A Littlewood—Paley inequality for analytic measures

Louis Pigno and Brent Smith*

Let T be the circle group and Z the additive group of integers; designate by M(T) the customary space of Borel measures on T, and, given $\mu \in M(T)$ and $n \in \mathbb{Z}$, let

$$\hat{\mu}(n) = \int_{\mathbf{T}} e^{-in\theta} d\mu(\theta).$$

A measure $\mu \in M(\mathbf{T})$ is said to be of *analytic type* if $\hat{\mu}(n)=0$ for all n<0; as usual, $H^1(\mathbf{T})$ will denote the classical space of all measures of analytic type on **T**. In 1933, Paley [4] published this remarkable inequality:

Theorem P. There is a C>0 such that if $\langle n_k \rangle_0^{\infty} \subset \mathbb{Z}^+$ and $n_{k+1}/n_k \geq 2$ for all k then

$$\left\{\sum_{k=0}^{\infty} |\hat{\mu}(n_k)|^2\right\}^{1/2} \leq C \|\mu\|$$

provided $\mu \in H^1(\mathbf{T})$.

For generalizations of Paley's Theorem see the work of J. Fournier [3] and the references cited therein.

In this paper we shall prove yet another generalization of Paley's inequality; before we describe our result we shall require some notation concerning quotient norms for M(T):

For $\omega \in M(\mathbf{T})$ and $E \subset \mathbf{Z}$ put

$$\|\omega\|_E = \inf \{ \|v\| : \hat{v} = \hat{\omega} \text{ on } E \};$$

here $\|\cdot\|$ is the usual total variation norm on $M(\mathbf{T})$. We say $\langle D_n \rangle_0^{\infty}$ is a sequence of *positive dyadic intervals* in \mathbf{Z} if there exists a sequence $\langle n_k \rangle_0^{\infty} \subset \mathbf{Z}^+$, $n_{k+1}/n_k \ge 2$ for all k and $D_k = [n_{2k}, n_{2k+1})$. If the sequence of positive dyadic intervals $\langle D_k \rangle_0^{\infty}$

^{*} The work of the authors was partially supported by NSF grants MCS-8102061 and MCS-8102547.

satisfies $n_{k+1}/n_k \leq \lambda$ for some λ and all k we say $\langle D_k \rangle_0^{\infty}$ is a standard sequence of positive dyadic intervals.

Our generalization of Theorem P is the following Littlewood—Paley type inequality for the quotient norms of an analytic measure:

Theorem P'. There is a C > 0 such that for any sequence $\langle D_n \rangle_0^{\infty}$ of positive dyadic intervals

$$\left\{\sum_{0}^{\infty} \|\mu\|_{D_{k}}^{2}\right\}^{1/2} \leq C \|\mu\|$$

provided $\mu \in H^1(\mathbf{T})$.

The proof of Theorem P' uses a variant on the construction of Cohen—Davenport [1, 2] as well as some ideas in [3] and [5]. Before beginning the proof of Theorem P' we shall need the following lemma.

Lemma. Let $0 \le a \le 1$, $t, z \in \mathbb{C}$ and $|t| \le 1$, $|z| \le 1$. Then

$$\left|\frac{at}{10} + \left(1 - \frac{a^2}{5}\right)z - \frac{a\overline{t}}{10}z^2\right| \leq 1.$$

Proof. Consider the function $F(z) = \frac{at}{10}\overline{z} + \left(1 - \frac{a^2}{5}\right) - \frac{a\overline{t}}{10}z$; since $0 \le a \le 1$ it is easy to check that $|F(z)| \le 1$ for $|z| \le 1$ and $|t| \le 1$.

Assume for the moment |z|=1; as a consequence of $|F(z)| \le 1$ we gather that

$$\left|\frac{at}{10} + \left(1 - \frac{a^2}{5}\right)z - \frac{a\overline{t}}{10}z^2\right| \leq 1.$$

Our result now follows from the maximum modulus principle for analytic functions.

We turn to the proof of Theorem P': Let $\mu \in H^1(\mathbf{T})$ and let $\langle D_k \rangle_0^{\infty}$ be any sequence of positive dyadic intervals. Suppose $\langle a_n \rangle_0^{\infty}$ satisfies

(1)
$$\sum_{0}^{\infty} |a_n|^2 \leq 1.$$

Let $\langle t_n \rangle_0^\infty$ be any sequence of trigonometric polynomials on **T** such that supp $\hat{t}_k \subset -D_k$ and $||t_k||_\infty \leq 1$ for all k. We also arrange for $\int_T t_k(\theta) d\mu(\theta) \equiv \hat{\mu}(t_k) \geq 0$ for all k. Put

$$F_0 = \frac{1}{10} |a_0| t_0$$

and define inductively for n=1, 2, ...

$$F_n = \frac{1}{10} |a_n| t_n + \left(1 - \frac{|a_n|^2}{5}\right) F_{n-1} - \frac{|a_n| t_n}{10} F_{n-1}^2$$

As a consequence of inequality (1), $|a_n| \leq 1$, so we may infer from the Lemma (2) $||F_n||_{\infty} \leq 1$ for all n. Well, on the one hand,

(3)
$$\left|\int_{\mathbf{T}}F_{n}(\theta)\,d\mu(\theta)\right| \leq \|\mu\|\,,$$

because of inequality (2), while on the other hand,

(4)
$$10 \int_{T} F_{n}(\theta) d\mu(\theta) = |a_{n}| \hat{\mu}(t_{n}) + \left(1 - \frac{|a_{n}|^{2}}{5}\right) |a_{n-1}| \hat{\mu}(t_{n-1}) \\ + \left(1 - \frac{|a_{n}|^{2}}{5}\right) \left(1 - \frac{|a_{n-1}|^{2}}{5}\right) |a_{n-2}| \hat{\mu}(t_{n-2}) + \dots \\ + \left(1 - \frac{|a_{n}|^{2}}{5}\right) \left(1 - \frac{|a_{n-1}|^{2}}{5}\right) \dots \left(1 - \frac{|a_{1}|^{2}}{5}\right) |a_{0}| \hat{\mu}(t_{0}).$$

because the sequence $\langle D_k \rangle_0^\infty$ is dyadic and $\mu \in H^1(\mathbf{T})$.

As a consequence of inequalities (3) and (4), we obtain

(5)
$$10 \|\mu\| \ge \left\{ \prod_{0}^{n} \left(1 - \frac{|a_{k}|^{2}}{5} \right) \right\} \left\{ \sum_{0}^{n} |a_{k}| \, \hat{\mu}(t_{k}) \right\}$$

since $\hat{\mu}(t_k) \ge 0$ for all k. It now follows from inequalities (1) and (5) that

$$\left\{\sum_{0}^{\infty} \|\mu\|_{D_{k}}^{2}\right\}^{1/2} \leq C \|\mu\|$$

for some universal constant C>0. Our proof is complete.

Corollary. (Meyer [7].) Let $\langle D_k^* \rangle_0^\infty$ be a sequence of standard symmetric dyadic intervals, i.e., $D_k^* = [n_{2k}, n_{2k+1}) \cup (-n_{2k+1}, -n_{2k}]$ where $n_{k+1}/n_k \ge 2$ for all k and $n_{k+1}/n_k \le \lambda$ for some λ . Then there exists a $C(\lambda) > 0$ such that

$$\left\{\sum_{0}^{\infty} \|\mu\|_{D_{k}}^{2}
ight\}^{1/2} \leq C(\lambda)\|\mu|$$

provided $\mu \in H^1(\mathbf{T})$.

Comments. (a) Theorem P' tells us that the quotient norms of an analytic measure vanish very quickly at " $+\infty$ "; cf. [5].

- (b) Versions of Theorem P' hold for all compact abelian groups with ordered duals.
- (c) For a different approach to Littlewood—Paley inequalities which generalize Theorem P see [6].
- (d) The method of proof of Theorem P' can easily be adapted to give this generalization of Paley's inequality: Suppose φ is a multiplicative linear functional with representing measure m; by H¹(dm) we mean the closure in L¹(dm) of A and by H₀[∞] the weak-*closure of A₀ in L[∞](dm).

274 Louis Pigno and Brent Smith: A Littlewood-Paley inequality for analytic measures

There is a universal constant C > 0 such that if $\{\mu_k\}_0^\infty$ is any sequence of unimodular elements of $H^\infty(dm)$ such that $(\bar{\mu}_{k-1})^2 \mu_k \in H_0^\infty$ for all k then, for any $h \in H^1(dm)$,

$$\left\{\sum_{0}^{\infty} \left| \int h \bar{\mu}_{k} dm \right|^{2} \right\}^{1/2} \leq C \|h\|_{1}.$$

Acknowledgement

The authors wish to thank John Fournier for helpful correspondence.

References

- 1. COHEN, P., On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960), 191-212.
- 2. DAVENPORT, H., On a theorem of P. J. Cohen, Mathematika 7 (1960), 93-97.
- FOURNIER, J. J. F., On a theorem of Paley and the Littlewood conjecture, Arkiv för Matematik 17 (1979), 199–216.
- 4. PALEY, R. E. A. C., On the lacunary coefficients of power series, Ann. of Math. 34 (1933), 615-616.
- 5. PIGNO, L. and SMITH, B., Quantitative behaviour of the norms of an analytic measure Proc. Amer. Math. Soc. (1982), in press.
- STEIN, E. M., Classes H^p, multiplicateurs et fonctions de Littlewood—Paley, C. R. Acad. Sci. Paris (Ser. A) 263 (1966), 780-781.
- 7. MEYER, Y., Complément à un théorème de Paley. C. R. Acad. Sci. Paris (Ser. A) 262 (1966), 281-282.

Received August 17, 1981.

Louis Pigno Kansas State University Manhattan KANSAS 66506 USA

Brent Smith California Institute of Technology Passadena CALIFORNIA USA