre bundle with Stein base and 
with a fibre which is relatively compact in a Stein space and strongly complete is Stein. 
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