A Littlewood—Paley inequality
for analytic measures
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Let T be the circle group and Z the additive group of integers; designate by
M(T) the customary space of Borel measures on T, and, given u€M(T) and
neZ, let

@) = [re-"0du(©).

A measure pcM(T) is said to be of analytic type if f(n)=0 for all n=<0;
as usual, H*(T) will denote the classical space of all measures of analytic type on T.
In 1933, Paley [4] published this remarkable inequality:

Theorem P. There is a C>0 such that if (m)e CZ* and ., 1/m=2 for all
k then

{S e} = Cliul
provided pe H*(T).

For generalizations of Paley’s Theorem see the work of J. Fournier [3] and the
references cited therein.

In this paper we shall prove yet another generalization of Paley’s inequality;

before we describe our result we shall require some notation concerning quotient
norms for M (T):

For weM(T) and ECZ put
lolg=inf {|v]: ¥ =& on E};

here || .| is the usual total variation norm on M(T). We say (D,)s is a sequence
of positive dyadic intervals in Z if there exists a sequence {m)s CZ™*, ni4q/n =2 for
all k and Dy=[ny, ny,,). If the sequence of positive dyadic intervals (D)
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satisfies n,/m =2 for some A and all k we say (D,); is a standard sequence of pos-
itive dyadic intervals.

Our generalization of Theorem P is the following Littlewood—Paley type
inequality for the quotient norms of an analytic measure:

Theorem P’. There is a C>0 such that for any sequence (D,); of positive
dyadic intervals

{5 1ul3, )2 = Clul
provided pc H1(T).

The proof of Theorem P’ uses a variant on the construction of Cohen—Daven-
port [1, 2] as well as some ideas in [3] and [5]. Before beginning the proof of Theo-
rem P’ we shall need the following lemma.

Lemma. Let 0=a=1, ¢t,z€C and |t|=1, |z|=1. Then

_a_t.+ (1 _._iz_Jz_.a_i zz
10 5 10

=1

at 2
Proof. Consider the function F(z)=—Z+ l—a— ——a—-z; since 0=a=1
10 5 10

it is easy to check that |F(z)|=1 for |z|=1 and [t|=1.

Assume for the moment |z]=1; as a consequence of |F(z)|=1 we gather that
at az] at ,
(-5
Our result now follows from the maximum modulus principle for analytic functions.

We turn to the proof of Theorem P’: Let u€ HY(T) and let (D,)y be any
sequence of positive dyadic intervals. Suppose (a,), satisfies

M 2o lal*=1.

Let (t,)¢ be any sequence of trigonometric polynomials on T such that supp #C — D,
and |4]|..=1 for all k. We also arrange for f r L@ du(@)=4()=0 for all k. Put

=1.

1
Fy= 10 laol %
and define inductively for n=1,2, ....

[a"l in

F 10

_1 lanlz)
n'__lb—]anltn']'(l_ 3 Fn~1_"

2
Fz ..

As a consequence of inequality (1), |a,|=1, so we may infer from the Lemma

) 1Flle =1 for all n.
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Well, on the one hand,
©) | [rFo(®) du(®)] = Il ,
because of inequality (2), while on the other hand,

|2, ?

@ 10 [ £, du(®) = la) 266) +(1-%] fa, 1 4,20

(1= (Ll a0+

T =it By (Ll PR YOO

because the sequence (D,)¢ is dyadic and uc H'(T).
As a consequence of inequalities (3) and (4), we obtain

®) 1071 = {173 (1 22 H =2 taut a0}

since (#)=0 for all k. It now follows from inequalities (1) and (5) that

{20 b )2 = Cliud

for some universal constant C=0. Our proof is complete.
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Corollary. (Meyer [7].) Let (Df); be a sequence of standard svmmetric dyadic
intervals, i.e., Djf=[ng, gy ) I(—nyi1, —ng] where m /n,=2 for all k and

Npi/m=2 for some i. Then there exists a C(1)=0 such that

(S lulz? = cul
provided pue HY(T).

Comments. (a) Theorem P’ tells us that the quotient norms of an analytic

measure vanish very quickly at “+<”; cf. [5].

(b) Versions of Theorem P’ hold for all compact abelian groups with ordered

duals.

(c) For a different approach to Littlewood—Paley inequalities which generalize

Theorem P see [6].

(d) The method of proof of Theorem P’ can easily be adapted to give this generaliza-
tion of Paley’s inequality: Suppose ¢ is a multiplicative linear functional with
representing measure m; by H(dm) we mean the closure in L*(dm) of A and

by Hy the weak-*closure of 4, in L™ (dm).
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There is a universal constant C=0 such that if {u.}s is any sequence of uni-
modular elements of H™(dm) such that (G, _?wmcHy for all k then, for any

he H(dm),

{5 [ hiwdm [} = ).
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